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This paper discussed the finite-time synchronization of fractional-order complex-valued Cohen-Grossberg neural networks
(FCVCGNNs), which contain mixed time delays and state-dependent switching that make the model more comprehensive.
Different from other methods, we use a method of nonseparating real and imaginary parts to get our conclusions. By applying
fractional-order inequalities and the Lyapunov function, effective controllers with suitable conditions are derived. Additionally,
the maximum time for the drive-response system to reach synchronization is also given. Finally, numerical examples are
designed to illustrate the effectiveness of our obtained theoretical results.

1. Introduction

Inspired by the dynamic instability behaviors such as travel-
ing waves, standing waves, resonance, and chaos, which exist
in the short-term storage of visual or language patterns by
neural networks, Cohen and Grossberg proposed a more
general system that exhibits the absolute stability property
[1]. Furthermore, some classical neural network models
can be regarded as its special cases, such as cellar neural
networks, bidirectional associative memory neural net-
works, and even the famous Hopfield neural networks.
Recently, many in-depth studies have been carried out
on Cohen-Grossberg neural networks (CGNNs), such as
periodic solutions [2, 3] and stability [4, 5]. As a kind of
dynamic characteristics, the synchronization of CGNNs
has received extensive attention and deep research in
recent years [6–8], especially, the finite-time synchroniza-
tion has focused more attention due to its practical value
[9–15]. For example, Kong et al. [9–12] designed different
switching adaptive controllers to achieve the finite-time
and fixed-time synchronization for fuzzy CGNNs with dif-
ferent characteristics.

Moreover, considering that the synapse values in the
organism can be changed, corresponding to the mathemati-
cal model of the neural network, the connection weights
should also be variable so that the network can be more in
line with the actual biological characteristics. Hence, it is
useful to establish a parameter switching system [16–18].
As for the CGNNs, there are few investigations on the
CGNNs with state-dependent switching parameters.

As a branch of mathematical analysis, fractional calculus
will originate from the contribution of Leibniz and L’ Hospi-
tal regarding 300 years past [19]. Fractional order can be
regarded as an expansion of integer order which can be
employed more general and more precise in nonlinear sys-
tems. Some results have been achieved in image encryption
[20], economics [21], and neural networks [22]. Due to its
nonlocality and long-term memory characteristics, it can
describe complex dynamics more accurately and simulate
biological neural networks more realistically. Therefore,
more and more dynamic behavior research on fractional
neural networks such as stability [23, 24], synchronization
[25, 26], and Hopf bifurcation [27, 28] has been studied in
recent years.
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It is noted that the studies mentioned above are limited
to the real-valued neural networks, which have some inher-
ent limitations. For example, the detection of symmetry
problem and XOR problem can be solved by a single
complex-valued neuron with the orthogonal decision
boundaries. However, a single real-valued neuron fails to
do so [29]. Thus, the dynamic behavior of fractional-order
complex-valued neural networks is one of the most impor-
tant and energetic research topics. Due to the complexity
of the connection values and functions, it has very different
and more complicated dynamical behaviors than real-
valued ones. In recent years, the dynamical analysis of
complex-valued neural networks has attracted much atten-
tion [7, 30–38].

For example, Rajchakit and Sriraman [35] investigated
the robust passivity and stability of uncertain complex-
valued impulsive neural network models through the Lyapu-
nov function and LMI approach. Chanthorn et al. [36]
employed a delay-dividing approach to study the robust sta-
bility of the uncertain stochastic complex-valued neural net-
work with time delay. Moreover, Sriraman et al. [37] focused
on the mean-square asymptotic stability of the discrete-time
stochastic quaternion-valued neural networks. Humphries
et al. [38] studied the global asymptotic stability problem
for the fractional-order quaternion-valued bidirectional
associative memory neural network models.

Time delay, which is always inevitable in neural net-
works, could cause system shock or even instability [39,
40]. And discrete-time delay, which always exists due to
the limited transmission speed, has attracted more attention
in neural networks research. In [41], the new improved
fixed-time stability lemmas are proposed to attain the
fixed-time synchronization of a class of discontinuous fuzzy
inertial neural networks with time-varying delays. Both
time-varying delays and linear fractional uncertainties are
taken into consideration in a complex-valued neural net-
work, and novel dissipativity criteria are designed in [42].
Kong and Zhu [43] studied the periodicity and finite time
synchronization for a class of discontinuous inertial neural
networks with time-varying delays. Besides, mixed time
delays are more considered in the current research [44–46].

Taking the above factors into account, some relevant
documents as following are about complex-valued neural
networks: Pan and Zhang [30] designed two kinds of differ-
ent exponential controllers to assure the finite-time synchro-
nization for the delayed complex-valued neural networks.
Zhang et al. [47] employed two different controllers to attain
the finite-time synchronization of fractional-order CGNN
with time delay and applied the nonseparation method to
get the conclusion. The complex-valued neural networks
are investigated by using the nonseparation method in
[48–51], but their network model weights are all fixed, and
they do not take into account the changes in weights. In
[52], the more novel fixed-time stability principles are estab-
lished to investigate the synchronization of a class of delayed
discontinuous fuzzy CGNNs. And generally, most neural
network models do not consider the effect of mixed time
delays. To better illustrate the contributions of our work,
we use Table 1 for comparison with other articles on NNs,

where mixed time delays, fractional order, Cohen-
Grossberg Neural Networks, parameter switching, nonse-
paration method, and finite-time synchronization are abbre-
viated as MTDs, FO, CGNNs, PS, NSM, and FTS,
respectively. √ means this item is included in that paper,
and × means it is not.

The above analysis noted that compared with other neu-
ral networks, there are few investigations about the synchro-
nization of CGNNs, and the models used in these studies are
often CGNNs that do not contain mixed time delays. For
example, [12, 14, 15] discussed the fixed-time synchroniza-
tion of Cohen-Grossberg neural networks, but there are no
mixed time delays in the model. As for the fractional-order
complex-valued CGNNs, there are even fewer studies.
Hence, it is necessary to focus on the finite-time synchroni-
zation of a more general CGNN. This is our first motivation.

On the other hand, considering the complex-valued neu-
ral networks, the most common method is separate the
complex-valued into two real parts, which has limitations
in some situations. Thus, using a nonseparation method to
ensure the finite-time synchronization of our model is the
second motivation.

However, the finite-time synchronization of CGNN,
which contains mixed time delays, fractional order, com-
plex-valued, and switching parameters, has not been investi-
gated. Inspired by the above discussion, this paper focuses
on the finite-time synchronization of fractional-order
complex-valued Cohen-Grossberg neural networks with
mixed time delays and state-dependent switching. Based
on the Lyapunov function and inequality theory, sufficient
synchronization theorems are derived by a nonseparation
method. Compared with some recent studies such as [11,
31, 33, 47, 53], we consider a more general model and
use the nonseparation method, which is less restrictive in
solving complex-valued neural networks to get our conclu-
sion. The main contributions of this paper can be listed as
follows:

(1) Different from the Cohen-Grossberg neural net-
works investigated in some references such as [10,
11, 47], the model studied in this paper is more gen-
eral, including more factors such as mixed time

Table 1: Comparison with other papers.

