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The main idea of this paper is to investigate the exact solutions and dynamic properties of a space-time fractional perturbed
nonlinear Schrödinger equation involving Kerr law nonlinearity with conformable fractional derivatives. Firstly, by the
complex fractional traveling wave transformation, the traveling wave system of the original equation is obtained, then a
conserved quantity, namely, the Hamiltonian, is constructed, and the qualitative analysis of this system is conducted via this
quantity by classifying the equilibrium points. Moreover, the existences of the soliton and periodic solution are established via
the bifurcation method. Furthermore, all exact traveling wave solutions are constructed to illustrate our results explicitly by the
complete discrimination system for the polynomial method.

1. Introduction

For hundred of years, the partial differential equation plays a
vital role in many fields of science, and constructing exact solu-
tion to it could help us gain a deeper insight into the corre-
sponding phenomena. However, traditional integer-order
equation sometimes could not meet the requirement of model-
ing some special problems such as anomalous diffusion [1];
thus, the fractional calculus is proposed to handle this. Frac-
tional calculus hasmany definitions, for example, the traditional
Riemann–Liouville (RL) definition [2], modified RL definition
[3], and conformal definition [4]. However, the classical RL def-
inition is very complex to apply, and the modified RL definition
has already been proved wrong [5, 6]; thus, choosing a proper
fractional definition is an important and difficult task.

In this paper, we consider the following space-time frac-
tional perturbed nonlinear Schrödinger equation (7).

iqαt + aq2αx + b qj j2q − i σqαx − λ qj j2q� �α
x
− γ q2
�� ��α

x
q

� �
= 0, ð1Þ

with conformable fractional derivatives, where α is the
corresponding fractional order; qðx, tÞ is the complex valued
function defining wave profile in optical fibers; a and b rep-
resent the group velocity dispersion and nonlinear term,
respectively; σ is the intermodal dispersion; λ is the self-
steepeninng perturbation term; and γ is the nonlinear dis-
persion coefficient. The nonlinear Schrödinger equation
has a broad applications in modeling light waves in nanoop-
tical fibers [7–9]. Especially, when the external electric field
exists, this equation can be used to solve nonharmonic
motion of electrons bound in molecules [10], so construct-
ing exact solutions to this equation is of great significance.
In [11], some optical solitons and singular periodic wave
solutions are constructed by the extended Sinh-Gördon
equation expansion method, and W-shaped solitons are
shown by Al-Ghafri and his colleagues [12]. Other results
about soliton theory could be seen in [13–24].

The goal of this paper is to conduct qualitative and
quantitative analysis to (1) by the complete discrimination
system for polynomial method (CDSPM). The topological
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structure of this equation is shown, and the existences of sol-
iton and periodic solution are also presented. Moreover, to
verify our conclusion explicitly, all exact traveling wave solu-
tions, namely, the classification of traveling wave solutions,
are obtained. All conditions of parameters are discussed;
thus, this paper contains all results of traveling wave solu-
tions in the existing literatures, and some new solutions are
obtained. To the best of our knowledge, this is the first time
that the qualitative analysis is conducted to this equation,
and we could also see the critical region of the existence of
each kind of solution.

The CDSPM is proposed by Liu [25–27] and has been
successfully applied to a series of integer-order [28, 29]
and fractional-order equations [30–34]. Then, Kai et al.
found that this method could also be used to conduct qual-
itative analysis [35], and combining with the bifurcation
method, we can even establish the existence of the soliton
and periodic solution [36–38].

The construction of this paper is as follows. The corre-
sponding traveling wave system is given in Section 2, and
qualitative analysis is conducted. Moreover, the existences
of the soliton and periodic solution are also established in
this section. To verify our conclusion explicitly, all single
traveling wave solutions are constructed in Section 3, and
concrete examples under concrete parameters are also
shown to ensure the existence of each solution. In the final
part, a brief discussion is given.

