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In the present note, we study ϵ-LP-Sasakian 3-manifolds M3ðϵÞ whose metrics are conformal η-Ricci-Yamabe solitons (in short,
CERYS), and it is proven that if anM3ðϵÞ with a constant scalar curvature admits a CERYS, then £Uζ is orthogonal to ζ if and only
if Λ − ϵσ = −2ϵl + ðmr/2Þ + ð1/2Þðp + ð2/3ÞÞ. Further, we study gradient CERYS in M3ðϵÞ and proved that an M3ðϵÞ admitting
gradient CERYS is a generalized conformal η-Einstein manifold; moreover, the gradient of the potential function is pointwise
collinear with the Reeb vector field ζ. Finally, the existence of CERYS in an M3ðϵÞ has been drawn by a concrete example.

1. Introduction

The index of a metric generates variety of vector fields such
as space-like, time-like, and light-like vector fields. There-
fore, the study of manifolds with indefinite metrics becomes
of great importance in physics and relativity. About three
decades ago, the concept of ϵ-Sasakian manifolds was into-
duced by Bejancu and Duggal [1]. Later, Xufeng and Xiaoli
[2] have shown that these manifolds are real hypersurfaces
of indefinite Kaehlerian manifolds. Recently, the manifolds
with indefinite structures have also been studied by several
authors such as [3–7].

The concept of conformal Ricci flow was introduced by
Fischer [8] as a generalization of the classical Ricci flow
equation, which is defined on an n-dimensional Riemannian
manifold M by the equations

∂g
∂t

= −2 S + g
n

� �
− pg, r gð Þ = −1, ð1Þ

where p defines a time dependent nondynamical scalar field
(also called the conformal pressure), g is the Riemannian
metric, and r and S represent the scalar curvature and the

Ricci tensor of M, respectively. The term −pg plays a role
of constraint force to maintain r in the above equation.

In 2015, Basu and Bhattacharya [9] proposed the con-
cept of conformal Ricci soliton on M and is defined by

£Ug + 2S = 1
n

pn + 2ð Þ − 2Λ
� �

g, ð2Þ

where £U represents the Lie derivative operator along the
smooth vector field U on M and Λ ∈ℝ (ℝ is the set of real
numbers).

In [10], Guler and Crasmareanu established a scalar
combination of Ricci and Yamabe flows; this new class of
geometric flows called Ricci-Yamabe flow of type ðl,mÞ
and is defined by

∂
∂t

g tð Þ = 2lS g tð Þð Þ −mr tð Þg tð Þ, g 0ð Þ = g0, ð3Þ

for some scalars l and m.
A solution to the Ricci-Yamabe flow is called Ricci-

Yamabe soliton if it depends only on one parameter group
of diffeomorphism and scaling. A Riemannian manifold is
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said to have a Ricci-Yamabe solitons (RYS) if [11]

£Ug + 2Λ −mrð Þg + 2lS = 0, ð4Þ

where l,m,Λ ∈ℝ.
In [12], Zhang et al. studied conformal Ricci-Yamabe

soliton (CRYS), which is defined on an n-dimensional Rie-
mannian manifold by

£Ug + 2lS + 2Λ −mr −
1
n

pn + 2ð Þ
� �

g = 0: ð5Þ

Motivated by the above studies, we introduce the notion
of conformal η-Ricci-Yamabe soliton (CERYS). A Riemann-
ian manifold M of dimension n is said to have CERYS if

£Ug + 2lS + 2Λ −mr −
1
n

pn + 2ð Þ
� �

g + 2σ η ⊗ η = 0, ð6Þ

where l,m,Λ, σ ∈ℝ and η is a 1-form on M.
If U is the gradient of a smooth function f on M, then

equation (6) is called the gradient conformal η-Ricci-
Yamabe soliton (gradient CERYS) and takes the form

