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In this paper, we consider semidiscrete splitting positive definite mixed finite element methods for optimal control problems
governed by hyperbolic equations with integral constraints. The state and costate are approximated by the lowest order
Raviart-Thomas mixed rectangular finite element, and the control is approximated by piecewise constant functions. We derive
some convergence and superconvergence results for the control, the state and the adjoint state. A numerical example is

provided to demonstrate our theoretical results.

1. Introduction

There have been extensive studies in error estimates of stan-
dard finite element methods (FEMs) for optimal control
problems (OCPs). The convergence or superconvergence
results of standard FEMs for elliptic and parabolic OCPs
can be found in [1-13], respectively.

Because large temperature gradients during cooling or
heating may lead to its destruction in temperature control
problems, the gradient stands for Darcy velocity in flow con-
trol problems, stiffness optimization in nonlinear panto-
graphic structures [14], and topology optimization of a
cycloidal metamaterial [15]; their objective functionals con-
tain not only the primal state variable but also its gradient.
At this time, mixed finite element methods (MFEMs) will
be a very good choice for solving this kind of OCPs. The
convergence or superconvergence results of MFEMs for
elliptic and parabolic OCPs can be found in [16-20], respec-
tively. However, mixed finite element spaces have to satisfy
the LadyZenskaja-Babuska-Brezzi (LBB) condition, which
brings very little available approximation spaces and expen-
sive computing costs.

In order to avoid the limitation of LBB condition, a split-
ting positive definite MFEM was first proposed for solving

miscible displacement of compressible flow in a porous
medium [21]. Compared with the classic MFEMs, the main
advantages of this method are that the original problems can
be split into two independent symmetric positive definite
subschemes and that the LBB condition is not necessary.
Recently, splitting positive definite MFEMs have been used
to solve hyperbolic equations [22, 23], elliptic OCPs [24],
and parabolic OCPs [25]. To our best knowledge, most of
the published papers on different FEMs or MFEMs for OCPs
are focused on elliptic or parabolic cases. Although Xu in
[26] established a priori error estimates and superconver-
gence results of splitting positive definite MFEM for pseudo-
hyperbolic integrodifferential OCPs and Lu et al. in [27]
derived the convergence of finite volume element method
for nonlinear hyperbolic OCPs, there are very little studies
on hyperbolic OCPs, .

The goal of this paper is to investigate splitting positive
definite MFEMs for hyperbolic OCPs and derive the conver-
gence and superconvergence.

We are interested in the following hyperbolic OCPs:
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c(X)y,(xt) +div p(x, t) = f(x, t) +u(x, t), x € Q, t € ],

(2)

plx, ) =—A(x)Vy(x, t),x e Q t €], (3)
y(x,t)=0,x€00,te], (4)

y(%,0) =y(x), y,(%:0) =y, (%), x € Q, ()

where QCR? is a rectangle domain, J=(0,7], p,€
(L2(J; LX(Q)% v f € 2(J; 1X(Q)), ce Wh(Q) with 0
< Copin < €(X) < Cpae and y,, ¥, € H(Q). The coefficient
matrix A(x) = (a;(x)), , € WH°(Q;R¥?) is a symmetric
matrix, and there are constants c;, ¢, > 0 satisfying any vec-
tor X € R?, ¢ [|X||3: < X'AX < ¢,||X|| . K is a set defined by

Kz{ueLz(];Lz(Q)): JTJQudxdtZO}. (6)

0

In this paper, we adopt the standard notation W™?(Q)
for Sobolev spaces on Q with a norm ||-[|,,, given by

191, = Byasen DIy - @ semiorm [, given by v,
:lz‘“lzm”Dav”lL)i(Q). For p=2, we set H"(Q)=W™*(Q),
Hy(Q)={veH (Q): V[0 =0}, and [}, =[]l [l =
[|llo.2- We denote by L*(J; W™F(Q)) the Banach space of
all L’ integrable functions from J into W™ (Q) with norm

s 1/s
LW () = (ngvam,p(Q)dt) forse[l,00), and the

lv
standard modification for s = co. For simplicity of presenta-
tion, we denote [|V|[ys(ywme(q)) bY [Vl 1s(yme)- Similarly, one

can define the spaces H'(J; W™?(Q)) and C*(J; W™ (Q))
. In addition, C denotes a general positive constant indepen-
dent of h, where h is the spatial mesh-size for the control and
state discretization.