2. Dynamic Properties of Equation (1)

By setting

q x, tð Þ = u ξð Þei ϕ ξð Þ−wtð Þ, ð2Þ

where ξ = ðxα/αÞ − ðvtα/αÞ [33], (1) becomes

− v + σð Þu′ + 2au′ϕ′ + auϕ′′ + 3λ + 2γð Þu2u′ = 0, ð3Þ

for the real part, and

au′′ +wu + bu3 + v + σð Þuϕ′ − au ϕ′
� �2

− λu3ϕ′ = 0, ð4Þ

for the imaginary part. From (3), we have

ϕ′ = v + σ

2a −
3λ + 2γ

4a u2 −
C
a
u−2: ð5Þ

Substituting (5) into (4) yields

u′′ = A3u
5 + A2u

3 + A1u + A0u
−3, ð6Þ

where A1 = ðCðλ + 2γ − 2aw + ðv + σÞ2ÞÞ/2a2, A2 = ðλðv
+ σÞ − 2abÞ/2a2, A3 = ð4λγ + 4γ2 − 3λ2Þ/16a2, A0 = C2/a2,
and C is a constant of integration. By setting u2 =V , we have

V ′′ = 8A3
3 V3 + 3A2V

2 + 4A1V + 4A0: ð7Þ

Multiplying (6) with V ′ and integrating it once, we have

V ′
� �2

= a4V
4 + a3V

3 + a2V
2 + a1V + a0, ð8Þ

where a4 = 2A3/3, a3 = A2, a2 = 2A1, a1 = 4A0, and a0 is a
constant of integration. (6) is equivalent to the following
dynamic system:

V ′ =U ,

U ′ = 8A3
3 V3 + 3A2V

2 + 4A1V + 4A0,
ð9Þ

and thus, the corresponding Hamiltonian is given by

H U , Vð Þ =U2 − a4V
4 + a3V

3 + a2V
2 + a1V

� �
: ð10Þ

Now, let us show that the Hamiltonian (12) is a con-
served quantity. Taking derivative of right side of (12) with
respect to ξ, we have

2UU ′ − 4a4V3 + 3a3V2 + 2a2V + a1
� �

V ′

= 2U U ′ − 8A3
3 V3 + 3A2V

2 + 4A1V + 4A0

� �	 

= 0,

ð11Þ

which just proves our conclusion, and we can also conclude
that the global phase portrait to the system (11) are just the
contour lines of the Hamiltonian (12). In the following, we
shall conduct qualitative analysis through this quantity by
introducing the complete discrimination system.

From the Hamiltonian (12), we can see that the deriva-
tive of the potential energy is given by

U1′ Vð Þ = −4a4 V3 + b2V
2 + b1V + b0

� �
, ð12Þ

where b2 = 3a3/4a4, b1 = a2/2a4, and b0 = a1/4a4. By
introducing the following discrimination system

Δ = −27 2
27 b

3
2 + b0 −

b1b2
3

� �2
− 4 b1 −

b22
3

 !3

,

D = b1 −
1
3 b

2
2,

ð13Þ

we can see that four cases need to be discussed here. This is
just the general procedure of the CDSPM—first, rewriting
the original equation into the integral form and then intro-
ducing the complete discrimination system to discussing
the relation between the roots of the corresponding polyno-
mial and the parameters. Then, we can find that all the con-
ditions are discussed, and the results we obtained are
integrated.

Case 1. D < 0, Δ = 0, we can get

U ′ Vð Þ = −4a4 V − sð Þ2 V − lð Þ, s ≠ lð Þ: ð14Þ
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Figure 1: The phase portraits of (8) in Case 1: (a) a4 = 1 and (b) a4 = −1.
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Figure 2: The phase portraits of (8) in Case 2: (a) a4 = 1 and (b) a4 = −1.
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Figure 3: The phase portraits of (8) in Case 3: (a) a4 = 1 and (b) a4 = −1.
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Figure 4: The phase portraits of (8) in Case 4: (a) a4 = 1 and (b) a4 = −1.
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ðs, 0Þ is a cuspidal point and ðl, 0Þ is a center for a4 > 0
and a saddle point when a4 < 0. For example, when a3 = 4/
3, a2 = a1 = 0, we have s = 0, l = 1, and corresponding global
phase portraits are shown in Figure 1 when a4 = ±1.

