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In this paper, we consider semidiscrete splitting positive definite mixed finite element methods for optimal control problems
governed by hyperbolic equations with integral constraints. The state and costate are approximated by the lowest order
Raviart-Thomas mixed rectangular finite element, and the control is approximated by piecewise constant functions. We derive
some convergence and superconvergence results for the control, the state and the adjoint state. A numerical example is
provided to demonstrate our theoretical results.

1. Introduction

There have been extensive studies in error estimates of stan-
dard finite element methods (FEMs) for optimal control
problems (OCPs). The convergence or superconvergence
results of standard FEMs for elliptic and parabolic OCPs
can be found in [1–13], respectively.

Because large temperature gradients during cooling or
heating may lead to its destruction in temperature control
problems, the gradient stands for Darcy velocity in flow con-
trol problems, stiffness optimization in nonlinear panto-
graphic structures [14], and topology optimization of a
cycloidal metamaterial [15]; their objective functionals con-
tain not only the primal state variable but also its gradient.
At this time, mixed finite element methods (MFEMs) will
be a very good choice for solving this kind of OCPs. The
convergence or superconvergence results of MFEMs for
elliptic and parabolic OCPs can be found in [16–20], respec-
tively. However, mixed finite element spaces have to satisfy
the Ladyženskaja-Babuška-Brezzi (LBB) condition, which
brings very little available approximation spaces and expen-
sive computing costs.

In order to avoid the limitation of LBB condition, a split-
ting positive definite MFEM was first proposed for solving

miscible displacement of compressible flow in a porous
medium [21]. Compared with the classic MFEMs, the main
advantages of this method are that the original problems can
be split into two independent symmetric positive definite
subschemes and that the LBB condition is not necessary.
Recently, splitting positive definite MFEMs have been used
to solve hyperbolic equations [22, 23], elliptic OCPs [24],
and parabolic OCPs [25]. To our best knowledge, most of
the published papers on different FEMs or MFEMs for OCPs
are focused on elliptic or parabolic cases. Although Xu in
[26] established a priori error estimates and superconver-
gence results of splitting positive definite MFEM for pseudo-
hyperbolic integrodifferential OCPs and Lu et al. in [27]
derived the convergence of finite volume element method
for nonlinear hyperbolic OCPs, there are very little studies
on hyperbolic OCPs, .

The goal of this paper is to investigate splitting positive
definite MFEMs for hyperbolic OCPs and derive the conver-
gence and superconvergence.

We are interested in the following hyperbolic OCPs:

min
u∈K

1
2

ðT
0

p − pdk k2 + y − ydk k2 + uk k2� �
dt

� �
, ð1Þ
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c xð Þytt x, tð Þ + div p x, tð Þ = f x, tð Þ + u x, tð Þ, x ∈Ω, t ∈ J ,
ð2Þ

p x, tð Þ = −A xð Þ∇y x, tð Þ, x ∈Ω, t ∈ J , ð3Þ
y x, tð Þ = 0, x ∈ ∂Ω, t ∈ J , ð4Þ

y x, 0ð Þ = y0 xð Þ, yt x, 0ð Þ = y1 xð Þ, x ∈Ω, ð5Þ

where Ω ⊂ R2 is a rectangle domain, J = ð0, T�, pd ∈
ðL2ðJ ; L2ðΩÞÞÞ2, yd , f ∈ L2ðJ ; L2ðΩÞÞ, c ∈W1,∞ðΩÞ with 0
< cmin ≤ cðxÞ ≤ cmax and y0, y1 ∈H2ðΩÞ. The coefficient
matrix AðxÞ = ðaijðxÞÞ2×2 ∈W1,∞ð�Ω ; R2×2Þ is a symmetric
matrix, and there are constants c1, c2 > 0 satisfying any vec-
tor X ∈ R2, c1kXk2R2 ≤XtAX ≤ c2kXk2R2 . K is a set defined by

K = u ∈ L2 J ; L2 Ωð Þ� �
:
ðT
0

ð
Ω

u dxdt ≥ 0
� �

: ð6Þ

In this paper, we adopt the standard notation Wm,pðΩÞ
for Sobolev spaces on Ω with a norm k·km,p given by

kvkpm,p =∑jαj≤mkDαvkpLpðΩÞ, a seminorm j·jm,p given by jvjpm,p
=∑jαj=mkDαvkpLpðΩÞ. For p = 2, we set HmðΩÞ =Wm,2ðΩÞ,
H1

0ðΩÞ = fv ∈H1ðΩÞ: vj∂Ω = 0g, and k·km = k·km,2, k·k =
k·k0,2. We denote by LsðJ ;Wm,pðΩÞÞ the Banach space of
all Ls integrable functions from J into Wm,pðΩÞ with norm

kvkLsðJ ;Wm,pðΩÞÞ = ðÐ T0 kvksWm,pðΩÞdtÞ
1/sfor s ∈ ½1,∞Þ, and the

standard modification for s =∞. For simplicity of presenta-
tion, we denote kvkLsðJ ;Wm,pðΩÞÞ by kvkLsðWm,pÞ. Similarly, one

can define the spaces H1ðJ ;Wm,pðΩÞÞ and CkðJ ;Wm,pðΩÞÞ
. In addition, C denotes a general positive constant indepen-
dent of h, where h is the spatial mesh-size for the control and
state discretization.