∇2 f + lS + Λ −
mr
2 −

1
2 p + 2

n

� �� �
g + σ η ⊗ η = 0, ð7Þ

where ∇2 f is said to be the Hessian of f . A CRYS (or gradi-
ent CRYS) is said to be shrinking, steady or expanding if Λ
< 0, = 0 or >0, respectively. A CERYS (or gradient CERYS)
reduces to

(i) conformal η − Ricci soliton if l = 1,m = 0,
(ii) conformal η − Yamabe soliton if l = 0,m = 1,
(iii) conformal η − Einstein soliton if l = 1,m = −1:

If SðV1, V2Þ = fΛ − ðmr/2Þ − ð1/2Þðp + ð2/nÞÞggðV1, V2
Þ + σ ηðV1ÞηðV2Þ for all vector fields V1, V2 on M, then we
call the manifold as a conformal η-Einstein manifold. Fur-
ther, if σ = 0, that is, SðV1, V2Þ = fΛ − ðmr/2Þ − ð1/2Þðp + ð
2/nÞÞggðV1, V2Þ, then M is called a conformal Einstein
manifold. If an ϵ-LP-Sasakian 3-manifold M3ðϵÞ satisfies
(6) (resp., (7)), then we say that M3ðϵÞ admits a CERYS
(resp., gradient CERYS).

The study of indefinite structures of the manifolds
admitting various types of solitons is of high interest of
researchers from different fields due to its wide applications
in general relativity, cosmology, quantum field theory, string
theory, thermodynamics, etc. This is why, the researchers
from various fields are attracted by this study. For more
details about the related studies, we recommend the papers
([13–25]) and the references therein.

In this paper, we handle the study of M3ðϵÞ admitting
CERYS. The article is unfolded as follows: Preliminaries on
M3ðϵÞ are the focus of Section 2. Sections 3 and 4 are dedi-
cated to conferring the CERYS and gradient CERYS in M3

ðϵÞ, respectively. At last, we model an example of M3ðϵÞ
which helps to examine the existence of CERYS on M3ðϵÞ.

2. Preliminaries

A differentiable manifold of dimension n is called an ϵ-Lor-
entzian para-Sasakian (in short, M3ðϵÞ), in case it admits a
ð1, 1Þ tensor field φ, a contravariant vector field ζ, a 1-form
η, and a Lorentzian metric g fulfilling [6]

φ2V1 =V1 + η V1ð Þζ, η ζð Þ = −1, ð8Þ

g ζ, ζð Þ = −ϵ, η V1ð Þ = ϵg V1, ζð Þ, φζ = 0, η φV1ð Þ = 0,
ð9Þ

g φV1, φV2ð Þ = g V1,V2ð Þ − ϵη V1ð Þη V2ð Þ, ð10Þ

∇V1
φ

� 	
V2 = g V1, V2ð Þζ + ϵη V2ð ÞV1 + 2ϵη V1ð Þη V2ð Þζ,

ð11Þ

∇V1
ζ = ϵφV1, ð12Þ

for all vector fields V1,V2 on M3ðϵÞ, where ϵ is -1 or 1
according as ζ is space-like or time-like vector field, and ∇
represents the Levi-Civita connection with respect to g.

Moreover, in an M3ðϵÞ, we have [6, 22]

∇V1
η

� 	
V2 =Φ V1, V2ð Þ = g φV1, V2ð Þ, ð13Þ

R V1, V2ð Þζ = η V2ð ÞV1 − η V1ð ÞV2, ð14Þ

R ζ, V1ð ÞV2 = ϵg V1, V2ð Þζ − η V2ð ÞV1, ð15Þ

R ζ, V1ð Þζ = −R V1, ζð Þζ =V1 + η V1ð Þζ, ð16Þ

S V1, ζð Þ = 2η V1ð Þ⟺Qζ = 2ϵζ, ð17Þ

where Φ is a symmetric ð0, 2Þ tensor field, R is the curvature
tensor, and Q is the Ricci operator related by gðQV1, V2Þ
= SðV1, V2Þ.