The plan of this paper is as follows. In Section 2, we give
an equivalent optimality conditions for the OCP (1)-(5) and
construct its splitting positive definite mixed finite element
approximation scheme. In Section 3, we derive the conver-
gence for the control variable, the state variables, and the
adjoint state variables. In Section 4, we derive the supercon-
vergence properties between the RT projections and the
approximation solutions of the control and the state vari-
ables. In the last section, we present a numerical example
to illustrate our theoretical results.

2. Splitting Positive Definite MFEMs for OCPs

In this section, we shall construct a splitting positive definite
mixed finite element approximation of the control problems
(1)-(5). To fix the idea, we shall take the state spaces L=
H?(J;V) and Q=H?*(J; W), where V and W are defined
as follows.

Let

V = H(div; Q) = {v € (1(Q))  divve LZ(Q)}, W =13(Q),
(7)
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and the inner products

(fiofy) = JQflfz,prfz e12(Q),
) (8)
(@ ¥) = Y (90 V)V v € (L3(Q))"

i=1

Let b=1/c(x), a mixed weak form of (2), and (3) can be
given by

(A7'p,v) = (y,divv)VveV,te], 9)

(y;pp w) + (b div p, w) = (bf, w) + (bu, w),Yw e W,t€J.
(10)
As in [24], taking w = div v, Vv € V in (10), (9) differen-
tiating twice with respect to ¢, and then substituting the two
resulting equations, we derive
(A7'pysv) + (b div p, div v) = (bf, div v) + (bu, div v),Yv € V,t € ].
(11)
By using (10) and (11), we get the following new mixed
variational form:
(A7'pyy»v) + (b div p, div v) = (bf, div v) + (bu, div v),Vv e V,t €],

(12)

(y;pp w) + (b div p, w) = (bf, w) + (bu, w),Yw e W,t € ].
(13)

It is easily seen that (12) is separated from (13) so that p
can be solved independently from (12).

We recast (1)-(5) as the following weak form: find (p,
y,u) € Lx Qx K such that

N
mm{zj (|p—pd|2+||y—yd||2+||u||2)dt}, (14)

uek 0

(A'lptt, v) + (b div p,div v) = (bf, div v) + (bu, div v),¥v e V,t € ],
(15)

P(x0) = =AVy, (%), p,(x, 0) = —AVy, (x).Vx € Q. (16)

(y;p w) + (b div p,w) = (bf, w) + (bu, w),Ywe W,t €],
(17)

V(% 0) = o (%), y,(x, 0) = y; (x),Vx € Q. (18)

It then follows from [28] that the optimal control prob-
lems (14)-(18) have a unique solution (p, y, u), and that a
triplet (p, y, u) is the solution of (14)-(18) if and only if there
is a costate (q,z) € L x Q such that (p, y, q, z, u) satisfies the
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following optimality conditions:

(A7'py>v) + (b div p, div v) = (bf, div v) + (bu, div v),Vv e V, t € ],

(19)

p(x,0) = —AVy,(x), p,(x,0) = -AVy, (x),Vx € Q,  (20)
(Y w) + (b div p, w) = (bf, w) + (bu, w),Ywe W, t €],
(21)
Y(%,0) =y (x), y,(%, 0) =y, (x),Yx € 2, (22)
(A'qv) + (b div p,div v) + (bz,div v) =—(p - py, v),Vv e V, 1 €],

(23)
q(x,T)=0,q,(x, T)=0Vx €, (24)
(Zppw)=—(y—ypw)Ywe W,te], (25)
z2(x, T)=0,2,(x, T) =0,Vx € O, (26)

T
J (u—bz-bdivg,u—u)dt>0VuekK. (27)

0

The inequality (27) can be expressed as

u=max {0,-G} +G, (28)

where G = (bz + b div q) and G= fngdedt/(lm xT).
Let T, be a uniform rectangulation of the domain 2, and
h, denotes the diameter of element e and h = me%x{he}. Let
eeT),

V, x W, ¢V x W denote the lowest order Raviart-Thomas
mixed finite element space [29, 30], namely

Vh = {Vh € V . Ve € Th’ vh‘e € Ql)o(e) X QO,I (6)},

(29)
Wh = {wh e W :Vee Th’ whle € QO,O(e)}’

where Q,, ,(e) indicates the space of polynomials of degree
no more than m and » in x; and x, on e, respectively. And
the approximated space of control is given by