The plan of this paper is as follows. In Section 2, we give
an equivalent optimality conditions for the OCP (1)–(5) and
construct its splitting positive definite mixed finite element
approximation scheme. In Section 3, we derive the conver-
gence for the control variable, the state variables, and the
adjoint state variables. In Section 4, we derive the supercon-
vergence properties between the RT projections and the
approximation solutions of the control and the state vari-
ables. In the last section, we present a numerical example
to illustrate our theoretical results.

2. Splitting Positive Definite MFEMs for OCPs

In this section, we shall construct a splitting positive definite
mixed finite element approximation of the control problems
(1)–(5). To fix the idea, we shall take the state spaces L =
H2ðJ ;VÞ and Q =H2ðJ ;WÞ, where V and W are defined
as follows.

Let

V =H div ;Ωð Þ = v ∈ L2 Ωð Þ� �2, div v ∈ L2 Ωð Þ
n o

,W = L2 Ωð Þ,
ð7Þ

and the inner products

f1, f2ð Þ =
ð
Ω

f1 f2,∀f1, f2 ∈ L2 Ωð Þ,

φ, ψð Þ = 〠
2

i=1
φi, ψið Þ,∀φ, ψ ∈ L2 Ωð Þ� �2

:

ð8Þ

Let b = 1/cðxÞ, a mixed weak form of (2), and (3) can be
given by

A−1p, v
� �

= y, div vð Þ,∀v ∈ V , t ∈ J , ð9Þ

ytt ,wð Þ + b div p,wð Þ = bf ,wð Þ + bu,wð Þ,∀w ∈W, t ∈ J:

ð10Þ
As in [24], taking w = div v, ∀v ∈V in (10), (9) differen-

tiating twice with respect to t, and then substituting the two
resulting equations, we derive

A−1ptt , v
� �

+ b div p, div vð Þ = bf , div vð Þ + bu, div vð Þ,∀v ∈V , t ∈ J:

ð11Þ

By using (10) and (11), we get the following new mixed
variational form:

A−1ptt , v
� �

+ b div p, div vð Þ = bf , div vð Þ + bu, div vð Þ,∀v ∈V, t ∈ J ,

ð12Þ

ytt ,wð Þ + b div p,wð Þ = bf ,wð Þ + bu,wð Þ,∀w ∈W, t ∈ J:

ð13Þ
It is easily seen that (12) is separated from (13) so that p

can be solved independently from (12).
We recast (1)–(5) as the following weak form: find ðp,

y, uÞ ∈ L ×Q × K such that

min
u∈K

1
2

ðT
0

p − pdk k2 + y − ydk k2 + uk k2� �
dt

� �
, ð14Þ

A−1ptt , v
� �

+ b div p, div vð Þ = bf , div vð Þ + bu, div vð Þ,∀v ∈V , t ∈ J ,

ð15Þ

p x, 0ð Þ = −A∇y0 xð Þ, pt x, 0ð Þ = −A∇y1 xð Þ,∀x ∈Ω, ð16Þ

ytt ,wð Þ + b div p,wð Þ = bf ,wð Þ + bu,wð Þ,∀w ∈W, t ∈ J ,
ð17Þ

y x, 0ð Þ = y0 xð Þ, yt x, 0ð Þ = y1 xð Þ,∀x ∈Ω: ð18Þ
It then follows from [28] that the optimal control prob-

lems (14)–(18) have a unique solution ðp, y, uÞ, and that a
triplet ðp, y, uÞ is the solution of (14)–(18) if and only if there
is a costate ðq, zÞ ∈ L ×Q such that ðp, y, q, z, uÞ satisfies the
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following optimality conditions:

A−1ptt , v
� �

+ b div p, div vð Þ = bf , div vð Þ + bu, div vð Þ,∀v ∈V , t ∈ J ,

ð19Þ

p x, 0ð Þ = −A∇y0 xð Þ, pt x, 0ð Þ = −A∇y1 xð Þ,∀x ∈Ω, ð20Þ

ytt ,wð Þ + b div p,wð Þ = bf ,wð Þ + bu,wð Þ,∀w ∈W, t ∈ J ,
ð21Þ

y x, 0ð Þ = y0 xð Þ, yt x, 0ð Þ = y1 xð Þ,∀x ∈Ω, ð22Þ

A−1qtt , v
� �

+ b div p, div vð Þ + bz, div vð Þ = − p − pd , vð Þ,∀v ∈ V , t ∈ J ,

ð23Þ
q x, Tð Þ = 0, qt x, Tð Þ = 0,∀x ∈Ω, ð24Þ

ztt ,wð Þ = − y − yd ,wð Þ,∀w ∈W, t ∈ J , ð25Þ

z x, Tð Þ = 0, zt x, Tð Þ = 0,∀x ∈Ω, ð26Þ
ðT
0
u − bz − b div q, ~u − uð Þdt ≥ 0,∀~u ∈ K: ð27Þ

The inequality (27) can be expressed as

u =max 0,−�G
� �

+ G, ð28Þ

where G = ðbz + b div qÞ and �G =
Ð T
0
Ð
Ω
Gdxdt/ð∣Ω∣ × TÞ.