Literature MTDs FO CGNNs PS NSM FTS

[10] × √ × √ √ √

[30] × × × × × √

[54] × × × √ × ×
[55–57] × √ × √ × √

[58] × √ × √ × ×
[48–50] × √ × × √ ×
[47] × √ √ × √ √

[33] × √ × × × ×
[51] × √ × × √ √

This paper √ √ √ √ √ √
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delays, complex value, and variable parameters,
which greatly improve the universality of the system.
The finite-time synchronization of this kind of
CGNN is yet to be fully investigated. Moreover, we
give the maximum setting time. Our paper contrib-
utes to this field of research

(2) Based on the fact that the complex function cannot
always be divided into two parts in practical applica-

tion, the nonseparation method is adopted in this
paper. This method reduces the workload of analysis
and derivation and improves the breadth of the der-
ivation conclusions

(3) Compared with the nonseparation method used in
[33, 48–50], we extend the use of this method to
the derivation of complex-valued neural networks
with different connection weights
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Figure 1: The error trajectories of FCVCGNNs without the controller. (a) The curves of real parts and imaginary parts. (b) The curves of
modulus of error.
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Figure 2: Continued.
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The organization of this paper is as follows. In Section 2,
some definitions and lemmas are introduced and give the
model of our neural network. In Section 3, using feedback
and an adaptive controller, we make the drive-response sys-
tem of FCVCGNNs achieve synchronization in a finite time;
moreover, we also get its setting time. In Section 4, some
numerical examples are given to illustrate the validity of
the proposed results. Some conclusions are drawn in Section
5.

Notation: throughout this paper, ℝ,ℂ represent the real
and complex domains, respectively. Let z = a + bi be a com-
plex number, where a, b ∈ℝ are the real and imaginary parts
of z, �z = a − bi is the conjugate of z, and jzj = ffiffiffiffiffiffiffiffi

z · �z
p

is the
module of z.

2. Model Description and Preliminaries

In this section, some basic definitions of finite-time synchro-
nization and fractional calculus are given; what is more,
some lemmas and assumptions needed in the later proof
are included. Also, we give the model description of studied
FCVCGNNs.

2.1. Model Description. Generally, FCVCGNNs with mixed
time delays can be described as follows:

Dαxp tð Þ = −dp xp tð Þ� �
hp xp tð Þ� �

− 〠
n

q=1
apq xq tð Þ� �

f q xq tð Þ� � (

− 〠
n

q=1
bpq xq t − δ tð Þð Þ� �

gq xq t − δ tð Þð Þ� �
− 〠

n

q=1
cpq xq tð Þ� �ðt

t−τ tð Þ
f q xq sð Þ� �

ds − Ip

!
, xp tð Þ

= φp tð Þ, t ∈ −ρ, 0½ �,

ð1Þ

where p = 1, 2,⋯, n is the order of neurons in a neural net-
work, xpðtÞ ∈ℂ is the state of the pth neuron at time t, dpð·
Þ represents the amplification function, hpð·Þ is the behaved
function, f qð·Þ, gqð·Þ are the activation functions of the qth
neuron with and without time delay, respectively, τðtÞ and
δðtÞ represent discrete and distributed time delay, ρ is the
max value between them, Ip ∈ℂ is the external input for net-
work, and apq, bpq, cpq ∈ℂ denotes the state-dependent con-
nection strengths of the p-th and q-th neuron and satisfy:

apq ·ð Þ =
ăpq, if ·j j ≤ κp,
âpq, if ·j j > κp,

 
bpq ·ð Þ =

b̆pq, if ·j j ≤ κp,

b̂pq, if ·j j > κp,

0
@

cpq ·ð Þ =
c̆pq, if ·j j ≤ κp,
ĉpq, if ·j j > κp,

 ð2Þ

where · denotes xqðtÞ or yqðtÞ which represents the state

of the pth neuron, apq, âpq, b̆pq, b̂pq, c̆pq, ĉpq are known con-
stants, and κp > 0 is a threshold level.

Through the theories of differential inclusions and set-
valued map, drive system (1) can be transformed as follows:

Dαxp tð Þ = −dp xp tð Þ� �
hp xp tð Þ� �

− 〠
n

q=1
co apq xq tð Þ� �� �

f q xq tð Þ� � (

− 〠
n

q=1
co bpq xq t − δ tð Þð Þ� �� �

gq xq t − δ tð Þð Þ� �

− 〠
n

q=1
co cpq xq tð Þ� �� �ðt

t−τ tð Þ
f q xq sð Þ� �

ds − Ip

!
,xp tð Þ = φp tð Þ, t ∈ −ρ, 0½ �,

ð3Þ
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Figure 2: (a, b) The real parts of synchronization state trajectories with controller (24). (c, d) The imaginary parts of synchronization state
trajectories with controller (24). (e) The error trajectories with controller (24). (f) The error modulus trajectories with controller (24).
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: (a, b) The real parts of synchronization state trajectories with controller (42). (c, d) The imaginary parts of synchronization state
trajectories with controller (42). (e) The error trajectories with controller (42). (f) The error modulus trajectories with controller (42).
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Figure 4: The error trajectories of FCVCGNNs without the controller. (a) The curves of real parts and imaginary parts. (b) The curves of
modulus of error.
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Figure 5: Continued.
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where co indicates the closure convex hull, co½apqðxqðtÞÞ� =
co½ăpq, âpq�, and co½bpqðxqðt − δðtÞÞÞ� = co½b̆pq, b̂pq�, co½cpqðxqð
tÞÞ� = co½c̆pq, ĉpq�.

Or equivalently, there exists ‘apq ∈ co½apqðxqðtÞÞ�,
‘bpq ∈ co½bpqðxqðt − δðtÞÞÞ�,

‘cpq ∈ co½cpqðxqðtÞÞ�, a′pq ∈ co½apqðyqðtÞÞ�, b′pq ∈ co½bpqðyqðt −
δðtÞÞÞ�, c′pq ∈ co½cpqðyqðtÞÞ�, such that

Dαxp tð Þ = −dp xp tð Þ� �
hp xp tð Þ� �

− 〠
n

q=1
‘apq xq tð Þ� �

f q xq tð Þ� �"(

− 〠
n

q=1
‘bpq xq tð Þ� �

gq xq t − δ tð Þð Þ� �
− 〠

n

q=1
‘cpq xq tð Þ� �ðt

t−τ: tð Þ
f q xq sð Þ� �

ds − Ip

#
, xp tð Þ

= φp tð Þ, t ∈ −ρ, 0½ �:

ð4Þ

Similarly, the corresponding response system can be
described as

Dαyp tð Þ = −dp yp tð Þ
� �

hp yp tð Þ
� �

− 〠
n

q=1
apq′ yq tð Þ
� �

f q yq tð Þ
� �"(

− 〠
n

q=1
bpq′ yq tð Þ
� �

gq yq t − δ tð Þð Þ
� �

− 〠
n

q=1
cpq′ yq tð Þ
� �ðt

t−τ tð Þ
f q yq sð Þ
� �

ds − Ip

#

+ up tð Þ, yp tð Þ = ψp tð Þ,t ∈ −ρ, 0½ �

ð5Þ

For convenience, we can simplify systems (4) and (5) as
follows:

Dαxp tð Þ = −dp xp tð Þ� �
hp xp tð Þ� �

− ‘Af q xq tð Þ� �
− ‘Bgq xq t − δ tð Þð Þ� �h

− ‘C
ðt
t−τ tð Þ

f q xq sð Þ� �
ds − Ip

#
,

Dαyp tð Þ = −dp yp tð Þ
� �

hp yp tð Þ
� �

− A′ f q yq tð Þ
� �

− B′gq yq t − δ tð Þð Þ
� �h

− C′
ðt
t−τ tð Þ

f q yq sð Þ
� �

ds − Ip

#
+Up tð Þ,

ð6Þ

where ‘A = ð‘apqÞn×n ∈ℂn×n,A′ = ða′pqÞn×n ∈ℂn×n,
‘B = ð‘bpqÞn×n ∈ℂn×n,B′ = ðb′pqÞn×n ∈ℂn×n,
‘C = ð‘cpqÞn×n ∈ℂn×n,C′ = ðc′pqÞn×n ∈ℂn×n,
A =max fj‘Aj, jA′jg, and B =max fj‘Bj, jB′jg, C =max fj‘C
j, jC′jg.

The error system between drive system and response
system is defined as

ep tð Þ = yp tð Þ − xp tð Þ: ð7Þ
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Figure 5: (a, b) The real parts of synchronization state trajectories with controller (24). (c, d) The imaginary parts of synchronization state
trajectories with controller (24). (e) The error trajectories with controller (24). (f) The error modulus trajectories with controller (24).
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Figure 6: Continued.
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Figure 6: (a, b) The real parts of synchronization state trajectories with controller (42). (c, d) The imaginary parts of synchronization state
trajectories with controller (42). (e) The error trajectories with controller (42). (f) The error modulus trajectories with controller (42).

14 Advances in Mathematical Physics



Then, we can get

Dαep tð Þ = − dp yp tð Þ
� �

hp yp tð Þ
� �

− dp xp tð Þ� �
hp xp tð Þ� �h i

+ dp yp tð Þ
� �

· A′ · f q yq tð Þ
� �h

− dp xp tð Þ� �
· ‘A · f q xq tð Þ� �i

+ dp yp tð Þ
� �

· B′ · gq yq t − δ tð Þð Þ
� �

− dp xp tð Þ� �h

· ‘B · gq xq t − δ tð Þð Þ� �i
+ dp yp tð Þ

� �
· C′ ·

ðt
t−τ tð Þ

f q yq sð Þ
� �

ds − dp xp tð Þ� �
· ‘C

"

·
ðt
t−τ tð Þ

f q xq sð Þ� �
ds

#
+ dp yp tð Þ

� �
· Ip − dp xp tð Þ� �

· Ip
h i

+Up tð Þ

= − dp yp tð Þ
� �

hp yp tð Þ
� �

− dp xp tð Þ� �
hp xp tð Þ� �h i

+ dp yp tð Þ
� �

· A′ · f q yq tð Þ
� �h

− dp xp tð Þ� �
· A′ · f q yq tð Þ

� �
+ dp xp tð Þ� �

· A′ · f q yq tð Þ
� �

− dp xp tð Þ� �
· ‘A · f q xq tð Þ� �i

+ dp yp tð Þ
� �

· B′ · gq yq t − δ tð Þð Þ
� �

− dp xp tð Þ� �
· B′

h
· gq yq t − δ tð Þð Þ
� �

+ dp xp tð Þ� �
· B′ · gq yq t − δ tð Þð Þ

� �
− dp xp tð Þ� �

· ‘B

· gq xq t − δ tð Þð Þ� �i
+ dp yp tð Þ

� �
· C′ ·

ðt
t−τ tð Þ

f q yq sð Þ
� �

ds − dp xp tð Þ� �
· C′

"

·
ðt
t−τ tð Þ

f q yq sð Þ
� �

ds + dp xp tð Þ� �
· C′ ·

ðt
t−τ tð Þ

f q yq sð Þ
� �

ds − dp xp tð Þ� �
· ‘C

·
ðt
t−τ tð Þ

f q xq sð Þ� �
ds

#
+ dp yp tð Þ

� �
· Ip − dp xp tð Þ� �

· Ip
h i

+Up tð Þ,

ð8Þ

and the initial condition of the error system is

θp tð Þ = ψp tð Þ − φp tð Þ ð9Þ

Throughout this paper, the assumptions below will be
available in the following proof.

Assumption 1. In the complex field, for function f , d, g, there
exists positive constants Mf ,Md ,Mg, Ld , Lf such that

dp xð Þ		 		 ≤Md , f q xð Þ
			 			 ≤Mf , gq xð Þ

			 			 ≤Mg,

d yð Þ − d xð Þj j ≤ Ld y − xj j, f yð Þ − f xð Þj j ≤ Lf y − xj j,
ð10Þ

where x, y ∈ℂ.

Assumption 2. For well-behaved function hið·Þ and amplica-
tion function dið·Þ, for all x ≠ y, there exists positive constant
wi, such that

hi yð Þdi yð Þ − hi xð Þ di xð Þj j
y − xj j ≤wi, i = 1, 2,⋯, n: ð11Þ

2.2. Definitions and Lemmas

Definition 1. (See [19]). The Caputo fractional derivative
with fractional-order α for a function yðtÞ can be described
as follows:

C
t0
Dα
t y tð Þ = 1

Γ m − αð Þ
ðt
t0

y mð Þ τð Þ
t − τð Þ1+α−m dτ, ð12Þ

where t ≥ t0, and m is a positive integer satisfying m − 1
< α <m. Γð·Þ is the Gamma function, and it can be
described by ΓðxÞ = Ð +∞0 e−t tx−1dt. Particularly, when 0 < α

< 1,

C

t0
Dα
t y tð Þ = 1

Γ 1 − αð Þ
ðt
t0

y′ τð Þ
t − τð Þα dτ: ð13Þ

Remark 2. In practical applications, the initial value of the
system is hard to know accurately; so, the Caputo
fractional-order that does not require a precise initial value
is selected here.