K,=L*(J;W,)nK. (30)

We introduce two projection operators. First, we define

the standard L?(Q)-projection [29] P, : W — W, which
satisfies the following: for any ¢ € W

(Pu¢p — ¢, wy,) = 0.Vw,, € Wy, (31)

16~ Pibll_op < CH™[19], 5= 0, 1,2 p< 00, ¥ € WH(0). (32)

Second, we recall the Fortin projection (see [29, 31])
IT, : V— V,, which satisfies the following: for any g€ V

(div (IT,q - q), wy,) = 0,Yw, € W, (33)

2
la - 11,4, < Chllqll, ,» 2< p < 00, Vg € (W' (2)),
(34)
||div (q - I1,,q)|| < Ch||div q||,,¥ div q € H' (Q). (35)

Then the splitting positive definite mixed finite element
discretization of (14)-(18) is as follows: find (pj,, v, u;,) €
H?*(J;V,) x H*(J; W,,) x K}, such that

. 1 (T
ey {5 L (lew =pall* + lyn = yall* + ||uh||2)dt}, (36)

u, €K,

(A7 P> vi) + (b div py, div vy,) = (bf, div v,

(37)
+ (buh, le vh),Vvh € Vh’ te ],

Pu(30) = 1,p(x, 0), Py (x,0) = ITp, (%, 0)Vx €0, (38)

oo wn) + (b div py, wy,) = (bf s wy,) + (b, wy) Yy, € W, t €],
(39)

V(% 0) = Pyyy(x), ¥, (%, 0) = Pyy; (x),Vx € Q. (40)

The optimal control problems (36)-(40) again have a
unique solution (py, y), 1), and a triplet (p,, ,, u;,) is the
solution of (36)-(40) if and only if there is a costate (q;, z;,)
such that (p;,, v, q;,» z;» 1) satisfies the following optimality
conditions:

(A_lph,tt’ Vh) + (b diV Ph’ diV Vh) = (bf, diV vh)
+ (buh, le Vh),vvh € Vh’ te ],

(41)
Pi(%0) = I1;p(x, 0), pys (%, 0) = I1p,(x, 0),Yx € O, (42)

(Ve wp) + (b div py, wy,) = (bf, wy) + (buy, wy,),Vwy, € Wy, t €],
(43)

Y (%,0) = Ppyy(x), vy, (%, 0) =Py (x),Vx €Q,  (44)

(A_lqh,tt’ Vh) + (b diV qh’ diV vh) + (bzh, diV Vh)

(45)

==(Ph=Pa Vi)YV €Vt €],
q,(%, T)=0,q,,(x, T)=0,Yx € Q, (46)
(Zheo Wh) = = (V) = Yo W) YWy € Wi, t €, (47)
2,(%, T)=0,2,,(x, T) =0,Vx € O, (48)

T
J (uh - bzh - b le qh’ i:lh - uh)dt > O,Vfth € Kh' (49)
0

Similar to (28), we have
w, =max {0,-G,, } + G, (50)

where G, =P,b(z, +div q;) and G, = jngGhdxdt/(IQl X
T).



3. Convergence Analysis

In this section, we will derive the convergence of splitting
positive definite MFEMs for hyperbolic OCPs. For Vi € K,
we define the discrete state solution (p,(it), v, (1), q,(#), z,,
(@)) associated with # which satisfies

(A Prie( h)
= (bf, div vh) +

(51)
(bi{, le vh),Vvh € Vh’ te ],

Pu(#)(x,0) = IT,p(x, 0), pp, (1) (x, 0) = IT;p, (x, 0),Vx € 2,
(52)
(Vhse(B), wy,) + (b div py, (), wy,) = (bf, wy,) + (bik, wy,).Ywy, € Wy, t €],
(53)
V(1) (%, 0) = Py, (x), yp,, (4) (%, 0) = Py, (x),Vx € Q, (54)
(A7 gy (), vy) + (b div g, (%), div v,) + (bzy, (1), div v,
—(Pu() =P Vi)YV, € V)t €],
(55)
4,(#)(x, T) = 0, g, () (x, T) = 0.¥x € O, (56)
(2 (), wy) ==y () =y wy) Vwy € Wyt €, (57)
z,(1)(x, T) =0, 2, (t1) (x, T) = 0,Vx € Q. (58)