Let Th be a uniform rectangulation of the domainΩ, and
he denotes the diameter of element e and h =max

e∈Th

fheg. Let
Vh ×Wh ⊂ V ×W denote the lowest order Raviart-Thomas
mixed finite element space [29, 30], namely

Vh ≔ vh ∈ V : ∀e ∈ Th, vhje ∈Q1,0 eð Þ ×Q0,1 eð Þ� �
,

Wh ≔ wh ∈W : ∀e ∈ Th,whje ∈Q0,0 eð Þ� �
,

ð29Þ

where Qm,nðeÞ indicates the space of polynomials of degree
no more than m and n in x1 and x2 on e, respectively. And
the approximated space of control is given by

Kh ≔ L2 J ;Whð Þ ∩ K: ð30Þ

We introduce two projection operators. First, we define
the standard L2ðΩÞ-projection [29] Ph : W ⟶Wh, which
satisfies the following: for any ϕ ∈W

Phϕ − ϕ,whð Þ = 0,∀wh ∈Wh, ð31Þ

ϕ − Phϕk k−s,ρ ≤ Ch1+s ϕk k1,ρ, s = 0, 1, 2 ≤ ρ ≤∞, ∀ϕ ∈W1,ρ Ωð Þ: ð32Þ
Second, we recall the Fortin projection (see [29, 31])

Πh : V ⟶Vh, which satisfies the following: for any q ∈V

div Πhq − qð Þ,whð Þ = 0,∀wh ∈Wh, ð33Þ

q −Πhqk k0,ρ ≤ Ch qk k1,ρ, 2 ≤ ρ ≤∞, ∀q ∈ W1,ρ Ωð Þ� �2,
ð34Þ

div q −Πhqð Þk k ≤ Ch div qk k1,∀ div q ∈H1 Ωð Þ: ð35Þ
Then the splitting positive definite mixed finite element

discretization of (14)–(18) is as follows: find ðph, yh, uhÞ ∈
H2ðJ ;VhÞ ×H2ðJ ;WhÞ × Kh such that

min
uh∈Kh

1
2

ðT
0

ph − pdk k2 + yh − ydk k2 + uhk k2� �
dt

� �
, ð36Þ

A−1ph,tt , vh
� �

+ b div ph, div vhð Þ = bf , div vhð Þ
+ buh, div vhð Þ,∀vh ∈Vh, t ∈ J ,

ð37Þ

ph x, 0ð Þ =Πhp x, 0ð Þ, ph,t x, 0ð Þ =Πhpt x, 0ð Þ,∀x ∈Ω, ð38Þ

yh,tt ,wh

� �
+ b div ph,whð Þ = bf ,whð Þ + buh,whð Þ,∀wh ∈Wh, t ∈ J ,

ð39Þ
yh x, 0ð Þ = Phy0 xð Þ, yh,t x, 0ð Þ = Phy1 xð Þ,∀x ∈Ω: ð40Þ
The optimal control problems (36)–(40) again have a

unique solution ðph, yh, uhÞ, and a triplet ðph, yh, uhÞ is the
solution of (36)–(40) if and only if there is a costate ðqh, zhÞ
such that ðph, yh, qh, zh, uhÞ satisfies the following optimality
conditions:

A−1ph,tt , vh
� �

+ b div ph, div vhð Þ = bf , div vhð Þ
+ buh, div vhð Þ,∀vh ∈Vh, t ∈ J ,

ð41Þ

ph x, 0ð Þ =Πhp x, 0ð Þ, ph,t x, 0ð Þ =Πhpt x, 0ð Þ,∀x ∈Ω, ð42Þ

yh,tt ,wh

� �
+ b div ph,whð Þ = bf ,whð Þ + buh,whð Þ,∀wh ∈Wh, t ∈ J ,

ð43Þ
yh x, 0ð Þ = Phy0 xð Þ, yh,t x, 0ð Þ = Phy0 xð Þ,∀ x ∈Ω, ð44Þ

A−1qh,tt , vh
� �

+ b div qh, div vhð Þ + bzh, div vhð Þ
= − ph − pd , vhð Þ,∀vh ∈Vh, t ∈ J ,

ð45Þ

qh x, Tð Þ = 0, qh,t x, Tð Þ = 0,∀x ∈Ω, ð46Þ
zh,tt ,whð Þ = − yh − yd ,whð Þ,∀wh ∈Wh, t ∈ J , ð47Þ

zh x, Tð Þ = 0, zh,t x, Tð Þ = 0,∀x ∈Ω, ð48Þ
ðT
0
uh − bzh − b div qh, ~uh − uhð Þdt ≥ 0,∀~uh ∈ Kh: ð49Þ

Similar to (28), we have

uh =max 0,−�Gh

� �
+Gh, ð50Þ

where Gh = Phbðzh + div qhÞ and �Gh =
Ð T
0
Ð
Ω
Ghdxdt/ð∣Ω∣ ×

TÞ.
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3. Convergence Analysis

In this section, we will derive the convergence of splitting
positive definite MFEMs for hyperbolic OCPs. For ∀~u ∈ K ,
we define the discrete state solution ðphð~uÞ, yhð~uÞ, qhð~uÞ, zh
ð~uÞÞ associated with ~u which satisfies

A−1ph,tt ~uð Þ, vh
� �

+ b div ph ~uð Þ, div vhð Þ
= bf , div vhð Þ + b~u, div vhð Þ,∀vh ∈Vh, t ∈ J ,

ð51Þ

ph ~uð Þ x, 0ð Þ =Πhp x, 0ð Þ, ph,t ~uð Þ x, 0ð Þ =Πhpt x, 0ð Þ,∀x ∈Ω,
ð52Þ

yh,tt ~uð Þ,wh

� �
+ b div ph ~uð Þ,whð Þ = bf ,whð Þ + b~u,whð Þ,∀wh ∈Wh, t ∈ J ,

ð53Þ

yh ~uð Þ x, 0ð Þ = Phy0 xð Þ, yh,t ~uð Þ x, 0ð Þ = Phy1 xð Þ,∀x ∈Ω, ð54Þ

A−1qh,tt ~uð Þ, vh
� �

+ b div qh ~uð Þ, div vhð Þ + bzh ~uð Þ, div vhð Þ
= − ph ~uð Þ − pd , vhð Þ,∀vh ∈Vh, t ∈ J ,