Definition 3. (See [19]). The fractional integral of order α for
a function yðtÞ can be described as follows:

Iαt0,ty tð Þ = 1
Γ αð Þ

ðt
t0

t − sð Þα−1y sð Þds: ð14Þ

Particularly, if α ∈ ð0, 1Þ, then Iαt0,tðDα
t0,t f ðtÞÞ =VðtÞ −Vð

t0Þ:
Property: the Caputo derivative satisfies the following

equality:

t0
Dα

t t0
D−β
t f tð Þ

� �
= t0

Dα−β
t f tð Þ, ð15Þ

in which, α ≥ β ≥ 0:
Consider the following drive-response system,

drive system : _x = f x, tð Þ, x0 = x 0ð Þ,
response system : _y = f y, tð Þ, y0 = y 0ð Þ:

ð16Þ

Definition 4. (See [59]). Drive-response system is said to be
finite time synchronization if there exists a suitable control-
ler U , and the setting time T satisfies

lim
t⟶T

y tð Þ − x tð Þj j = 0, ð17Þ

and when t > T , the error system will always be 0.

Definition 5. (See [60]). The error system is said to be global
Mittag-Leffler stable, if there exist constants ϑ > 0, μ > 0 sat-
isfying

y tð Þj j ≤ ζ y 0ð Þð ÞEα −ϑtαð Þ½ �μ: ð18Þ

Lemma 6. (See [60]). Assume that a positive, continuous
function VðtÞ satisfies

DαV tð Þ ≤ −βV tð Þ + θ,∀t ≥ 0, ð19Þ

where β, θ are two constants that satisfy β > 0, θ > = 0,
when 0 < α < 1, then

V tð Þ ≤V 0ð ÞEα −βtαð Þ + θtαEα,α+1 −βtαð Þ: ð20Þ

Lemma 7. (See [50]). Let x ∈ℂ be a continuous and analytic
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function, and then

Dαx tð Þ �x tð Þ ≤ �x tð Þ ·Dαx tð Þ + x tð Þ ·Dα �x tð Þ,∀ t > 0, ð21Þ

where 0 < α < 1.

Lemma 8. (See [50]). Let α, β ∈ℂ, and then the following
inequality holds:

α�β + β�α ≤ α�α + β�β: ð22Þ

Corollary 9. Moreover, we can get

α + βð Þ · �α + β = α + βð Þ · �α + �β
� �

= α�α + β�β + α�β + β�α ≤ 2 α�α + β�β
� �

:

ð23Þ

Remark 10. Compared with the nonseparating method used
in [30, 33, 48, 50], we extend the conclusion of Lemma 8 to
broaden its usage, as shown in Corollary 9. The neural net-
works with mismatched parameters, which cannot use the
non-separation method to achieve the proof process in refer-
ences above, can be easily achieved with our method.

3. Main Results

In this section, the finite-time synchronization of a kind of
FCVCGNNs is considered, which contains mixed time
delays and state-dependent switching. Several sufficient con-
ditions are derived based on the feedback and adaptive con-
trol strategies.

3.1. Feedback Controller. In order to synchronize the drive
system and response system within a limited time, we select
the following feedback controller:

up tð Þ = −k1ep tð Þ − k2 · ep tð Þ
ep tð Þ		 		2 , ð24Þ

where k1, k2 are positive constants.

Theorem 11. Suppose that Assumptions 1 and 2 are satisfied,
the response system (5) and drive system (4) can achieve
finite-time synchronization under the feedback controller
(24) if the following conditions hold:

β < 0, θ < 0, ð25Þ

where

β = w2 − 2k1
� �

+ 5 + 2 · A′
		 		2 ·M2

f · L2d + 2 · Aj j2

·M2
d · L2f + 2 · B′

		 		2 ·M2
g · L2d + 2 · C′

		 		2 · ρ2
·M2

f · L2d + Ip
		 		2 · L2d + 4 ·M2

d · Bj j2 · L2g,
θ = 4 ·M2

d · Bj j2 · L2g · ψ sð Þj j2 + 2 · ρ2 ·M2
f

·M2
d · C′ − ‘C
			 			2 − 2k2:

ð26Þ

Proof. Consider the following Lyapunov function:

T = V 0ð ÞΓ α + 1ð Þ
n · v


 �1
α

: ð27Þ

The fractional order derivative of VðtÞ along the trajec-
tories (8) is

DαV tð Þ ≤ 〠
n

p=1
ep tð ÞDα �ep tð Þ + �ep tð ÞDαep tð Þ� �

= 〠
n

p=1
ep tð Þ · �

dp yp tð Þ
� �

hp yp tð Þ
� �

dp xp tð Þ� �
hp xp tð Þ� �� ��

+ �
dp yp tð Þ
� �

· A′ · f q yq tð Þ
� �

dp xp tð Þ� �
· A′ · f q yq tð Þ

� �
+ �dp xp tð Þ� �

· A′

· f q yq tð Þ
� �

dp xp tð Þ� �
· ‘A · f q xq tð Þ� �

+ �
dp yp tð Þ
� �

· B′ · gq yq tδ tð Þð Þ
� �

+ �
dp xp tð Þ� �

· B′ · gq yq tδ tð Þð Þ
� �� �

+ �dp xp tð Þ� �
· B′ · gq yq tδ tð Þð Þ

� �
+ �

dp xp tð Þ� �
· ‘B · gq xq tδ tð Þð Þ� �� �

+ �
dp yp tð Þ
� �

· C′ ·
ðt
tτ tð Þ

f q yq sð Þ
� �

ds

+
�

dp xp tð Þ� �
· C′ ·

ðt
tτ tð Þ

f q yq sð Þ
� �

ds

 !
+ �dp xp tð Þ� �

· C′ ·
ðt
tτ tð Þ

f q yq sð Þ
� �

ds

+
�

dp xp tð Þ� �
· ‘C ·

ðt
tτ tð Þ

f q xq sð Þ� �
ds

 !
+ �
dp yp tð Þ
� �

· Ipdp xp tð Þ� �
· Ip

−
�

k1ep tð Þ + k2 · ep tð Þ
ep tð Þ		 		2

 !#
+ 〠

n

p=1
�ep tð Þ · dp yp tð Þ

� �
·A′ · f q yq tð Þ

� �h

− dp xp tð Þ� �
· A′ · f q yq tð Þ

� �
+ dp xp tð Þ� �

·A′ · f q yq tð Þ
� �

− dp xp tð Þ� �
· ‘A

· f q xq tð Þ� �
+ dp yp tð Þ

� �
· B′ · gq yq t − δ tð Þð Þ

� �
− dp xp tð Þ� �

· B′

· gq yq t − δ tð Þð Þ
� �

+ dp xp tð Þ� �
· B′ · gq yq t − δ tð Þð Þ

� �
− dp xp tð Þ� �

· ‘B

· gq xq t − δ tð Þð Þ� �
+ dp yp tð Þ

� �
· C′ ·

ðt
t−τ tð Þ

f q yq sð Þ
� �

ds − dp xp tð Þ� �
· C′

·
ðt
t−τ tð Þ

f q yq sð Þ
� �

ds + dp xp tð Þ� �
· C′ ·

ðt
t−τ tð Þ

f q yq sð Þ
� �

ds − dp xp tð Þ� �
· ‘C

·
ðt
t−τ tð Þ

f q xq sð Þ� �
ds + dp yp tð Þ

� �
· Ip − dp xp tð Þ� �

· Ip − k1ep tð Þ − k2 · ep tð Þ
ep tð Þ		 		2

#
:

ð28Þ

According to Assumptions 1 and 2 and Lemmas 7 and 8,
we can get the following inequality:

�
dp yp tð Þ
� �

hp yp tð Þ
� �

dp xp tð Þ� �
hp xp tð Þ� �� �

· ep tð Þ
+ − dp yp tð Þ

� �
hp yp tð Þ
� �

− dp xp tð Þ� �
hp xp tð Þ� �� �h i

· �ep tð Þ

≤
�

dp yp tð Þ
� �

hp yp tð Þ
� �

dp xp tð Þ� �
hp xp tð Þ� �� �

× − dp yp tð Þ
� �

hp yp tð Þ
� �

− dp xp tð Þ� �
hp xp tð Þ� �� �h i

+ ep tð Þ · �ep tð Þ = ep tð Þ · �ep tð Þ + dp yp tð Þ
� �

hp yp tð Þ
� �

− dp xp tð Þ� �
hp xp tð Þ� �			 			2

≤ ep tð Þ · �ep tð Þ +w2 · ep tð Þ · �ep tð Þ = 1 +w2� �
· ep tð Þ · �ep tð Þ:

ð29Þ
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Similarly, we have

ep tð Þ ·
�

�
dp yp tð Þ
� �

· A′ · f q yq tð Þ
� �

dp xp tð Þ� �
·A′ · f q yq tð Þ

� �

+ �dp xp tð Þ� �
· A′ · f q yq tð Þ

� �
dp xp tð Þ� �

· ‘A · f q xq tð Þ� �
+ �ep tð Þ

·
h
dp yp tð Þ
� �

· A′ · f q yq tð Þ
� �

− dp xp tð Þ� �
·A′ · f q yq tð Þ

� �
+ dp xp tð Þ� �

· A′ · f q yq tð Þ
� �

− dp xp tð Þ� �
· ‘A · f q xq tð Þ� �i

≤ ep tð Þ · �ep tð Þ +
�

�
dp yp tð Þ
� �

·A′ · f q yq tð Þ
� �

dp xp tð Þ� �
· A′ · f q yq tð Þ

� �

+ �dp xp tð Þ� �
· A′ · f q yq tð Þ

� �
dp xp tð Þ� �

· ‘A · f q xq tð Þ� �

×
h
dp yp tð Þ
� �

·A′ · f q yq tð Þ
� �

− dp xp tð Þ� �
· A′ · f q yq tð Þ

� �
+ dp xp tð Þ� �

· A′ · f q yq tð Þ
� �

− dp xp tð Þ� �
· ‘A · f q xq tð Þ� �i

≤ ep tð Þ · �ep tð Þ + 2
�

dp yp tð Þ
� �

− dp xp tð Þ� �� �
· A′ · f q yq tð Þ

� �

× �
dp yp tð Þ
� �

dp xp tð Þ� �� �
· A′ · f q yq tð Þ

� �
+ 2
h
dp xp tð Þ� �

·A

· f q yq tð Þ
� �

− f q xq tð Þ� �� �
× �
dp xp tð Þ� �

· A · f q yq tð Þ
� �

f q xq tð Þ� �� �i

= ep tð Þ · �ep tð Þ + 2 · A′
		 		2 ·M2

f · L2d · ep tð Þ ·
�

ep tð Þ + 2 ·M2
d · Aj j2 · L2f · ep tð Þ · �ep tð Þ,

¯

ep tð Þ ·
�

�
dp yp tð Þ
� �

· B′ · gq yq tδ tð Þð Þ
� �

dp xp tð Þ� �
· B′ · gq yq tδ tð Þð Þ

� �
�+dp xp tð Þ� �

· B′ · gq yq tδ tð Þð Þ
� �

dp xp tð Þ� �
· ‘B · gq xq tδ tð Þð Þ� �

+ �ep tð Þ

·
h�

dp yp tð Þ
� �

· B′ · gq yq t − δ tð Þð Þ
� �

− dp xp tð Þ� �
· B′ · gq yq t − δ tð Þð Þ

� �
+ dp xp tð Þ� �

· B′ · gq yq t − δ tð Þð Þ
� �

− dp xp tð Þ� �
· ‘B · gq xq t − δ tð Þð Þ� ��i

≤ ep tð Þ · �ep tð Þ + 2
�

dp yp tð Þ
� �

− dp xp tð Þ� �� �
· B′ · gq yq t − δ tð Þð Þ

� �

× �
dp yp tð Þ
� �

dp xp tð Þ� �� �
· B′ · gq yq tδ tð Þð Þ

� �

+ 2
�
dp xp tð Þ� �

· B · gq yq t − δ tð Þð Þ
� �

− gq xq t − δ tð Þð Þ� �� �

× �
dp xp tð Þ� �

· B · gq yq tδ tð Þð Þ
� �

gq xq tδ tð Þð Þ� �� �

= ep tð Þ · �ep tð Þ + 2 · B′
		 		2 ·M2

g · L2d · ep tð Þ · �ep tð Þ + 2 ·M2
d · Bj j2 · L2g · ep t − δ tð Þð Þ

· �ep tδ tð Þð Þ,

ep tð Þ ·
"

�
dp yp tð Þ
� �

· C′ ·
ðt
tτ tð Þ

f q yq sð Þ
� �

ds + �dp xp tð Þ� �
· C′ ·

ðt
tτ tð Þ

f q yq sð Þ
� �

ds

+ �dp xp tð Þ� �
· C′ ·

ðt
tτ tð Þ

f q yq sð Þ
� �

ds +
�

dp xp tð Þ� �
· ‘C ·

ðt
tτ tð Þ

f q xq sð Þ� �
ds

#

+ �ep tð Þ ·
"
dp yp tð Þ
� �

· C′ ·
ðt
t−τ tð Þ

f q yq sð Þ
� �

ds − dp xp tð Þ� �
· C′

·
ðt
t−τ tð Þ

f q yq sð Þ
� �

ds + dp xp tð Þ� �
· C′ ·

ðt
t−τ tð Þ

f q yq sð Þ
� �

ds − dp xp tð Þ� �
· ‘C

·
ðt
t−τ tð Þ

f q xq sð Þ� �
ds

#
≤ ep tð Þ · �ep tð Þ + 2

�
dp yp tð Þ
� �

− dp xp tð Þ� �� �
· C′ ·Mf · ρ

× �
dp yp tð Þ
� �

dp xp tð Þ� �� �
· C′ ·Mf · ρ


+ 2
�
dp xp tð Þ� �

·Mf · ρ · C′ − ‘C
� �

· �
dp xp tð Þ� �

·Mf · ρ · C′‘C
� �

= ep tð Þ · �ep tð Þ + 2 · C′
		 		2 · ρ2 ·M2

f · L2d · ep tð Þ · �ep tð Þ + 2 · ρ2 ·M2
f ·M2

d · C′ − ‘C
			 			2,

ep tð Þ · �
dp yp tð Þ
� �

· Ipdp xp tð Þ� �
· Ip + �ep tð Þ · dp yp tð Þ

� �
· Ip − dp xp tð Þ� �

· Ip
h i

≤ ep tð Þ · �ep tð Þ + �
dp yp tð Þ
� �

· Ipdp xp tð Þ� �
· Ip × dp yp tð Þ

� �
· Ip − dp xp tð Þ� �

· Ip
h i

= ep tð Þ · �ep tð Þ + Ip
		 		2 · L2d · ep tð Þ · �ep tð Þ:

ð30Þ

Submitting formulas (29) and (30) into formula (28),

DαV tð Þ ≤ 〠
n

p=1

�
w2 − 2k1
� �

ep tð Þ · �ep tð Þ + ep tð Þ · �ep tð Þ + ep tð Þ

· �ep tð Þ + 2 · A′
		 		2 ·M2

f · L2d · ep tð Þ · �ep tð Þ + 2 ·M2
d

· Aj j2 · L2f · ep tð Þ · �ep tð Þ + ep tð Þ · �ep tð Þ + 2 · B′
		 		2

·M2
g · L2d · ep tð Þ · �ep tð Þ + 2 ·M2

d · Bj j2 · L2g
· ep t − δ tð Þð Þ · �ep tδ tð Þð Þ + ep tð Þ · �ep tð Þ + 2 · C′

		 		2
· ρ2 ·M2

f · L2d · ep tð Þ · �ep tð Þ + 2 · ρ2 ·M2
f ·M2

d

· C′ − ‘C
			 			2ep tð Þ · �ep tð Þ + Ip

		 		2∙L2d∙ep tð Þ · �ep tð Þ − 2k2
�

≤ 〠
n

p=1

�h
w2 − 2k1
� �

+ 5 + 2 · A′
		 		2 ·M2

f · L2d + 2 · Aj j2

·M2
d · L2f + 2 · B′

		 		2 ·M2
g · L2d + 2 · C′

		 		2 · ρ2 ·M2
f

· L2d + Ip
		 		2 · L2diep tð Þ · �ep tð Þ + 2 · ρ2 ·M2

f ·M2
d

· C′ − ‘C
			 			2 − 2k2 + 2 ·M2

d · Bj j2 · L2g · ep t − δ tð Þð Þ · �ep tδ tð Þð Þ
�
:

ð31Þ

On the other hand, jepðt − δðtÞÞj ≤ sup
−δðtÞ≤s≤t

jepðtÞj ≤
sup

−δðtÞ≤s≤0
jepðtÞj + sup

0≤s≤t
jepðtÞj = jψðsÞj + jepðtÞj:

Based on Lemma 8,

ep t − δ tð Þð Þ · �ep tδ tð Þð Þ
= ep t − δ tð Þð Þ		 		2 ≤ ψ sð Þj j + ep tð Þ		 		� �2
= ψ sð Þj j2 + ep tð Þ		 		2 + 2 · ψ sð Þj j · ep tð Þ		 		
≤ 2 ψ sð Þj j2 + 2 ep tð Þ		 		2:

ð32Þ

Submitting formula (32) into formula (31),

DαV tð Þ ≤ 〠
n

p=1

�
ep tð Þ · �ep tð Þ

h
w2 − 2k1
� �

+ 5 + 2 · A′
		 		2 ·M2

f

· L2d + 2 · Aj j2 ·M2
d · L2f + 2 · B′

		 		2 ·M2
g · L2d + 2

· C′
		 		2 · ρ2 ·M2

f · L2d + Ip
		 		2 · L2di + 2 ·M2

d · Bj j2 · L2g

· 2 ψ sð Þj j2 + 2 ep tð Þ		 		2� �
+ 2 · ρ2 ·M2

f ·M2
d · C′ − ‘C
			 			2 − 2k2

�

≤ 〠
n

p=1

�h
w2 − 2k1
� �

+ 5 + 2 · A′
		 		2 ·M2

f · L2d + 2 · Aj j2

·M2
d · L2f + 2 · B′

		 		2 ·M2
g · L2d + 2 · C′

		 		2 · ρ2 ·M2
f

· L2d + Ip
		 		2 · L2d + 4 ·M2

d · Bj j2 · L2g
i
ep tð Þ · �ep tð Þ + 4

·M2
d · Bj j2 · L2g · ψ sð Þj j2 + 2 · ρ2 ·M2

f ·M2
d · C′ − ‘C
			 			2 − 2k2

�
:

ð33Þ
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Or we can simplify formula (33) as

DαV tð Þ ≤ βV tð Þ + θ: ð34Þ

By using Lemma 6, we have

V tð Þ ≤V 0ð ÞEα −βtαð Þ: ð35Þ

Based on Definition 5, it indicates that the error system
is Mittag-Leffler stable. Therefore, the drive system and
response system can achieve synchronization under the
feedback controller (24).

Remark 12. Given the condition without distributed time
delay, the drive system (4) becomes:

Dαxp tð Þ = −dp xp tð Þ� �
hp xp tð Þ� �

− ‘Af q xq tð Þ� �h
− ‘Bgq xq t − δ tð Þð Þ� �

− Ip
i
:

ð36Þ

At the same time, the response system (5) becomes

Dαyp tð Þ = −dp yp tð Þ
� �

hp yp tð Þ
� �

− A′ f q yq tð Þ
� �h

− B′gq yq t − δ tð Þð Þ
� �

− Ip
i
+Up tð Þ,

ð37Þ

Based on Theorem 11, we can get Corollary 13.

Corollary 13. Suppose that Assumptions 1 and 2 are satisfied,
the response system (37) and drive system (36) can achieve
finite-time synchronization under the feedback controller
(24) if the following conditions hold:

β < 0, θ < 0, ð38Þ

where

β = w2 − 2k1
� �

+ 5 + 2 · A′
		 		2 ·M2

f · L2d + 2 · Aj j2 ·M2
d · L2f

+ 2 · B′
		 		2 ·M2

g · L2d + Ip
		 		2 · L2d + 4 ·M2

d · Bj j2 · L2g,
θ = 4 ·M2

d · Bj j2 · L2g · ψ sð Þj j2 − 2k2:
ð39Þ

Remark 14. Suppose the complex domain degenerates to the
real domain, then the drive system (4) and response system
(5) can also attain synchronization. Based on Theorem 11,
we can get Corollary 15.