From Figure 1(b), we can see that trajectory I is a closed
orbit with a center inside, which just indicates the existence
of the periodic solution, and trajectory II is a homoclinic
orbit, which indicates the existence of the bell-shaped soliton
solution [36].

Case 2. D = 0, Δ = 0, we have

U ′ Vð Þ = −4a4 V − sð Þ3: ð15Þ

There is only one equilibrium point ðs, 0Þ here. It is a
cuspidal point when a4 > 0 and a center when a4 < 0. For
example, when a3 = a2 = a1 = 0, we have s = 0, and the corre-
sponding global phase portraits can be seen in Figure 2 when
a4 = ±1. From Figure 2(b), we can also conclude that the
original equation has periodic solution.

Case 3. Δ < 0, we have

U1′ Vð Þ = −4a4 V − sð Þ V2 + sV + l
� �

, s2 − 4l < 0
� �

: ð16Þ

There is also only one equilibrium point ðs, 0Þ in this
case. It is a saddle point when a4 > 0 and a center when a4
< 0. So, this case is very similar to Case 2. For example,
when a3 = a1 = 0 and a2 = 2, we have s = −1, and the global
phase portrait is given in Figure 3 when a4 = ±1.

Case 4. D < 0, Δ > 0, we have

U1′ Vð Þ = −4a4 V − sð Þ V − lð Þ V −mð Þ: ð17Þ

This case is rather interesting due to that there are three
equilibrium points ðs, 0Þ, ðl, 0Þ, and ðm, 0Þ here. When a4 > 0
, ðs, 0Þ, and ðm, 0Þ are two saddle points and ðl, 0Þ is a center,
and whereas for a4 < 0, ðs, 0Þ, and ðm, 0Þ are two centers and
ðl, 0Þ is a saddle point. Concrete examples of global phase
portraits when s = −m = 1, l = 0, and a4 = ±1 are given in
Figure 4.

For Figure 4(a), we can see that trajectory I is a closed
orbit with a center inside, which indicates the existence of
the periodic solution, and trajectory II and III are two het-
eroclinic orbits, which indicates the existence of the kink
and antikink solitary wave solution, respectively.
Figure 4(b) is a “figure eight loop” with trajectories I and II
are two closed orbits with a center inside, which indicates
the existence of the periodic solution, and trajectories III
and IV are two homoclinic orbits, which means the corre-
sponding equation has bright and dark bell-shaped soliton
solution.

Now, we have showed the topological structure of system
(3) and established the existences of the soliton and the peri-
odic solution. In order to verify the conclusion explicitly, we
construct the classification of traveling wave solutions to (3)
by the CDSPM.

2.1. Traveling Wave Solutions to (8). In this section, we con-
struct all traveling wave solutions, namely, the classification
of traveling wave solutions to (7). We only focus on the con-
dition of a4 > 0, and a4 < 0 could be treated similarly.

By taking the following transformation,

φ = a4ð Þ1/4 u + a3
4a4

� �
, ξ1 = a4ð Þ1/4ξ, ð18Þ

(8) becomes

φξ1
′

� �2
= φ4 + pφ2 + qφ + r = F φð Þ, ð19Þ

where p = a2/
ffiffiffiffiffi
a4

p , q = ðða33/8a42Þ − ða2a3/2a4Þ + a1Þa−1/4
and r = ð−a43/256a34Þ + ða2a23/16a24Þ − ða1a3/4a4Þ + a0. First,
we need to introducing the following complete discrimina-
tion system:

D1 = 4,D2 = −p,D3 = −2p3 + 8pr − 9q2,

D4 = −p2q2 + 4p4q + 36pq2r − 32p2q2 − 27
4 q4 + 64r3,

E2 = 9p2 − 32pr: ð20Þ

The complete discrimination system (27) given in Sec-
tion 2 is the third-order form, and here is the fourth order.
By discussing the relation between the parameters and the
coefficients, we shall see that every condition of parameters
is discussed; thus, what we have obtained is the classification
of traveling wave solutions.