ð55Þ

qh ~uð Þ x, Tð Þ = 0, qh,t ~uð Þ x, Tð Þ = 0,∀x ∈Ω, ð56Þ

zh,tt ~uð Þ,whð Þ = − yh ~uð Þ − yd ,whð Þ,∀wh ∈Wh, t ∈ J , ð57Þ

zh ~uð Þ x, Tð Þ = 0, zh,t ~uð Þ x, Tð Þ = 0,∀x ∈Ω: ð58Þ
It is clear that the exact solution and its approximation

can be written in the following way:

p, y, q, zð Þ = p uð Þ, y uð Þ, q uð Þ, z uð Þð Þ,
ph, yh, qh, zhð Þ = ph uhð Þ, yh uhð Þ, qh uhð Þ, zh uhð Þð Þ:

ð59Þ

Lemma 1. Let ðp, y, q, zÞ be the solution of (19)–(26) and
ðphðuÞ, yhðuÞ, qhðuÞ, zhðuÞÞ be the solution of (51)–(58)
with ~u = u, respectively. If the solution satisfies

p, q ∈ L∞ H1� �� 	2 ∩ L2 H2� �� 	2 ∩ H2 H1� �� 	2
and y, z ∈ L∞ H1� �

,

ð60Þ

then we have

y − yh uð Þk kL∞ L2ð Þ + p − ph uð Þk kL∞ L2ð Þ ≤ Ch,

z − zh uð Þk kL∞ L2ð Þ + q − qh uð Þk kL∞ L2ð Þ ≤ Ch,

div p − ph uð Þð Þk kL2 L2ð Þ + div q − qh uð Þð Þk kL2 L2ð Þ ≤ Ch:

ð61Þ

Proof. For ease of presentation, we set ρp =Πhp − phðuÞ,
ρy = Phy − yhðuÞ, ρq =Πhq − qhðuÞ, ρz = Phz − zhðuÞ. From
Equations (19)–(26) and (51)–(58) and the fact that div
Vh ⊂Wh, with the definition of Ph and Πh, we can easily

obtain the following error equations:

A−1ρp,tt , vh

 �

+ b div ρp, div vh

 �

= − b div p −Πhpð Þ, div vhð Þ
− A−1 ptt −Πhpttð Þ, vh
� �

,∀vh ∈Vh,
ð62Þ

ρy,tt ,wh


 �
+ b div ρp,wh


 �
= − b div p −Πhpð Þ,whð Þ

− ytt − Phytt ,whð Þ,∀wh ∈Wh,
ð63Þ

A−1ρq,tt , vh

 �

+ b div ρp, div vh

 �

+ b div q −Πhqð Þ, div vhð Þ
+ b z − Phzð Þ, div vhð Þ = − A−1 qtt −Πhqttð Þ, vh

� �
− p −Πhp, vhð Þ − ρp, vh


 �
− bρz , div vhð Þ,∀vh ∈ Vh,

ð64Þ

ρz,tt ,wh

� �
= − ρy,wh


 �
− ztt − Phztt ,whð Þ,∀wh ∈Wh:

ð65Þ
Setting vh = ρp,t in (62), we have

1
2
d
dt

A−1
2ρp,t

��� ���2 + b
1
2 div ρp

��� ���2 �
= − b div p −Πhpð Þ, div ρp,t

 �
− A−1 ptt −Πhpttð Þ, ρp,t

 �

:

ð66Þ

Notice that

b div p −Πhpð Þ, div ρp,t

 �

= − b div p −Πhpð Þt , div ρp

 �

:

ð67Þ

Substitute (67) into (66), integrating the resulting
equation from 0 to t, and using Hölder’s inequality,
Young’s inequality, Gronwall’s inequality, and the assump-
tion on A and (34) and (35), we have

ρp,t

��� ���
L∞ L2ð Þ + div ρp

��� ���
L∞ L2ð Þ ≤ Ch: ð68Þ

Letting wh = ρy,t in (63) and wh = −ρz,t in (65), respec-
tively. Then integrating the resulting equations from 0 to t
and t to T , respectively, we get

ρy,t

��� ���
L∞ L2ð Þ ≤ C div ρp

��� ���
L2 L2ð Þ + Ch,

ρz,t
�� ��

L∞ L2ð Þ ≤ C ρy

��� ���
L2 L2ð Þ + Ch,

ð69Þ

where we also used Hölder’s inequality, Young’s inequal-
ity, and Gronwall’s inequality.