Corollary 15. Suppose that Assumptions 1 and 2 are satisfied,
the response system (5) and drive system (4) can achieve
finite-time synchronization under the feedback controller
(24) if the following conditions hold:

β < 0, θ < 0, ð40Þ

where

β = 2 w − k1ð Þ + 2 · A′
		 		 ·Mf · Ld + 2 · Aj j2 ·Md · Lf

+ 2 · B′
		 		 ·Mg · Ld + Ip

		 		 · Ld + 2 ·Md · Bj j · Lg
+ 2 · C′

		 		 · ρ ·Mf · Ld ,

θ = 2 ·Md · Bj j · Lg · ψ sð Þj j + 2 · ρ ·Mf ·Md

· C′ − ‘C
			 			 − 2k2:

ð41Þ

Remark 16. Compared with the separation method, which
needs to divide the complex-valued system into two real
parts used in references [30, 56, 57, 61], this nonseparation
method only needs to consider the whole system. It is no
doubt that this method reduces the computational effort.
Moreover, considering the fact that the complex function
cannot always be divided into two parts in practical applica-
tion, the method used in this paper is more realistic.

Remark 17. Compared with [30, 48–50], which only use
Lemma 7 in the process of proof to get their results, we
can see this paper uses a different way to get our results in
(29) and (30). It is easy to note that the method used in
the above literature can only solve the problem that the con-
jugate terms only consist of multiplication because the con-
nection weights in these studies are the same. Hence, based
on Lemma 8, Corollary 9 is derived, which reduces the lim-
itation of use in this nonseparation method. And the
approach applied in this article can provide a new method
to study the synchronization of other complex-valued neural
networks, especially the mismatched parameters of
complex-valued neural networks.

3.2. Adaptive Controller. By using the above lemmas and def-
initions, we design a suitable adaptive controller as follows:

up tð Þ = −k tð Þep tð Þ − k2 · ep tð Þ
ep tð Þ		 		2 , ð42Þ

where DαkðtÞ = k1epðtÞ · �epðtÞ and k1, k2 are positive con-
stants.

k2 > 2 ·M2
d · Bj j2 · L2g · ψ sð Þj j2 + ρ2 ·M2

f ·M2
d · C′ − ‘C
			 			2,

ð43Þ

and we can derive the setting time which is

T = V 0ð ÞΓ α + 1ð Þ
n · v


 �1
α

, ð44Þ
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where

−v = 4 ·M2
d · Bj j2 · L2g · ψ sð Þj j2 + 2 · ρ2

·M2
f ·M2

d · C′ − ‘C
			 			2 − 2k2:

ð45Þ

Theorem 18. Suppose that Assumption 1 and 2 are satisfied,
the response system (5) and drive system (4) can achieve
finite-time synchronization under the adaptive controller
(42) if the following condition holds:

Proof. The Lyapunov function is chosen as

V tð Þ = 〠
n

p=1
ep tð Þ · �ep tð Þ + 〠

n

p=1

1
k1

· k − k∗ð Þ2: ð46Þ

The fractional order derivative of VðtÞ is

DαV tð Þ ≤ 〠
n

p=1
ep tð ÞDα �ep tð Þ + �ep tð ÞDαep tð Þ� �

+ 〠
n

p=1

2
k1

· k − k∗ð Þ ·Dαk tð Þ:
ð47Þ

Based on formula (33), we can get

DαV tð Þ ≤ 〠
n

p=1

�h
w2 − 2k tð Þ� �

+ 5 + 2 · A′
		 		2 ·M2

f · L2d + 2

· Aj j2 ·M2
d · L2f + 2 · B′

		 		2 ·M2
g · L2d + 2 · C′

		 		2 · ρ2
·M2

f · L2d + Ip
		 		2 · L2d + 4 ·M2

d · Bj j2 · L2g
i
ep tð Þ · �ep tð Þ

+ 4 ·M2
d · Bj j2 · L2g · ψ sð Þj j2 + 2 · ρ2 ·M2

f ·M2
d

· C′ − ‘C
			 			2 − 2k2 + 2k tð Þ − 2k∗ð Þep tð Þ · �ep tð Þ

�

= 〠
n

p=1

�h
w2 − 2k∗
� �

+ 5 + 2 · A′
		 		2 ·M2

f · L2d + 2

· Aj j2 ·M2
d · L2f + 2 · B′

		 		2 ·M2
g · L2d + 2 · C′

		 		2
· ρ2 ·M2

f · L2d + Ip
		 		2 · L2d + 4 ·M2

d · Bj j2 · L2g
i
ep tð Þ

· �ep tð Þ + 4 ·M2
d · Bj j2 · L2g · ψ sð Þj j2 + 2 · ρ2 ·M2

f

·M2
d · C′ − ‘C
			 			2 − 2k2

�
,

ð48Þ

where k∗ = 1/2w2 + 5/2 + jA′j2 ·M2
f · L2d + jAj2 ·M2

d · L2f
+ jB′j2 ×M2

g · L2d + jC′j2 · ρ2 ·M2
f · L2d + 1/2 · jIpj2 · L2d + 2 ·

M2
d · jBj2 · L2g.

Then, formula (48) can be simplified as DαVðtÞ ≤ ∑n
p=1

f4 ·M2
d · jBj2 · L2g · jψðsÞj2 + 2 · ρ2 ·M2

f ·M2
d · jC′ − ‘Cj2 − 2k2

g ≤ −n · v:
There exists a function FðtÞ ≥ 0 satisfying

DαV tð Þ + F tð Þ = −n · v: ð49Þ

According to Definition 3, fractional integrals are taken
on both sides of the equation:

Iα0,t D
αV tð Þð Þ + Iα0,t F tð Þ = Iα0,t −n · vð Þ, ð50Þ

where

Iα0,t F tð Þ = 1
Γ αð Þ

ðt
0
t − sð Þα−1F sð Þds ≥ 0, Iα0,t −n · vð Þ

= 1
Γ αð Þ

ðt
0
t − sð Þα−1 −n · vð Þds = −n · vð Þtα

Γ α + 1ð Þ :
ð51Þ

Then, formula (50) degenerates to

V tð Þ − V 0ð Þ + Iα0,t F tð Þ = −n · vð Þtα
Γ α + 1ð Þ ,

−V 0ð Þ ≤ −n · vð Þtα
Γ α + 1ð Þ ,

t ≤
V 0ð ÞΓ α + 1ð Þ

n · v


 �1/α
:

ð52Þ

Naturally, we conclude that the system (4) and (5) can
attain synchronization under the adaptive controller (42)
in a finite time T = ðVð0ÞΓðα + 1Þ/n · vÞ1/α.

Remark 19. In [47], the finite-time synchronization of
CGNNs in the real number field was investigated. In addi-
tion, there are few studies involving CGNNs synchroniza-
tion. In [30, 55–57], the finite-time synchronization of
complex-valued neural networks was discussed via the sepa-
ration method. However, the finite-time synchronization of
fractional-order CGNNs with mixed time delays is rarely
involved; moreover, this paper discusses synchronization
by employing the non-separation method.

Remark 20. In particular, HNNs can be regarded as a special
form of CGNNs. When dp = 1, hp = dp · xpðtÞ, CGNNs
degenerate to HNNs. Therefore, it can be considered that
the network synchronization studied in this article is more
widely.