It is clear that the exact solution and its approximation
can be written in the following way:

(3> 4, 2) = (p(u), y(u), q(11), 2(1)),

(59)
(Pws Vi D> 21) = P ()> Vi () G ()> 23 (1)) -

Lemma 1. Let (p,y,q,z) be the solution of (19)-(26) and

Py (u),y,(u), q,(u),z,(u)) be the solution of (51)-(58)
with = u, respectively. If the solution satisfies

N [L2(H)]" n [H?(H)] andy,z € L (H'),

(60)

pae[L°(H)]

then we have

1y = 9n (@) |0 12y + 1P = P () oo (12) < Chs
12 = 20 () | oo (12) + 114 = @ () [ (1) < Chr
1div (2= Py (1)) |12y + [1div (9 = 45, (1)) ] 212y < Ch-
(61)

Proof. For ease of presentation, we set p, =IT;p —p;,(u),

py=Ppy ~u(u), pg=11,9-q,(u), p,=Pyz—z,(u). From
Equations (19)-(26) and (51)-(58) and the fact that div
V,, ¢ W, with the definition of P, and II,, we can easily
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obtain the following error equations:

(A_lpp,tt’ Vh) + (b div Pp> div Vh) =
- (A_l( t thtt)’ Vh),VVh eV,

—(bdiv (p—II,p), div v;)

(62)

(py,tt’ wh) + (b div p,, wh) =—(bdiv (p - II;p), wy)
= OV = Py wy) YW, € Wi,
(63)
-1 . . . _ .
(A Pyt vh> + (b div p,,, div vh> + (b div (q - I1,,q), div v},)
+ (b(z = Py2), div vy) = = (A7 (qy ~ T dy), vi)
-(p-I,p,v,) - <pp, vh> = (bp,, div v,),Yv, €V,
(64)

(Pz,tt’ wh) = —(P}n wh) = (24 = Ppzyp wy,),Ywy, € Wy,
(65)

Setting v;, = p,,, in (62), we have

"1 [0t div p, Hz) = (b (p-1,p). div )

- (Ail(Ptt - thn)’ Pp,t)'
(66)

2dt(HA Pos

Notice that

(b div (p - IT,p), div ppt) (b div (p - IT,p),, div pp>.

(67)

Substitute (67) into (66), integrating the resulting
equation from 0 to t, and using Holder’s inequality,
Young’s inequality, Gronwall’s inequality, and the assump-
tion on A and (34) and (35), we have

< Ch. (68)

L® L2

[eocl o * o]

L® L2

Letting wy, = p,,, in (63) and wy, =—p_, in (65), respec-
tively. Then integrating the resulting equations from 0 to ¢
and t to T, respectively, we get

pr’t < C||div ppHL2 () + Ch,

1(12) ‘ (69)
[22alliizy <€l

+ Ch,
L2 LZ)

where we also used Holder’s inequality, Young’s inequal-
ity, and Gronwall’s inequality.
At last, setting v;, = —p,, , as the test function in (64) and

integrating the resulting equation from f to T, similar to
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(68), we arrive at

scmc(pr

[ v 1P )

(70)

() v pPHL“’(LZ)

Note that p (0)=p,(0)=p,(T)=p,(T)=0, and we
have

<C )

PP Loo(LZ) PPJ Lz(Lz) (71)
<C )

'D,‘V Loo(LZ) p}”t Lz(Lz) (72)
<C )

Pq Loo(LZ) ‘Dq’t LZ(LZ) (73)

||pz||L°°(L2) s Csz,tHLZ(Lz)‘ (74)

Combining (68)-(74), (32), (34), and (35) and the trian-
gle inequality, we complete the proof. O

Using the same estimates as in Lemma 1, we get the
following.

Lemma 2. Let (P, > 4y 21,) and (py(u), y),(u), ), (1), 24 (1))
be the solutions of (51)-(58) with ti=u,;, and 0= u, respec-
tively. Then we have
1= 200 a2y + 19 = 20l 12 < Cllit = 21
120 = 20 ()l 22y + 190 = @) 10 (12) < Cllu = ]| 212,
18 (21 21,000 2 12) * 1V (8, = () 124 < Clle= 1
(75)

Now, from the above Lemmas 1 and 2, we can derive the
following convergence results.