At last, setting vh = −ρq,t as the test function in (64) and
integrating the resulting equation from t to T , similar to
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(68), we arrive at

ρq,t

��� ���
L∞ L2ð Þ + div ρp

��� ���
L∞ L2ð Þ ≤ Ch + C ρp

��� ���
L2 L2ð Þ + ρzk kL2 L2ð Þ

 �
:

ð70Þ

Note that ρpð0Þ = ρyð0Þ = ρqðTÞ = ρzðTÞ = 0, and we
have

ρp

��� ���
L∞ L2ð Þ ≤ C ρp,t

��� ���
L2 L2ð Þ, ð71Þ

ρy

��� ���
L∞ L2ð Þ ≤ C ρy,t

��� ���
L2 L2ð Þ, ð72Þ

ρq

��� ���
L∞ L2ð Þ ≤ C ρq,t

��� ���
L2 L2ð Þ, ð73Þ

ρzk kL∞ L2ð Þ ≤ C ρz,t
�� ��

L2 L2ð Þ: ð74Þ

Combining (68)–(74), (32), (34), and (35) and the trian-
gle inequality, we complete the proof.

Using the same estimates as in Lemma 1, we get the
following.

Lemma 2. Let ðph, yh, qh, zhÞ and ðphðuÞ, yhðuÞ, qhðuÞ, zhðuÞÞ
be the solutions of (51)–(58) with ~u = uh and ~u = u, respec-
tively. Then we have

yh − yh uð Þk kL∞ L2ð Þ + ph − ph uð Þk kL∞ L2ð Þ ≤ C u − uhk kL2 L2ð Þ,
zh − zh uð Þk kL∞ L2ð Þ + qh − qh uð Þk kL∞ L2ð Þ ≤ C u − uhk kL2 L2ð Þ,

div ph − ph uð Þð Þk kL2 L2ð Þ + div qh − qh uð Þð Þk kL2 L2ð Þ ≤ C u − uhk kL2 L2ð Þ:

ð75Þ

Now, from the above Lemmas 1 and 2, we can derive the
following convergence results.

Theorem 3. Let u be the solution of (19)–(27) and uh be the
solution of (41)–(49), respectively. Assume that all the
assumptions in Lemma 1 are valid. Then we have

u − uhk kL2 L2ð Þ ≤ Ch, ð76Þ

y − yhk kL∞ L2ð Þ + p − phk kL∞ L2ð Þ ≤ Ch, ð77Þ

z − zhk kL∞ L2ð Þ + q − qhk kL∞ L2ð Þ ≤ Ch, ð78Þ

div p − phð Þk kL2 L2ð Þ + div q − qhð Þk kL2 L2ð Þ ≤ Ch: ð79Þ

Proof. Let wh = 1 in (31), and we have

ð
Ω

Phudx =
ð
Ω

udx: ð80Þ

By (80), we have

ðT
0

ð
Ω

Phudxdt =
ðT
0

ð
Ω

udxdt ≥ 0: ð81Þ

Thus, we know that Phu ∈ Kh.
It follows from (27) and (49) that

u − uhk k2L2 L2ð Þ =
ðT
0
u − uh, u − uhð Þdt =

ðT
0
u − bz − b div q, u − uhð Þ

� dt +
ðT
0
bz − bzh uð Þ + b div q − qh uð Þð Þ, u − uhð Þ

� dt +
ðT
0
bzh uð Þ − bzh + b div qh uð Þ − qhð Þ, u − uhð Þ

� dt +
ðT
0
bzh + b div qh − uh, u − uhð Þ

� dt ≤
ðT
0
bz − bzh uð Þ + b div q − qh uð Þð Þ, u − uhð Þ

� dt −
ðT
0
u − bz − b div q, u − Phuð Þ

� dt +
ðT
0
bzh uð Þ − bzh + b div qh uð Þ − qhð Þ, u − uhð Þ

� dt +
ðT
0
u − uh, u − Phuð Þdt +

ðT
0
bzh − bzh uð Þð

+ b div qh − qh uð Þð Þ, u − PhuÞ

� dt +
ðT
0
bzh uð Þ − bz + b div qh uð Þ − qð Þ, u − Phuð Þ

� dt ≔ 〠
6

i=1
Ii:

ð82Þ

Next, we estimate (82) term by term. For I1, using
Hölder’s inequality, Young’s inequality, and Lemma 1, we
have

I1 ≤ Ch2 + 1
4 u − uhk k2L2 L2ð Þ: ð83Þ

From (28), we find that

u − bz − b div q = const: ð84Þ

Thus

I2 = −const
ðT
0

ð
Ω

u − Phuð Þdxdt = 0: ð85Þ

Set ηp = phðuÞ − ph, ηy = yhðuÞ − yh, ηq = qhðuÞ − qh, and
ηz = zhðuÞ − zh; then from (51)–(58), we have the following
error equations:

A−1ηp,tt , vh

 �

+ b div ηp, div vh

 �

= bu − buh, div vhð Þ,∀vh ∈Vh, t ∈ J ,

ð86Þ

ηy,tt ,wh


 �
+ b div ηp,wh


 �
= bu − buh,whð Þ,∀wh ∈Wh, t ∈ J , ð87Þ
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A−1ηq,tt , vh

 �

+ b div ηq, div vh

 �

= − ηp, vh

 �

− bηz , div vhð Þ,∀vh ∈Vh, t ∈ J ,
ð88Þ

ηz,tt ,wh

� �
= − ηy,wh


 �
,∀wh ∈Wh, t ∈ J: ð89Þ

choosing vh = ηq in (86), wh = ηz in (87), vh = ηp in (88), and
wh = ηy in (89), respectively. Since ηpð0Þ = ηyð0Þ = ηp,tð0Þ =
ηy,tð0Þ = ηqðTÞ = ηzðTÞ = ηq,tðTÞ = ηz,tðTÞ = 0, integrating
the resulting equations from 0 to T , we can see that

I3 =
ðT
0

ηz + div ηq, bu − buh

 �

dt = − ηp

��� ���2 − ηy

��� ���2 ≤ 0:

ð90Þ

For I4 and I5, using Hölder’s inequality, Young’s
inequality, Lemma 2, and (32), we get

I4 ≤ Ch2 + 1
4 u − uhk k2L2 L2ð Þ, ð91Þ

I5 ≤ ηzk kL2 L2ð Þ + div ηq
��� ���

L2 L2ð Þ

 �
u − Phuk kL2 L2ð Þ

≤ u − uhk kL2 L2ð Þ u − Phuk kL2 L2ð Þ ≤ Ch2 + 1
4 u − uhk k2L2 L2ð Þ:

ð92Þ
For I6, by Hölder’s inequality, the triangle inequality,

Lemma 1, and (32), we arrive at

I6 ≤ bk k0,∞ zh uð Þ − zk kL2 L2ð Þ + div ηq
��� ���

L2 L2ð Þ

 �
u − Phuk kL2 L2ð Þ ≤ Ch2:

ð93Þ

Combining (82), (83), (85), and (90)–(92), we derive
(76). Using (76), Lemmas 1 and 2, and the triangle inequal-
ity, we complete the proof.

4. Superconvergence Properties

In this section, we will derive some superconvergence prop-
erties for the optimal control problems. In order to derive
the main results, we need the following lemmas.

Lemma 4. Let ðp, y, q, zÞ be the solution of (19)–(27) and
ðphðuÞ, yhðuÞ, qhðuÞ, zhðuÞÞ be the solution of (51)–(58)
with ~u = u, respectively. If the solution satisfies

p, q ∈ L∞ H1� �� 	2 ∩ L2 H2� �� 	2 ∩ H1 H2� �� 	2
and y, z ∈ L∞ H1� �

, ð94Þ

then we have

Phy − yh uð Þk kL∞ L2ð Þ + Πhp − ph uð Þk kL∞ L2ð Þ ≤ Ch
3
2, ð95Þ

Phz − zh uð Þk kL∞ L2ð Þ + Πhq − qh uð Þk kL∞ L2ð Þ ≤ Ch
3
2, ð96Þ

div Πhp − ph uð Þð Þk kL2 L2ð Þ + div Πhq − qh uð Þð Þk kL2 L2ð Þ ≤ Ch
3
2:

ð97Þ
Proof. At first, for any p ∈V and v ∈ Vh, by applying the
proof of Theorems 4.1, 5.1, and Example 6.2 in [32], we
can prove

A−1 p −Πhpð Þ, vh
� �

≤ Ch
3
2 pk k2 vhk k + div vhk kð Þ: ð98Þ

Moreover, using (32) and (35), we have

b div p −Πhpð Þ, div vhð Þ = b − Phbð Þ div p −Πhpð Þ, div vhð Þ
≤ Ch2 bk k1,∞ pk k2 div vhk k,

b y − Phyð Þ, div vhð Þ = b − Phbð Þ y − Phyð Þ, div vhð Þ
≤ Ch2 bk k1,∞ yk k1 div vhk k:

ð99Þ

Similar to Lemma 1, using (98), we can prove
(95)–(97). We omit the proof here.

Lemma 5. Let ðphðPhuÞ, yhðPhuÞ, qhðPhuÞ, zhðPhuÞÞ and ðph
ðuÞ, yhðuÞ, qhðuÞ, zhðuÞÞ be the solutions of (51)–(58) with
~u = Phu and ~u = u, respectively. Then we have

yh uð Þ − yh Phuð Þk kL∞ L2ð Þ + ph uð Þ − ph Phuð Þk kL∞ L2ð Þ = 0,

zh uð Þ − zh Phuð Þk kL∞ L2ð Þ + qh uð Þ − qh Phuð Þk kL∞ L2ð Þ = 0,

div ph uð Þ − ph Phuð Þð Þk kL2 L2ð Þ + div qh uð Þ − qh Phuð Þð Þk kL2 L2ð Þ = 0:

ð100Þ

Proof. First, set ζp = phðuÞ − phðPhuÞ, ζy = yhðuÞ − yhðPhuÞ,
ζq = qhðuÞ − qhðPhuÞ, and ζz = zhðuÞ − zhðPhuÞ, and we
choose ~u = Phu and ~u = u in (51)–(58), respectively; then
we obtain the following error equations:

A−1ζp,tt , vh
� �

+ b div ζp, div vh
� �

= bu − bPhu, div vhð Þ,∀vh ∈Vh, t ∈ J ,

ð101Þ

ζy,tt ,wh

� �
+ b div ζp,wh

� �
= bu − bPhu,whð Þ,∀wh ∈Wh, t ∈ J ,

ð102Þ

A−1�
ζq,tt , vh
� �

+ b div ζq, div vh
� �

= − ζp, vh
� �

− bζz , div vhð Þ,∀vh ∈Vh, t ∈ J ,
ð103Þ

ζz,tt ,whð Þ = − ζy,wh

� �
,∀wh ∈Wh, t ∈ J: ð104Þ

Noting from the fact that div Vh ⊂Wh and (31)

bu − bPhu, div vhð Þ ≤ Ch2 bk k1,∞ uk k1 div vhk k,∀vh ∈Vh,

bu − bPhu,whð Þ ≤ Ch2h2 bk k1,∞ uk k1 whk k,∀wh ∈Wh,
ð105Þ
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then, as in Lemma 1, using the stability estimates, we com-
plete the proof.