Case 1. D2 < 0,D 3 = 0 and D4 = 0, FðφÞ has a pair of double
conjugate complex roots, namely,

F φð Þ = φ2 + s2
� �2, s > 0ð Þ, ð21Þ
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Figure 5: Figure of solution (31) with various fractional orders
when v = 2 and t is fixed at 2.
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by substituting (35) into (7), we have the following solution:

φ = s tan s ξ1 − ξ0ð Þð Þ, ð22Þ

where ξ0 is a constant of integration. (36) is a trigono-
metric function periodic solution. For example if p = 4, q =
0 and r = 4, then, we have s = 2 and the solution (36) is given
by

φ = 2 tan 2 ξ1 − ξ0ð Þ: ð23Þ

Case 2. When D2 =D3 =D4 = 0. FðφÞ has a real root of mul-
tiplicities four, namely,

F φð Þ = φ4, ð24Þ

which leads to

ξ1 − ξ0 =
ð
dφ
φ2 = −

1
φ−1 : ð25Þ

For example, when p = q = r = 0, we have

φ = −
1

ξ1 − ξ0
: ð26Þ

Case 3. When D2 > 0,D3 =D4 = 0 and E2 > 0, FðφÞ has two
double distinct real roots, then we have

F φð Þ = φ − sð Þ2 φ − lð Þ2, s > lð Þ, ð27Þ

which yields

± ξ1 − ξ0ð Þ =
ð

dφ
φ − μð Þ φ − νð Þ = 1

μ − ν
ln φ − μ

φ − ν

����
����: ð28Þ

If φ > s or φ < l, we can get

φ = l − s
2 coth ± s − lð Þ ξ1 − ξ0ð Þ

2 − 1
	 


+ s, ð29Þ

and when l < φ < s, we have

φ = l − s
2 tanh ± s − lð Þ ξ1 − ξ0ð Þ

2 − 1
	 


+ l: ð30Þ

(30) is a solitary wave solution. (22) and (30) have veri-
fied the conclusion given in Section 2 that when a4 > 0. (7)
has periodic and soliton solution. This shows that the qual-
itative results obtained are truly correct.

For example, when p = −8, r = 0, and q = 116, we have s
= −l = 2, then solitary wave solution (30) is given by

φ = −2 tan h ± ξ1 − ξ0ð Þ − 1½ � − 2: ð31Þ

The corresponding figure of (31) is given in Figure 5.
From it, we can see that the main impact of the fractional

order is the velocity of convegence, and the position of the
soliton is not influenced by it.

Case 4 D2 > 0,D3 =D4 = E2 = 0. FðφÞ = ðφ − sÞ3ðφ − lÞ,
then the solution is given by

± ξ1 − ξ0ð Þ =
ð

dφ

φ − sð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ − sð Þ φ − lð Þp = 2

l − s

ffiffiffiffiffiffiffiffiffiffi
φ − s
φ − l

r
: ð32Þ

Thus, the solution in explicit form is given by

φ = 4 s − lð Þ
l − sð Þ2 ξ1 − ξ0ð Þ2 − 4

+ s, ð33Þ

which is a rational solution. For example, when p = −6, q = 8,
and r = −3, we have l = 1, s = −3, then

φ = 4
1 − 4 ξ1 − ξ0ð Þ2

− 3: ð34Þ

Case 5. D 2D 3 < 0, and D4 = 0, we have

F φð Þ = φ − lð Þ2 φ + lÞ2 + s2
� �

, ð35Þ

and then, we can get

± ξ1 − ξ0ð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 + s2

p ln
μφ + δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ + lð Þ2 + s2

q
φ − l

������
������, ð36Þ

where

μ = 3lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 + s2

p , ð37Þ

δ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 + s2

p
−

3l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 + s2

p : ð38Þ

Thus,

φ = e±
ffiffiffiffiffiffiffiffiffi
4l2+s2

p
ξ1−ξ0ð Þ − μ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 + s2

p
2 − μð Þ

e±
ffiffiffiffiffiffiffiffiffi
4l2+s2

p
ξ1−ξ0ð Þ − μ

� �2 − 1
: ð39Þ

For example, when p = −3, q = −2
ffiffiffi
2

p
, and r = 6, we have

l =
ffiffiffi
2

p
, s = 1, then the solution is given by

φ = e±3 ξ1−ξ0ð Þ − 4
ffiffiffi
2

p
+ 6

e±3 ξ1−ξ0ð Þ −
ffiffiffi
2

p� �2
− 1

: ð40Þ

Case 6. Di > 0ði = 2, 3, 4Þ. FðφÞ is given by

H φð Þ = φ − α1ð Þ φ − α2ð Þ φ − α3ð Þ φ − α4ð Þ, ð41Þ

where α1 > α2 > α3 > α4. Then, we can get the following
elliptic function double periodic solutions. When α4 > 0,
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we have