Theorem 3. Let u be the solution of (19)-(27) and uy, be the
solution of (41)-(49), respectively. Assume that all the
assumptions in Lemma 1 are valid. Then we have

||”_”h||L2(L2) < Ch, (76)
1y = Yullies 2y + 1P = Pullyo (12) < Chs (77)
2=l 14 Bl < (78)

v (0 = Pu)ll 212y + [1div (4= @)l 22y <Ch- (79)

Proof. Let w;, =1 in (31), and we have

J Phudxzj udx. (80)
Q Q

5
By (80), we have
T T
J J P, udxdt = J J udxdt > 0. (81)
0J0 0JO
Thus, we know that P,u € K.
It follows from (27) and (49) that
T T
|| - ”hHiZ(LZ) :J (u—uh,u—uh)dt:J (u—bz-bdivq,u—uy)
0 0
T
dt+ J (bz = bz, (u) + b div (q — q, (1)), u—u,)
0
T
dt + J (bzy,(u) — bz, + b div (q;,(u) — q;,), u — uy,)
0
T
-dt+J (bz), + b div q, — uy, u—uy,)
0
T
Sdt < J (bz — bz, (u) + b div (9 —q,(u)), u—u,)
0
T
-dt—J (u—bz—-bdivgq,u—-Pyu)
0
T
dt+ [ (bzy,(u) — bzy, + b div (q;,(u) — qp,), u — uy,)
o r
-dt + J (4 — up, u— Pu)dt + J (bz), — bz, (u)
0 0
+bdiv (g, = q,(u)), u - Pyu)
T
Sdt+ J (bzy,(u) — bz + b div (q;,(u) — q), u — P,u)
;
dt= YT,
i=1
(82)

Next, we estimate (82) term by term. For I,, using
Holder’s inequality, Young’s inequality, and Lemma 1, we
have

1
2 2
11£Ch +Z||u—uh||L2(L2). (83)

From (28), we find that
u—bz—bdiv q = const. (84)
Thus

T

I, = —constJ J (u— Pyu)dxdt = 0. (85)
Q

0

Set 11, = py () = P> 1, =y, () = ¥y 1y = (1) — 4> and
1, =2z,(u) — z,; then from (51)-(58), we have the following
error equations:

(A’lnp’”, vh) + (b div 7, div vh) = (bu - buy, divv,),Vv, eV, te],
(86)

(’U,wwh> + (b div 7, wh) = (bu — buy, wy,)Yw, € Wy, te], (87)



<A’117q)”, vh> + (b div 77, div vh> =- <11p, vh>
—(bn,,div v,),Vv, €V, t €],

(88)

(Mg wp) = —(r]y, wh>,th eW,, te]. (89)

choosing v, =1 in (86), w;, =7, in (87), v; =7, in (88), and
wy, =1, in (89), respectively. Since #,(0) =7,(0) =7,,(0) =
ny,t(o) = r]q(T) = Uz(T) = ’/Iq,t(T) = rlz,t(T) = O’ integrating
the resulting equations from 0 to T, we can see that
T 2 2
I = J (’12 + div Ny bu - buh)dt = —HnPH - Hr]yH <0.
0

(90)

For I, and I;, using Holder’s inequality, Young’s
inequality, Lemma 2, and (32), we get

1
I < hz - - 22 2)» 91
4<C +4||” A (%) (1)

to (b o] I Pitlioey

1

2 2

< HM— uh”LZ(LZ)”u_Phu”LZ(LZ) <Ch” + ZHM— uh”Lz(Lz).
(92)

For I, by Holder’s inequality, the triangle inequality,
Lemma 1, and (32), we arrive at

) ||u —PhMHLz(Lz) < CH.

(93)

1% Bl 21060 2l + v

2()

Combining (82), (83), (85), and (90)-(92), we derive
(76). Using (76), Lemmas 1 and 2, and the triangle inequal-
ity, we complete the proof. O

4. Superconvergence Properties

In this section, we will derive some superconvergence prop-
erties for the optimal control problems. In order to derive
the main results, we need the following lemmas.
Lemma 4. Let (p,y,q,z) be the solution of (19)-(27) and
Py (), y,(u), q,, (1), z,(u)) be the solution of (51)-(58)
with t=u, respectively. If the solution satisfies

pae [L°(HN] n [IP(H)] 0 [H (H)] and y,z € L (H"), (94)
then we have

14y = 33(0) o (12 + T4 = (1) | 12 < CHE,— (95)