Lemma 6. Let ðphðPhuÞ, yhðPhuÞ, qhðPhuÞ, zhðPhuÞÞ and ð
ph, yh, qh, zhÞ be the solutions of (51)–(58) with ~u = Phu and
~u = uh, respectively. Then we have

ðT
0

bzh Phuð Þ − bzh, Phu − uhð Þ + b div qh Phuð Þ − qhð Þ, Phu − uhð Þ½ �dt ≤ 0:

ð106Þ

Proof. Set θp = ph − phðPhuÞ, θy = yh − yhðPhuÞ, θq = qh − qhð
PhuÞ, and θz = zh − zhðPhuÞ, similar to (101)–(104), and we
obtain the following error equations:

A−1θp,tt , vh
� �

+ bð div θp, div vh
� �

= buh − bPhu, div vhð Þ,∀vh ∈Vh,

ð107Þ

θy,tt ,wh

� �
+ b div θp,wh

� �
= buh − bPhu,whð Þ,∀wh ∈Wh,

ð108Þ

A−1�
θq,tt , vh
� �

+ b div θq, div vh
� �

= − θp, vh
� �

+ bθz , div vhð Þ,∀vh ∈ Vh,

ð109Þ

θz,tt ,whð Þ = − θy ,wh

� �
,∀wh ∈Wh, ð110Þ

choosing vh = θq in (107), wh = θz in (108), vh = −θp in (109),
and wh = −θy in (110), respectively. Integrating the resulting
equations from 0 to T , we derive

ðT
0

zh Phuð Þ − zh, bPhu − buhð Þ½
+ div qh Phuð Þ − qhð Þ, bPhu − buhð Þ�
� dt = − θy

�� ��2
L2 L2ð Þ − θp

�� ��2
L2 L2ð Þ,

ð111Þ

which yields to (106).

Theorem 7. Let u be the solution of (19)–(27) and uh be the
solution of (41)–(49), respectively. Assume that all the
assumptions in Lemma 1 are valid. Then, we have

Phu − uhk kL2 L2ð Þ ≤ Ch
3
2: ð112Þ

Proof. We choose ~u = uh in (23) and ~uh = Phu in (44) to get
the following two inequalities:

ðT
0
u − bz − b div q, uh − uð Þdt ≥ 0,

ðT
0
uh − bzh − b div qh, Phu − uhð Þdt ≥ 0:

ð113Þ

Note that uh − u = uh − Phu + Phu − u. Adding the above

two inequalities, we get

ðT
0
uh − u + bz − bzh + b div q − qhð Þ, Phu − uhð Þ

� dt +
ðT
0
u − bz − b div q, Phu − uð Þdt ≥ 0:

ð114Þ

Thus, by (114) and (26), we find that

Phu − uhk k2L2 L2ð Þ =
ðT
0
Phu − u, Phu − uhð Þ

� dt +
ðT
0
u − uh, Phu − uhð Þ

� dt ≤
ðT
0
bz − bzh + b div q − b div qh, Phu − uhð Þ

� dt +
ðT
0
u − bz − b div q, Phu − uð Þ

� dt =
ðT
0
bz − bPhz + b div q − b div Πhq, Phu − uhð Þ

� dt +
ðT
0
bPhz − bzh uð Þ + b div Πhqð

− div qh uð Þ, Phu − uhÞdt +
ðT
0
bzh uð Þ − bzh Phuð Þð

+ b div qh uð Þ − b div qh Phuð Þ, Phu − uhÞ

� dt +
ðT
0
bzh Phuð Þ − bzh + b div q Phuð Þð

− b div qh, Phu − uhÞdt +
ðT
0
u − bzð

− b div q, Phu − uÞdt ≔ 〠
5

i=1
Ji:

ð115Þ

At first, from Cauchy inequality, (26), (28), and (24), it is
easy to get

J1 =
ðT
0
bz − bPhz + b div q − b div Πhq, Phu − uhð Þ

� dt ≤ Ch4 + 1
4 Phu − uhk k2L2 L2ð Þ:

ð116Þ

Using Hölder’s inequality, Young’s inequality, and
Lemmas 4 and 5, we arrive at

J2 ≤ Ch3 + 1
4 Phu − uhk k2L2 L2ð Þ, ð117Þ

J3 ≤ Ch3 + 1
4 Phu − uhk k2L2 L2ð Þ: ð118Þ

Combining (84), (85), and (115)–(118) and Lemma 6,
we derive (112).

Using Theorem 7 and the stability estimates as in
Lemma 1, we can arrive at the following.
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Lemma 8. Let ðphðPhuÞ, yhðPhuÞ, qhðPhuÞ, zhðPhuÞÞ and ð
ph, yh, qh, zhÞ be the solutions of (51)–(58) with ~u = Phu and
~u = uh, respectively. Assume that all the assumptions in The-
orem 7 are valid. Then we have

yh − yh Phuð Þk kL∞ L2ð Þ + ph − ph Phuð Þk kL∞ L2ð Þ ≤ Ch
3
2,

zh − zh Phuð Þk kL∞ L2ð Þ + qh − qh Phuð Þk kL∞ L2ð Þ ≤ Ch
3
2,

div ph − ph Phuð Þð Þk kL2 L2ð Þ + div qh − qh Phuð Þð Þk kL2 L2ð Þ ≤ Ch
3
2:

ð119Þ

Combining Lemma 4–8 and using the triangle inequal-
ity, we derive the following superconvergence results.