φ =
α2 α1 − α4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α1 − α3ð Þ α2 − α4ð Þp
/2

� �
ξ1 − ξ0ð Þ,m

� �
− α1 α2 − α4ð Þ

α1 − α4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 − α3ð Þ α2 − α4ð Þp

/2
� �

ξ1 − ξ0ð Þ,m
� �

− α2 − α4ð Þ
,

φ > α1orφ < α4ð Þ,
ð42Þ

ω =
α4 α2 − α3ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α1 − α3ð Þ α2 − α4ð Þp
/2

� �
ξ1 − ξ0ð Þ,m

� �
− α3 α2 − α4ð Þ

α2 − α3ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 − α3ð Þ α2 − α4ð Þp

/2
� �

ξ1 − ξ0ð Þ,m
� �

− α2 − α4ð Þ
,

α3 < φ < α2ð Þ,
ð43Þ

where m2 = ððα1 − α4Þðα2 − α3ÞÞ/ððα1 − α3Þðα2 − α4ÞÞ.
For a4 < 0, similarly we can get

φ =
α3 α1 − α2ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α1 − α3ð Þ α2 − α4ð Þp
/2

� �
ξ1 − ξ0ð Þ,m

� �
− α2 α1 − α3ð Þ

α1 − α2ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 − α3ð Þ α2 − α4ð Þp

/2
� �

ξ1 − ξ0ð Þ,m
� �

− α1 − α3ð Þ
,

α1 > φ > α2ð Þ,
ð44Þ

φ =
α1 α3 − α4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α1 − α3ð Þ α2 − α4ð Þp
/2

� �
ξ1 − ξ0ð Þ,m

� �
− α4 α3 − α1ð Þ

α3 − α4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 − α3ð Þ α2 − α4ð Þp

/2
� �

ξ1 − ξ0ð Þ,m
� �

− α3 − α1ð Þ
,

α4 < φ < α3ð Þ,
ð45Þ

where m2 = ððα1 − α2Þðα3 − α4ÞÞ/ððα1 − α3Þðα2 − α4ÞÞ.
For instance, when p = −5, q = 0, r = 4, and φ > 2, we have
α1 = 2, α2 = 1, α3 = −1, α4 = −2, and thus, the solution is
given by

φ =
4sn2

ffiffiffi
9

p
/2

� �
ξ1 − ξ0ð Þ, 8/9

� �
− 6

4sn2
ffiffiffi
9

p
/2

� �
ξ1 − ξ0ð Þ, 8/9

� �
− 3

: ð46Þ

Case 7. D2 D3 ≥ 0 and D4 < 0. FðφÞ is given by

F φð Þ = φ − μð Þ φ − νð Þ φ − l2
�
+ s2

� �
, ð47Þ

where μ > ν and s > 0. By setting

a = 1
2 μ + νð Þc − 1

2 μ − νð Þd, ð48Þ

b = 1
2 μ + νð Þd − 1

2 μ − νð Þc, ð49Þ

c = μ − l −
s
m1

, ð50Þ

d = μ − l − sm1, ð51Þ

E = s2 + μ − lð Þ ν − lð Þ
s μ − νð Þ , ð52Þ

m1 = E +
ffiffiffiffiffiffiffiffiffiffiffiffi
E2 + 1

p
, ð53Þ

we can get

φ =
acn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓2sm1 μ − νð Þp

/2mm1
� �

ξ1 − ξ0ð Þ,m
� �

+ b

ccn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓2sm1 μ − νð Þp

/2mm1
� �

ξ1 − ξ0ð Þ,m
� �

+ d
, ð54Þ

where m2 = 1/ð1 +m2
1Þ. For instance, when p = 3, q = −4,

then μ = 1, ν = −1 and l = 0, s = 2, the following solution
could just be obtained

φ = −cn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓2sm1 μ − νð Þp
2mm1

ξ1 − ξ0ð Þ,m
 !