1Pz =z, (1)

po(12) + 1Thq = 4 ()| o 12y < CH - (96)
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v (1730 =y () 22+ /v (7T, = () 2 < O
(97)

Proof. At first, for any pe V and v € V,, by applying the
proof of Theorems 4.1, 5.1, and Example 6.2 in [32], we
can prove

(A7 (p — T4p), vy,) < CI2 ||, ([|vil| + [[div wy[]). (98)
Moreover, using (32) and (35), we have

(b div (p - IT,p), div v,) = (b — P,b) div (p — IT,p), div v
< CH2[b]| oo [P, 1V 1
(b(y = Ppy), div vy) = (b= P,b)(y = Ppy), div v,
< CH|[b|, oo 7], |div v |-
(99)

Similar to Lemma 1, using (98), we can prove
(95)-(97). We omit the proof here. O

Lemma 5. Let (p,(Pyu), y,(Pyu), 4,(Pyu), z,(Pyu)) and (p,
(u), y, (1), q,(u), z,,(u)) be the solutions of (51)-(58) with
u=Pyu and u=u, respectively. Then we have
1930) = 4 By o + 181(0) = 2Pyt 12y = O,
12 (1) = 2 (Pl o (12) + 11n () = G (Ppt4) | oo 12y = 05
14 (240) = 2y (Pyt) 3 22) * 1 (@,(0) = 04 (Pya0) 12 =0
(100)
Proof. First, set (,=p;(u) = p,(Pyu), =y, (u) =y, (Pyu),
Cq =q,(u) - q,(Pyu), and (, =z;,(u)-z,(Pyu), and we
choose #=P,u and z=u in (51)-(58), respectively; then
we obtain the following error equations:
(A7 vp) + (b div §py div v,) = (bu— bPu, div v,) Vv, € Vi, t €],
(101)

(Cy,tt’ wh) + (b le Cp, wh) = (bu — bPhu, wh),th € Wh’ te ],

(102)

(A—l (Cq,tt’ vh) + (b div (q, div vh) = —(CP, Vh) (103)
— (b, divv,),Vv, eV, te],

(G wp) == (8 wy) Yw, e Wy, te]. (104)

Noting from the fact that div V,, ¢ W, and (31)

(bu— 6Py, div v,) < O [b], 1] | div v, 9w, €V,

(bu— by, w,) < CHIZB] ]y [0 Voo, € W
(105)
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then, as in Lemma 1, using the stability estimates, we com-
plete the proof. O

Lemma 6. Let (p,(Pyu),y,(Pyu), q,(Ppu), z,(Pyu)) and (
P Vi A 21) e the solutions of (51)-(58) with &= P,u and
U = uy, respectively. Then we have

— bz, Pyu—uwy,) + (b div (q,(P,u) — qy,), Pyu — uy,)]dt < 0.

T
J [(bz),(Pyu)

0

(106)

Proof. Set 0, = p, — p,(Pyu), 0, =y, = y,(Pyu), 0, = q;, — q,(
P,u), and 0, = z;, — z;,(P,u), similar to (101)-(104), and we
obtain the following error equations:

(A0, v1,) + (b div (8, div v,) = (buy, — bPyu, div v,,),¥v, €V,

D,
(107)
(9}/,[[’ wh) + (b le 91,, wh) = (buh - bPhu, wh),th € Wh’
(108)
(A7 (B0 vi) + (b div 0, div ) = =(6,,v,) + (b6, div v,). Vv, €V,
(109)
(Gz,tt’ wh) = _(6}” wh),th S Wh’ (1 10)

choosing v;, =0, in (107), w;, =6, in (108), v, = =0, in (109),
and wy, = -0, in (110), respectively. Integrating the resulting
equations from 0 to T, we derive

T
J [(z1(Pyu) = 2),, bPyu — buy,)
0
+ (div (g,(Pyu) - 4,), bPyu — busy)] (1)
2
== [18 121z - 1€ ol iy
which yields to (106). U

Theorem 7. Let u be the solution of (19)-(27) and uy, be the
solution of (41)-(49), respectively. Assume that all the
assumptions in Lemma 1 are valid. Then, we have

||Phu—uhHLz(L2) SC]’lj (112)

Proof. We choose o1 = u;, in (23) and #;, = P,u in (44) to get
the following two inequalities:

T

J (u—bz—-bdivg,u, —u)dt>0,
. 0 (113)
J (uy, — bz, — b div q;, P,u—u,)dt > 0.