Theorem 9. Let ðy, p, z, qÞ and ðyh, ph, zh, qhÞ be the solu-
tions of (19)–(27) and (41)–(49), respectively. Assume that
all the assumptions in Theorem 7 are valid. Then we have

Phy − yhk kL∞ L2ð Þ + Πhp − phk kL∞ L2ð Þ ≤ Ch
3
2,

Phz − zhk kL∞ L2ð Þ + Πhq − qhk kL∞ L2ð Þ ≤ Ch
3
2,

div Πhp − phð Þk kL2 L2ð Þ + div Πhq − qhð Þk kL2 L2ð Þ ≤ Ch
3
2:

ð120Þ

5. Numerical Experiments

In this section, we present a numerical example to validate
our convergence and superconvergence results. The hyper-
bolic OCP was dealt numerically with codes developed based
on AFEPack. The package is freely available and the details
can be found in [33].

Let τ > 0,N = T/τ ∈ℤ, and tn = nτ, n = 0, 1,⋯,N . Set

ϕn = ϕ x, tnð Þ, ϕntt = ϕn+1 − 2ϕn + ϕn−1
� �

/τ2: ð121Þ

Then, a fully discrete splitting positive definite mixed
finite element solution ðpnh, ynh, qnh , znh , unhÞ of (1)–(6) satisfies

the following system:

A−1pnh,tt, vh
� �

+ div pnh , div vhð Þ = f n, div vhð Þ
+ unh, div vhð Þ,∀vh ∈Vh, n = 1, 2,⋯,N:

p1h − p−1h
2τ , vh

 �
= pt x, 0ð Þ, vhð Þ,∀vh ∈ Vh,

p0h =Πhp x, 0ð Þ,∀x ∈Ω,
ynh,tt ,wh

� �
+ div pnh,whð Þ = f n,whð Þ
+ unh,whð Þ,∀wh ∈Wh, n = 1, 2,⋯,N ,

y1h − y−1h
2τ ,wh

 �
= y1 xð Þ,whð Þ,∀wh ∈Wh,

y0h = Phy0 xð Þ, ∀x ∈Ω,
A−1qnh,tt , vh
� �

− div qnh, div vhð Þ = pnh − pnd , vhð Þ
+ znh, div vhð Þ,∀vh ∈Vh, n =N ,N − 1,⋯, 1,

qN−1
h − qN+1

h

2τ , vh
 �

= qt x, Tð Þ, vhð Þ,∀vh ∈Vh,

qNh = 0,∀x ∈Ω,
znh,tt ,wh

� �
= ynh − ynd ,whð Þ,∀wh ∈Wh, n =N ,N − 1,⋯, 1,

zN−1
h − zN+1

h

2τ ,wh

 �
= zt x, Tð Þ,whð Þ,∀wh ∈Wh,

zNh = 0,∀x ∈Ω,
unh =max 0,− �zh + div qhð Þ� �

+ znh + div qnh,∀n = 0, 1,⋯,N:

ð122Þ

Example 10. Let Ω = ð0, 1Þ × ð0, 1Þ, T = 1, cðxÞ = 1, A = E,
where E denotes identity matrix. The data under testing
are as follows:

y x, tð Þ = t2 sin 2πx1ð Þ sin 2πx2ð Þ,

p x, tð Þ = −
2πt2 cos 2πx1ð Þ sin 2πx2ð Þ
2πt2 sin 2πx1ð Þ cos 2πx2ð Þ

 !
,

q x, tð Þ =
1 − tð Þ2 cos 2πx1ð Þ sin 2πx2ð Þ
1 − tð Þ2 sin 2πx1ð Þ cos 2πx2ð Þ

 !
,

z x, tð Þ = − div q x, tð Þ + 2 1 − tð Þ sin 2πx1ð Þ sin 2πx2ð Þ,
yd x, tð Þ = y x, tð Þ − ztt x, tð Þ,

pd x, tð Þ = p x, tð Þ − qtt x, tð Þ +
2π 1 − tð Þ cos 2πx1ð Þ sin 2πx2ð Þ
2π 1 − tð Þ sin 2πx1ð Þ cos 2πx2ð Þ

 !
,

u x, tð Þ =max 0,− �z x, tð Þ + div q x, tð Þ� �
+ z x, tð Þ + div q x, tð Þ,

f x, tð Þ = ytt x, tð Þ + div p x, tð Þ − u x, tð Þ:
ð123Þ

Let eu = u − uh, ey = y − yh, ep = p − ph, ez = z − zh, eq = q
− qh and Eu = Phu − uh, Ey = Phy − yh, Ep =Πhp − ph, Ez =

Table 1: Numerical results of convergence.

h = τ euk k2,2 Rate ey
�� ��

∞,2 Rate ezk k∞,2 Rate

1/10 4:9561e − 2 — 3:5081e − 2 — 4:0448e − 2 —

1/20 2:5280e − 2 0.97 1:8105e − 2 0.95 2:0416e − 2 0.99

1/40 1:2642e − 2 1.00 9:1468e − 3 0.99 1:0208e − 2 1.00

1/80 6:2663e − 3 1.01 4:5615e − 3 1.00 5:1032e − 3 1.00
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Phz − zh, Eq =Πhq − qh. We set k·kL∞ðL2Þ = k·k∞,2 and
k·kL2ðL2Þ = k·k2,2. The numerical results of convergence and
superconvergence based on a sequence of uniformly refined
meshes are reported in Tables 1–4, respectively. They are
consistent with our theoretical results.
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