We note that if ϵ = 1 and ζ is time-like vector field, then
an M3ðϵÞ is usual LP-Sasakian manifold of dimension 3.

Definition 1. An M3ðϵÞ is called a generalized η-Einstein
manifold if its Ricci tensor Sð≠ 0Þ satisfies

S V1, V2ð Þ = ag V1, V2ð Þ + bη V1ð Þη V2ð Þ + cg φV1, V2ð Þ,
ð18Þ

where a, b, and c are scalar functions of ϵ. If c = 0 (resp., b
= c = 0), then M3ðϵÞ is called η-Einstein (resp., Einstein)
manifold.
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Proposition 2. In anM3ðϵÞ, the Ricci tensor S is expressed as

S V1, V2ð Þ = r
2
− ϵ

� �
g V1, V2ð Þ + ϵr

2
− 3

� �
η V1ð Þη V2ð Þ,

ð19Þ

for any V1, V2 on M3ðϵÞ.

Proof. Since in an M3ðϵÞ, the conformal curvature tensor
vanishes, therefore, we have

R V1, V2ð ÞV3 = S V2, V3ð ÞV1 − S V1, V3ð ÞV2
+ g V2, V3ð ÞQV1 − g V1, V3ð ÞQV2

−
r
2 g V2, V3ð ÞV1 − g V1, V3ð ÞV2ð Þ,

ð20Þ

which by putting V3 = ζ then using (9), (14), and (17)
leads to

η V2ð ÞQV1 − η V1ð ÞQV2 = ϵ −
r
2

� �
η V1ð ÞV2 − η V2ð ÞV1ð Þ:

ð21Þ

Again, putting V2 = ζ in (21) then using (8) and (17), we
find

QV1 =
r
2 − ϵ

� �
V1 +

r
2 − 3ϵ

� �
η V1ð Þζ: ð22Þ

The inner product of (22) with V2 gives (19).

3. M3ðϵÞ Admitting CERYS

First, we prove the following theorem.

Theorem 3. If an M3ðϵÞ with the constant scalar curvature
admits a CERYS, then

Λ − ϵσ = −2ϵl + mr
2

+ 1
2

p + 2
3

� �
: ð23Þ

Moreover, £Uζ is orthogonal to ζ if and only if (23) holds.

Proof. Let an M3ðϵÞ admit a CERYS, then by using (19) in
(6), we have

£Ugð Þ V1, V2ð Þ = − l −mð Þr + 2Λ − 2ϵl − p + 2
3

� �� �
g V1, V2ð Þ

− l ϵr − 6ð Þ + 2σf gη V1ð Þη V2ð Þ:
ð24Þ

The covariant differentiation of (24) with respect to V3
leads to

∇V3
£Ug

� 	
V1, V2ð Þ = −l V3rð Þ g φV1, φV2ð Þ +m V3rð Þg V1, V2ð Þ

− l ϵr − 6ð Þ + 2σf g g φV3, V1ð Þη V2ð Þ + g φV3, V2ð Þη V1ð Þð Þ:
ð25Þ

As g is parallel with respect to ∇, then the relation [26].

£U∇V1
g − ∇V1

£Ug − ∇ U ,V1½ �g
� �

V2, V3ð Þ
= −g £U∇ð Þ V1,V3ð Þ, V2ð Þ − g £U∇ð Þ V1, V2ð Þ, V3ð Þ,

ð26Þ

turns to

∇V1
£Ug

� 	
V2, V3ð Þ = g £U∇ð Þ V1, V3ð Þ, V2ð Þ

+ g £U∇ð Þ V1,V2ð Þ, V3ð Þ:
ð27Þ

Due to symmetric property of £U∇, equation (27) takes
the form

2g £U∇ð Þ V1, V2ð Þ, V3ð Þ = ∇V1
£Ug

� 	
V2, V3ð Þ

+ ∇V2
£Ug

� 	
V1, V3ð Þ

− ∇V3
£Ug

� 	
V1, V2ð Þ:

ð28Þ

Using (25) in (28), we have

2g £U∇ð Þ V1, V2ð Þ, V3ð Þ =
−l V1rð Þg φV2, φV3ð Þ + V2rð Þg φV1, φV3ð Þ − V3rð Þg φV1, φV2ð Þf g
+m V1rð Þg V2, V3ð Þ + V2rð Þg V1, V3ð Þ − V3rð Þg V1, V2ð Þf g
− 2 l ϵr − 6ð Þ + 2σf gg φV1, V2ð Þη V3ð Þ:

ð29Þ

By eliminating V3 from the foregoing equation, it fol-
lows that

2 £U∇ð Þ V1, V2ð Þ =
−l V1rð Þ V2 + η V2ð Þζð Þ + V2rð Þ V1 + η V1ð Þζð Þ − Drð Þg φV1, φV2ð Þf g
− 2ϵ l ϵr − 6ð Þ + 2σf gg φV1, V2ð Þζ +m V1rð ÞV2 + V2rð ÞV1 − Drð Þg V1,V2ð Þf g,

ð30Þ

where V1l = gðDl, V1Þ, D stands for the gradient operator
with respect to g. Taking V2 = ζ and using r constant (hence
ðDr = 0Þ and ðζr = 0Þ), (30) turns to

£U∇ð Þ V1, ζð Þ = 0: ð31Þ

The covariant derivative of (31) with respect to V2 leads
to

∇V2
£U∇

� 	
V1, ζð Þ = −ϵ £U∇ð Þ V1, φV2ð Þ, ð32Þ

which by using in ð∇URÞðV1, V2ÞV3 = ð∇V1
£U∇ÞðV2,

V3Þ − ð∇V2
£U∇ÞðV1, V3Þ, we deduce

∇URð Þ V1, ζð Þζ = 0: ð33Þ

The Lie derivative of RðV1, ζÞζ = −V1 − ηðV1Þζ along U
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yields

∇URð Þ V1, ζð Þζ + 2η £Uζð ÞV1 − ϵg V1, £Uζð Þζ = − £Uηð Þ V1ð Þζ,
ð34Þ

which by using (33) reduces to

£Uηð Þ V1ð Þζ = −2η £Uζð ÞV1 + ϵg V1, £Uζð Þζ: ð35Þ

Now, taking the Lie derivative of ηðV1Þ = ϵgðV1, ζÞ, it
follows that

£Uηð ÞV1 = ϵ £Ugð Þ V1, ζð Þ + ϵg V1, £Uζð Þ: ð36Þ

Taking V2 = ζ in (24), we find

£Ugð Þ V1, ζð Þ = −2ϵΛ + ϵmr − 4l + 2σ + ϵ p + 2
3

� �� �
η V1ð Þ:

ð37Þ

Again, taking the Lie-derivative of gðζ, ζÞ = −ϵ, we have

£Ugð Þ ζ, ζð Þ = −2ϵη £Uζð Þ: ð38Þ

Now, by combining the equations (35)–(38), we have

2ϵΛ − ϵmr + 4l − 2σ − ϵ p + 2
3

� �� �
φ2V1 = 0: ð39Þ

From the foregoing equation, it follows that

Λ − ϵσ = −2ϵl + mr
2 + 1

2 p + 2
3

� �
= 0, ð40Þ

where φ2V1 ≠ 0.
Next, from the equations (37)–(40), we observe that ηð

£UζÞ = 0, i.e., £Uζ is orthogonal to ζ. Conversely, from (37)
and (38), one can see that if £Uζ is orthogonal to ζ, then
(40) immediately follows. This completes the proof.

In particular, if l = 1,m = σ = 0, then (40) reduces to Λ
= −2ϵ + ð1/2Þðp + ð2/3ÞÞ. Thus, we have the following.