0

Note that u;, —

u = uy, — P,u+ P,u— u. Adding the above

two inequalities, we get

Jj(uh -

T
~dt+J (u—bz—-bdivg, P,u—u)dt>0.
0

u+bz—bz, +bdiv (q—qy;), Pyu—uy)
(114)

Thus, by (114) and (26), we find that

T
1Pt = 112y = J (Pyu = u, Py — )

dt+ (u—uy, Pyu—uy,)

Sdt < hz—bzh+hdivq—bdiv q> Ppu—uy,)

dt+J (u—bz—-bdivgq, P,u—u)
J (bz — bPyz + b div q - b div IT,,q, Pyu — uy,)

Sdt+ [ (bP,z — bz, (u) + b div IT,q
Jo
T

—div gy, (u), P,u—u,)dt + J (bzy,(u) -

0
- bdiv q,(P,u), P,u—uy,)

bz, (Pyu)

+ b div gq,,(u)
T
-dt+ J (bz, (Pyu) -

0

bz, + b div q(Pyu)
T

- bdiv qy, Pu—uy,)dt + J (u—>bz
0

5
-bdiv g, Pu-u)dt= Y J,.

i=1

(115)

At first, from Cauchy inequality, (26), (28), and (24), it is
easy to get

T

J1 :J (bz - bP,z+bdivq—bdiv II,q, Pyu—uy)
0 | (116)

-dt<Ch' + 2 |1Pwt = uhH;(Lz).

Using Holder’s inequality, Young’s inequality, and
Lemmas 4 and 5, we arrive at

1
J,<Ch + Z||Phu—u,,||;(L2), (117)

1
]3SCh3+ZHPhu—uhHiz(Lz). (118)

Combining (84), (85), and (115)-(118) and Lemma 6,
we derive (112). O

Using Theorem 7 and the stability estimates as in
Lemma 1, we can arrive at the following.



TaBLE 1: Numerical results of convergence.

h=t lle.llsn Rate HeyHoo,z Rate | Rate

zHoo,Z
3.508le-2 —

4.0448e -2 —
1.8105e—-2 095 2.0416e—-2 0.99
9.1468¢ -3  0.99

1.0208e -2 1.00
4.5615¢—3 1.00 5.1032¢-3 1.00

1/10 4.956le-2 —

1/20  2.5280e-2 0.97
1/40 1.2642¢e-2 1.00
1/80 6.2663¢—3 1.01

Lemma 8. Let (p,(Pyu),y,(Pyu), q,(Ppu), z,(Pyu)) and (
P> Vi > 2n) be the solutions of (51)-(58) with it = P,u and
U = uy, respectively. Assume that all the assumptions in The-
orem 7 are valid. Then we have

1Vn _)’h(Ph”)HLm(LZ) + Py _ph(Phu)HLO"<L2) <Ch,
Iz — Zh(Ph”)HLw(LZ) +lqn - Qh(Ph”)”Lw(LZ) <Ch,

[|div (b, _Ph(Ph”))HLZ(LZ) +]|div (q;, - ‘lh(Ph”))HLZ(L—’) < CI.
(119)

Combining Lemma 4-8 and using the triangle inequal-
ity, we derive the following superconvergence results.

Theorem 9. Let (y,p,z,q) and (y,, Pj» 2> q,) be the solu-
tions of (19)-(27) and (41)-(49), respectively. Assume that
all the assumptions in Theorem 7 are valid. Then we have

3
1P = il a2y * [T = Byll o 12y < CI,
1Pz = 2l a2) + T4 = il 12y < O,

v (T = )22y + 1V (T30 = 4212 < O
(120)

5. Numerical Experiments

In this section, we present a numerical example to validate
our convergence and superconvergence results. The hyper-
bolic OCP was dealt numerically with codes developed based
on AFEPack. The package is freely available and the details
can be found in [33].

Let 71>0,N=T/tr€Z,and t,=nt,n=0,1,---,N. Set

" =(x.t,) ¢ = (¢" —2¢" + 9" ) /7. (121)

Then, a fully discrete splitting positive definite mixed
finite element solution (p}., y}', q}}, 2, u}}) of (1)-(6) satisfies
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the following system:

(A_IPZ,W Vh) + (div pji, div vy,) = (f", div vy,)
+ (up, divv,), Vv, e V,,n=1,2,---,N.