, ð55Þ

which is also an elliptic function double periodic solution.

Case 8. D2 D3 ≤ 0 and D4 > 0, we can get

F φð Þ = φ − l1ð Þ2 + s21
� �

φ − l2Þ2 + s22
� ��

, s1 ≥ s2 > 0ð Þ: ð56Þ

By setting

a = l1c + s1d, ð57Þ

b = l1d − s1c, ð58Þ

c = −s1 −
s2
m1

, ð59Þ

d = l1 − l2, ð60Þ

E = l1 − l2ð Þ2 + s21 + s22
2s1s2

, ð61Þ

m1 = E +
ffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
, ð62Þ

we have

φ = asn η ξ1 − ξ0ð Þ,mð Þ + bcn η ξ1 − ξ0ð Þ,mð Þ
csn η ξ1 − ξ0ð Þ,mð Þ + dcn η ξ1 − ξ0ð Þ,mð Þ , ð63Þ

where m2 = ðm2
1 − 1Þ/m2

1 and η = s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 + d2Þðm2

1c2 + d2Þ
p

/ð
c2 + d2Þ. For example, when p = 5, q = 4, we have l1 = l2 = 0,
s1 = 1, s2 = 2, then

φ = cn 4 ξ1 − ξ0ð Þ, 3/4ð Þ
sn 4 ξ1 − ξ0ð Þ, 3/4ð Þ : ð64Þ

Case 9. D2 ,D 3 > 0, and D4 = 0. FðφÞ is given by

F φð Þ = φ − sð Þ φ − lð Þ φ −mð Þ2, s > lð Þ: ð65Þ

By setting

c = α1 − α2
2

α1 + α2
2 − α3

� �
, ð66Þ
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we have

± ξ1 − ξ0ð Þ =
ð

dφ

φ − α3ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ − α1Þ φ − α2ð Þp , ð67Þ

whose solution is given by

ξ1 − ξ0ð Þ = −
1ffiffiffiffiffiffiffiffiffiffiffi
c2 − 1

p ln y − c1
y + c1

����
����, c2 − 1 > 0
� �

, ð68Þ

ξ1 − ξ0ð Þ = −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ð Þ

p
arctan c + 1

1 − c
y, c2 − 1 < 0
� �

, ð69Þ

where c1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc + 1Þ/ðc − 1Þp

and y =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ððα1 − α2Þ/

p ðφ
− ððα1 + α2Þα1 + α2/2Þα1 + α2/2Þ + ðα1 − α2Þα1 − α2/2Þ,
which is a triangular function periodic solution. For exam-
ple, when p = −1, q = 0, we have α1 = 1, α2 = −1, and α3 = 0,
which leads to

φ = 1
cos 2 ξ1 − ξ0ð Þ , ð70Þ

which is also a periodic solution.

3. Conclusion

In this paper, we consider a space–time fractional perturbed
nonlinear Schrödinger equation arising from nanooptical
fibers. By taking the complex fractional traveling wave trans-
formation, the traveling wave system of the original equation
is obtained, then the corresponding Hamiltonian is con-
structed, and the qualitative analysis is conducted by intro-
ducing the complete discrimination system. The
topological structure is given, and the existences of the soli-
ton and periodic solution are established via the bifurcation
method. To verify our conclusion explicitly, every kind of
traveling wave solutions is constructed by the CDSPM, and
some of them are new. In order to analyze the influence of
the fractional parameter, a concrete example of the soliton
solution is given. From it, we can see to directly that how
the fractional order impact the position of the soliton and
how these solutions convergent to the same value when the
dependent variable ξ tends to infinity. All of the results given
in the present paper show the powerfulness of the method
adopted in the paper. In the future, we shall further analyze
the nonlinear Schrödinger equation with RL definition to
give more results to this equation, and we would also like
to promote this method to other nonlinear equations like
the coupled Boussinesq equation.
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