Corollary 4. If an M3ðϵÞ with the constant scalar curvature
admits a conformal Ricci soliton, then the soliton on M3ðϵÞ
is concluded as follows:

(i) if ϵ = 1, (i.e., ζ is time-like), then the soliton onM3ðϵÞ
is expanding, steady, or shrinking according to p >
ð10/3Þ, = ð10/3Þ, or <ð10/3Þ

(ii) if ϵ = −1, (i.e., ζ is space-like), then the soliton on
M3ðϵÞ is expanding, steady or shrinking according
to p > ð−14/3Þ, = ð−14/3Þ, or <ð−14/3Þ

Next, if m = 1, l = σ = 0, then (40) reduces to Λ = ðr/2Þ
+ ð1/2Þðp + ð2/3ÞÞ. Thus, we have the following.

Corollary 5. If an M3ðϵÞ with the constant scalar curvature
admits a conformal Yamabe soliton, then the soliton on M3

ðϵÞ is expanding, steady or shrinking according to p > −ðr +
ð2/3ÞÞ, = − ðr + ð2/3ÞÞ or <−ðr + ð2/3ÞÞ.

Again, if l = 1,m = −1, σ = 0, then (40) reduces to Λ = −
2ϵ − ðr/2Þ + ð1/2Þðp + ð2/3ÞÞ. Thus, we have the following.

Corollary 6. If an M3ðϵÞ with the constant scalar curvature
admits a conformal Einstein soliton, then the soliton on M3

ðϵÞ is concluded as follows:

(i) if ϵ = 1, (i.e., ζ is time-like), then the soliton onM3ðϵÞ
is expanding, steady, or shrinking according to p > ð
10/3Þ + r, = ð10/3Þ + r or <ð10/3Þ + r

(ii) if ϵ = −1, (i.e., ζ is space-like), then the soliton on
M3ðϵÞ is expanding, steady or shrinking according
to p > ð−14/3Þ + r, = ð−14/3Þ + r or <ð−14/3Þ + r.

Furthermore, let anM3ðϵÞ admit a CERYS at U = ζ, then
from (6), we have

£ζg
� 	

V1, V2ð Þ + 2lS V1, V2ð Þ + 2Λ −mr − p + 2
3

� �� �
g V1, V2ð Þ

+ 2σ η V1ð Þη V2ð Þ = 0,
ð41Þ

which by using the value ð£ζgÞðV1, V2Þ = gð∇V1
ζ, V2Þ +

gðV1, ∇V2
ζÞ = 2ϵgðφV1, V2Þ, we arrive

S V1, V2ð Þ = −
1
l

Λ −
mr
2

−
1
2

p + 2
3

� �� �
g V1, V2ð Þ

−
σ

l
η V1ð Þη V2ð Þ − ϵ

l
g φV1, V2ð Þ, where l ≠ 0:

ð42Þ

By putting V2 = ζ in (42) and using (17), we find

Λ − ϵσ = −2ϵl + mr
2

+ 1
2

p + 2
3

� �
: ð43Þ

Thus, we have the following.

Corollary 7. If an M3ðϵÞ admits a CERYS at U = ζ, then
M3ðϵÞ is a generalized conformal η-Einstein manifold and
the scalars Λ and σ are related by (43). Moreover, the nature
of the soliton on M3ðϵÞ is concluded as Corollaries 4 and 6.

Definition 8. A vector field U on an M3ðϵÞ is called torse
forming vector field in case [27].

∇V1
U = f V1 + γ V1ð ÞU , ð44Þ

where f and γ are smooth function and 1-form, respectively.
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Let us consider an M3ðϵÞ admitting a CERYS, further
considering the Reeb vector field ζ as a torse-forming vector
field. Thus, from (44), we have