Pl —p;!
( h2T v ) = (Pu(x,0),v,) VY, €V,

Py =I1,p(x,0),Vx € Q,

(yZ,tt’ wh) + (diVPZ>wh) = (fn>wh)
+ (MZ, wh),th € Wl’l’ n= 1, 2, R N,

Th =i’
( 27 7wh> = (1 (%), wy,).Vwy, € Wy,

R=Plx), Vreo,

(A7 g vy) = (div g, div v,) = (P = Pl V1)
+ (g, divy,) Vv, eV, n=N,N-1,--,1,

O
<2T’ "h) =(:(x% T), vp,). Vv, € V),
q) =0VxeQ,
(ZZ,m wh) = ()’Z _)’Z’ wy),Yw, € Wy, n=N,N—-1,---,1,

zi\f—l _Zl}:Hl
5y W)= (z,(%, T), wy),Ywy, € Wy,
ZN=0VxeQ,
u), = max {O,—(z,1 +div qh)} +2} +div q},¥n=0,1,---,N.

(122)

Example 10. Let Q=(0,1)x(0,1),T=1,¢(x)=1,A=E,
where E denotes identity matrix. The data under testing
are as follows:

y(x,t) = t* sin (27x;) sin (271x,),

2nt? cos (271x;) sin (27x,)
P ) == 27t* sin (271x;) cos (27x,) ) ’
(1-1)* cos (27x,) sin (27x,)
(1-t)*sin (27rx,) cos (27x,) > ’
(%, t) +2(1 - ¢t) sin (27mx;) sin (271x,),
Va1 =y (6 1) = 24 (5,1,
Pa(xt) =p(x, t) = g (x, t) + (271? : i) 08 (27:) sin (i) )

(1 —t) sin (27x,) cos (2mx,)

u(x, t) = max {0,~z(x, t) + div g(x, 1) } + z(x, t) + div q(x, t),
fxt) =y, (xt) +div p(x, t) — u(x, t).

(123)

Let e, =u—upe,=y—y,e=p-—ppe,=2-2z,€=
-q, and E, =Pyu—w,E =Py-y,E,=II,p-p),E, =
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TABLE 2: Numerical results of convergence.
ot ol R e, Rae v,  Rae  Jave,  Rac
1/10 4.7647e -2 — 4.9557e-2 — 5.5145e -2 — 6.7192¢ -2 —
1/20 2.4324e-2 00.97 2.5128e -2 0.98 2.8071e -2 0.97 3.3987e -2 0.98
1/40 1.2153e~-2 1.00 1.28077e -2 0.97 1.4045¢ -2 1.00 1.6943¢ -2 1.00
1/80 6.0748e -3 1.00 6.4102e -3 1.00 7.0231e -3 1.00 8.4158¢ -3 1.01
TABLE 3: Numerical results of superconvergence.
h T IEu2 Rate 741 Rate E. oo 2 Rate
1/10 1/10 4.8542¢ -2 — 3.4063e -2 — 4.0284e -2 —
1/20 1/30 1.7282e -2 1.49 1.2154e -2 1.49 1.4404e -2 1.48
1/40 1/90 6.0473e -3 1.51 4.3104e -3 1.50 5.0486e -3 1.51
1/80 1/270 2.1158e -3 1.52 1.4835e -3 1.54 1.7635¢ -3 1.52
TaBLE 4: Numerical results of superconvergence.

h T Ep| . Rate 1Eq]| o Rate [divE,|,, Rate |div E, |, Rate
1/10 % 4.6684¢ -2 — 4.7694e -2 — 5.4134e-2 — 6.5048¢e -2 —
1/20 1/30 1.6902¢ -2 1.47 1.7120e -2 1.48 1.9402¢ -2 1.48 2.3406e -2 1.47
1/40 1/90 5.9615¢ -3 1.50 6.0452¢ -3 1.50 6.8342¢ -3 1.51 8.1906e - 3 1.51
1/80 1/270 2.0512¢e-3 1.54 2.1124e-3 1.52 2.3448e -3 1.54 2.8302¢ -3 1.53
Pyz—z, E =11, q;,. We set |[|joq ={le, and References

[ll1222) = Il|,,,- The numerical results of convergence and
superconvergence based on a sequence of uniformly refined
meshes are reported in Tables 1-4, respectively. They are
consistent with our theoretical results.
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