∇V1
ζ = f V1 + γ V1ð Þζ, ð45Þ

for all V1 on M3ðϵÞ. Taking the inner product of (45)
with ζ, we find

g ∇V1
ζ, ζ

� 	
= ϵ f η V1ð Þ − ϵγ V1ð Þ: ð46Þ

Also, from (12), we find

g ∇V1
ζ, ζ

� 	
= 0: ð47Þ

Thus, the last two equations give γ = f η (where ϵ ≠ 0),
and hence (45) turns to

∇V1
ζ = f V1 + η V1ð Þζð Þ: ð48Þ

Now, in view of (48), we have

£ζg
� 	

V1, V2ð Þ = 2f g V1, V2ð Þ + η V1ð Þη V2ð Þf g: ð49Þ

By virtue of (49), (42) turns to

S V1, V2ð Þ = −
1
l

Λ + f −
mr
2 −

1
2 p + 2

3

� �� �
g V1, V2ð Þ

−
1
l
ϵ f + σð Þ η V1ð Þη V2ð Þ, l ≠ 0:

ð50Þ

Thus, we state the following.

Theorem 9. If an M3ðϵÞ admits a CERYS at U = ζ with
torse-forming vector field ζ. Then, M3ðϵÞ is a conformal η-
Einstein manifold.

In particular, if σ = −ϵ f , then (50) takes the form SðV1
, V2Þ = −ð1/lÞfΛ + f − ðmr/2Þ − ð1/2Þðp + ð2/3ÞÞggðV1, V2Þ,
l ≠ 0: Thus, we have the following.

Corollary 10. An M3ðϵÞ admitting a CERYS with torse-
forming vector field ζ is a conformal Einstein manifold if σ
= f for space-like vector field (or σ = −f for time-like vector
field).

4. Gradient CERYS on M3ðϵÞ
Let the metric g onM3ðϵÞ be a gradient CERYS. Then, equa-
tion (7) can be expressed as

∇V2
Df + lQV2 + Λ −

mr
2 −

1
2 p + 2

3

� �� �
V2 + ϵση V2ð Þζ = 0,

ð51Þ

for all V2 on M3ðϵÞ, where D stands for the gradient
operator of g:

The covariant derivative (51) with respect to V1 leads to

∇V1
∇V2

Df = −l ∇V1
Q

� 	
V2 +Q ∇V1

V2
� 	
 �

− Λ −
mr
2 −

1
2 p + 2

3

� �� �
∇V1

V2 +m
V1 rð Þ
2 V2

− ϵσ g φV1, V2ð Þζ + η ∇V1
V2

� 	
ζ + ϵη V2ð ÞφV1


 �
:

ð52Þ

Interchanging the role of V1 and V2 in (52), we have

∇V2
∇V1

Df = −l ∇V2
Q

� 	
V1 +Q ∇V2

V1
� 	
 �

− Λ −
mr
2 −

1
2 p + 2

3

� �� �
∇V2

V1 +m
V2 rð Þ
2 V1

− ϵσ g φV2, V1ð Þζ + η ∇V2
V1

� 	
ζ + ϵη V1ð ÞφV2


 �
:

ð53Þ

By using (51)–(53), the well-known relation RðV1, V2Þ
Df = ∇V1

∇V2
Df − ∇V2

∇V1
Df − ∇½V1,V2�Df takes the form

R V1, V2ð ÞDf = l ∇V2
Q

� 	
V1 − ∇V1

Q
� 	

V2

 �
+ m

2 V1 rð ÞV2 −V2 rð ÞV1f g
+ σ η V1ð ÞφV2 − η V2ð ÞφV1f g:

ð54Þ

The covariant differentiation of (22) with respect to V2
gives

∇V2
Q

� 	
V1 =

V2 rð Þ
2 V1 + η V1ð Þζð Þ

+ r
2 − 3ϵ

� �
g φV1, V2ð Þζ + ϵη V1ð ÞφV2ð Þ,

ð55Þ

which by replacing V1 = ζ then using (8) and (9) reduces to

∇V2
Q

� 	
ζ = −

ϵr
2 − 3

� �
φV2: ð56Þ

Again, replacing V2 by ζ in (55) and using (9), we find

∇ζQ
� 	

V1 =
ζrð Þ
2 V1 + η V1ð Þζð Þ: ð57Þ

Subtracting (57) from (56), we find

∇V2
Q

� 	
ζ − ∇ζQ

� 	
V1 = −

ϵr
2 − 3

� �
φV2 −

ζrð Þ
2 V1 + η V1ð Þζð Þ:

ð58Þ

Now, putting V1 = ζ in (54) then using (8) and (9), we
have

R ζ,V2ð ÞDf = l ∇V2
Q

� 	
ζ − ∇ζQ

� 	
V2


 �
+ m

2 ζ rð ÞV2 −V2 rð Þζf g − σφV2:

ð59Þ
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Taking the inner product of foregoing equation with ζ
and using (58), we infer

g R ζ, V2ð ÞDf , ζð Þ = ϵm
2 ζ rð Þη V2ð Þ +V2 rð Þf g: ð60Þ

From relation (15), we have

g R ζ, V2ð ÞDf , ζð Þ = − V2 fð Þ − ζ fð Þη V2ð Þ: ð61Þ

By combining equations (60) and (61), it follows that ð
V2 f Þ + fζf + ðϵmζðrÞ/2ÞgηðV2Þ + ðϵm/2ÞV2ðrÞ = 0 for any
V2 on M3ðϵÞ. Therefore, for r constant, we have

U =Df = −ϵ ζfð Þζ: ð62Þ

This informs that the vector field U is pointwise collinear
with ζ:

Now, taking the covariant derivative of (62) with respect
to V1, we have

∇V1
Df = −ϵ V1 ζfð Þζf g − ζfð ÞφV1: ð63Þ

The inner product of (63) with ζ gives

g ∇V1
Df , ζ

� 	
= V1 ζfð Þ: ð64Þ

From (63) and (64), we arrive

∇V1
Df = −ϵg ∇V1

Df , ζ
� 	

ζ − ζfð ÞφV1: ð65Þ

The inner product of (51) with ζ leads to gð∇V1
Df , ζÞ

= f−2l − ϵΛ + σ + ðϵmr/2Þ + ðϵ/2Þðp + ð2/3ÞÞgηðV1Þ, which
in view of (40) reduces to

g ∇V1
Df , ζ

� 	
= 0: ð66Þ

Thus, (51) together with (65) and (66) takes the form

QV1 = −
1
l

Λ −
mr
2 −

1
2 p + 2

3

� �� �
V1 −

ϵσ

l
η V1ð Þζ + 1

l
ζfð ÞφV1, l ≠ 0:

ð67Þ

This informs that M3ðϵÞ is a generalized conformal η-
Einstein manifold.

Next, from (51) and (63), we have

lQV1 + Λ −
mr
2 −

1
2 p + 2

3

� �� �
V1 + ϵση V1ð Þζ = ϵ V1 ζfð Þζf g + ϵ ζfð ÞφV1:

ð68Þ

By putting V1 = ζ in (68) then using (8), (9), and (17), we
find

2ϵl +Λ − ϵσ −
mr
2 −

1
2 p + 2

3

� �� �
ζ = ϵ ζ ζfð Þζf g: ð69Þ

The inner product of (69) with ζ and the use of (9) and
(40) leads to ζðζf Þ = 0:

If possible, we suppose that ζ = ∂/∂t then the above
equation takes the form

∂2 f
∂t2

= 0: ð70Þ

It is noticed that the potential function f = d1 + td2
where d1 and d2 are independent of t, satisfies equation
(70). By considering the above facts, we can state the
following.

Theorem 11. Let an M3ðϵÞ admit a gradient CERYS. Then,

(i) M3ðϵÞ is a generalized conformal η-Einstein manifold

(ii) the gradient of the potential function f is pointwise
collinear with the Reeb vector field ζ and f satisfies
equation (70) and it is governed by f = d1 + td2:

Example 1. We consider the manifold M3 = fðu1, u2, u3Þ ∈
R3g, where ðu1, u2, u3Þ are the usual coordinates in R3. Let
κ1, κ2, and κ3 be the vector fields on M3 given by

κ1 = cosh u3
∂
∂u1

+ sinh u3
∂
∂u2

, κ2

= sinh u3
∂
∂u1

+ cosh u3
∂
∂u2

, κ3 = ϵ
∂
∂u3

= ζ,
ð71Þ

and these are linearly independent at each point of M3.
Let g be the Lorentzian metric defined by

g κi, κj
� 	

=
1, for 1 ≤ i ≤ 2,
−ϵ, for i = j = 3,
0, otherwise:

8>><
>>:

ð72Þ

We define η, a 1-form as ηðV1Þ = ϵgðV1, κ3Þ for all V1
on M3. Let φ be the ð1, 1Þ tensor field defined by

φκ1 = −κ2, φκ2 = −κ1, φκ3 = 0: ð73Þ

Using the linearity of φ and g, we yield

η κ3ð Þ = −1, φ2V1 =V1 + η V1ð Þζ, g φV1, φV2ð Þ
= g V1, V2ð Þ − ϵη V1ð Þη V2ð Þ, ð74Þ

for all V1, V2 on M3

Now, by direct computations, we obtain

κ1, κ2½ � = 0,  κ2, κ3½ � = −ϵκ1,  κ1, κ3½ � = −ϵκ2: ð75Þ
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By using well-known Koszul’s formula, we find

∇κ1
κ1 = 0, ∇κ2

κ1 = −κ3, ∇κ3
κ1 = 0, ∇κ1

κ2 = −κ3, ∇κ2
κ2 = 0,

∇κ3
κ2 = 0, ∇κ1

κ3 = −ϵκ2, ∇κ2
κ3 = −ϵκ1, ∇κ3

κ3 = 0:
ð76Þ

Let V1 =V1
1κ1 +V1

2κ2 +V1
3κ3 and V2 =V2

1κ1 + V2
2

κ2 +V2
3κ3 be the vector fields on M3. Then, for κ3 = ζ one

can easily verify that

∇V1
ζ = ϵφV1 and  ∇V1

φ
� 	

V2

= g V1, V2ð Þζ + ϵη V2ð ÞV1 + 2ϵη V1ð Þη V2ð Þζ:
ð77Þ

Thus, the manifold M3 is an ϵ-LP-Sasakian 3-manifold.
By using the above results, we can easily obtain the fol-

lowing components of the curvature tensor R:

R κ1, κ2ð Þκ1 = ϵκ2, R κ1, κ2ð Þκ2 = −ϵκ1, R κ1, κ2ð Þκ3 = 0,
R κ2, κ3ð Þκ1 = 0, R κ2, κ3ð Þκ2 = −ϵκ3, R κ2, κ3ð Þκ3 = −κ2,
R κ1, κ3ð Þκ1 = −ϵκ3, R κ1, κ3ð Þκ2 = 0, R κ1, κ3ð Þκ3 = −κ1:

ð78Þ

We calculate the Ricci tensors as follows:

S κ1, κ1ð Þ = S κ2, κ2ð Þ = 0, S κ3, κ3ð Þ = −2⟹ r = 2: ð79Þ

By putting V1 =V2 = κ3 in (42) and using Sðκ3, κ3Þ = −2,
it follows that

Λ − ϵσ = −2ϵl + mr
2 + 1

2 p + 2
3

� �
: ð80Þ

Again putting V1 = V2 = κ1 in (42) and using Sðκ1, κ1Þ
= 0, we obtain Λ = ðmr/2Þ + ð1/2Þðp + ð2/3ÞÞ: Thus, from
(80), we find σ = 2l. Hence, we can say that for Λ = ðmr/2Þ
+ ð1/2Þðp + ð2/3ÞÞ and σ = 2l, the data ðg, ζ, l,m,Λ, σÞ
defines a CERYS on the manifold ðM3, φ, ζ, η, g, ϵÞ:
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