Remark 21. Formula (52) demonstrates that the settling time
is related to fractional order α and controller value k2;
thus, we can minimize the settling time by regulating these
values.
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4. Illustrative Example

In this section, four examples are given to illustrate the effec-
tiveness of the designed controllers.

Example 1. Consider the 2-dimensional fractional order
complex-valued CGNNs (53) as shown in following:

where α = 0:9, hð·Þ = 1 + i, dð·Þ = f ð·Þ = gð·Þ = tan hð·Þ + i
tan hð·Þ, τð·Þ = 0:5 + 0:5 sin ðtÞ, δ = 0:1, q = 1, 2.

From Assumptions 1 and 2, we have w = 1, Md =Mf =
Mg = Ld = Lf = Lg = 1.

The connection weights can be modeled as

a11 =
−0:3 + 0:3i, x1j j ≤ 1:
−0:4 + 0:4i, x1j j > 1:

(
a12 =

−0:3 − 0:3i, x1j j ≤ 1:
−0:2 − 0:2i, x1j j > 1:

(

a21 =
−0:3 − 0:3i, x2j j ≤ 1:
−0:4 − 0:4i, x2j j > 1:

(
a22 =

0:4 − 0:4i, x2j j ≤ 1:
0:3 − 0:3i, x2j j > 1:

(

b11 =
0:2 − 0:1i, x1j j ≤ 1:
0:3 + 0:2i, x1j j > 1:

(
b12 =

−0:2 + 0:2i, x1j j ≤ 1:
0:3 − 0:1i, x1j j > 1:

(

b21 =
−0:3 + 0:2i, x2j j ≤ 1:
0:2 − 0:1i, x2j j > 1:

(
b22 =

0:1 − 0:1i, x2j j ≤ 1:
−0:2 + 0:2i, x2j j > 1:

(

c11 =
−0:05 − 0:05i, x1j j ≤ 1:
−0:01 + 0:01i, x1j j > 1:

(
c12 =

−0:05 − 0:05i, x1j j ≤ 1:
−0:01 + 0:01i, x1j j > 1:

(

c21 =
0:01 − 0:01i, x2j j ≤ 1:
−0:05 − 0:05i, x2j j > 1:

(
c22 =

−0:05 − 0:05i, x2j j ≤ 1:
0:01 − 0:01i, x2j j > 1:

(

ð54Þ

The initial condition of system (53) is x1ð0Þ = 1:2 − 1:8i
, x2ð0Þ = 1:5 − 1:5i, y1ð0Þ = 0:8 + 0:5i, y2ð0Þ = −0:5 − 0:8i,
when we consider the drive-response systems without con-
troller, it can be seen from Figure 1 that the response system
cannot be synchronized with the drive system; so, the curves
of the error and error modulus cannot reach 0.

Under the state feedback controller (24), referring to for-
mula (26), through simple calculation, we can get

4:1 = k1 >
1
2w

2 + 5
2 + A′

		 		2 ·M2
f · L2d + Aj j2 ·M2

d · L2f

+ B′
		 		2 ·M2

g · L2d + C′
		 		2 · ρ2 ·M2

f · L2d +
1
2 I

2
p

· L2d + 2 ·M2
d · Bj j2 · L2g =

1
2 · 12 + 5

2 + 2 · 0:42

· 12 · 12 + 2 · 0:42 · 12 · 12 + 0:32 + 0:22
� �

· 12 · 12 + 2 · 0:052 · 12 · 12 · 12 + 1
2 · 0:12

· 12 + 2 · 12 · 0:32 + 0:22
� �

· 12 = 4:04,

2:6 = k2 > 2 ·M2
d · Bj j2 · L2g · ψ sð Þj j2 + ρ2 ·M2

f ·M2
d

· C′ − ‘C
			 			2 = 2 · 12 · 0:32 + 0:22

� �
· 12

· 0:42 + 22 + 2:32 + 0:72
� �

+ 12 · 12 · 12

· 0:062 + 0:042
� �

= 2:59:

ð55Þ

Substituting the calculated k1, k2 into controller (24), we
can obtain a state feedback controller that satisfies the condi-
tion of Theorem 11. Therefore, the system (53) can attain
synchronization. Figures 2(a)–2(d) describe the state trajec-
tory diagrams in the real and imaginary parts of the drive
response system, respectively, and the error signal is given
in Figure 2(e). Figure 2(f) shows the modulus of error under
the controller (24).

Example 2. Consider system (53) under the adaptive control-
ler (42) and according to (43), we can get the values of con-
troller that k2 = 2:6.

Dαxp tð Þ = −dp xp tð Þ� �
· hp xp tð Þ� �

− 〠
2

q=1
apq xq tð Þ� �

f q xq tð Þ� �
− 〠

2

q=1
bpq xq t − δ tð Þð Þ� �

gq xq t − δ tð Þð Þ� �
− 〠

2

q=1
cpq xq tð Þ� �ðt

t−τ tð Þ
f q xq sð Þ� �

ds − Ip

" #
,

Dαyp tð Þ = −dp yp tð Þ
� �

· hp yp tð Þ
� �

− 〠
2

q=1
apq yq tð Þ
� �

f q yq tð Þ
� �

− 〠
2

q=1
bpq yq t − δ tð Þð Þ
� �

gq yq t − δ tð Þð Þ
� �

− 〠
2

q=1
cpq yq tð Þ
� �ðt

t−τ tð Þ
f q yq sð Þ
� �

ds − Ip

" #
+ up tð Þ, p = 1, 2,

8>>>>><
>>>>>:

ð53Þ
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Furthermore, the maximum setting time can be calcu-
lated from formula (44) as follows:

T = −V 0ð ÞΓ α + 1ð Þ
n · v


 �1
α

= −V 0ð ÞΓ 1:9ð Þ
−0:28


 � 1
0:9
= 5:68: ð56Þ

Substituting the calculated k2 into formula (42), the
adaptive controller that satisfies the condition of Theorem
18 is obtained. Therefore, the system (53) can attain syn-
chronization. Figures 3(a)–3(d) describe the state trajectory
diagrams in the real and imaginary parts of the drive
response system, respectively, and the error signal is given
in Figure 3(e). Figure 3(f) shows the modulus of error under
the controller (42).

Remark 22. Compared with other references such as [10, 30,
47, 56] the models studied in this article are more general. In
other words, they can be regarded as special cases of this
paper, so Theorems 11 and 18 are also applicable.

Example 3. Consider system (53) with dð·Þ = f ð·Þ = gð·Þ = 1
− e−z/1 − e−z , hð·Þ = 1/1 − e−z , the initial condition of system
(53) is x1ð0Þ = 1:2 − 0:5i, x2ð0Þ = −1:2 + 0:4i, y1ð0Þ = −1 +
0:2i, y2ð0Þ = 1 − 0:1i, and others are same as example 1.
Here, activation functions cannot be expressed explicitly by
separating real and imaginary parts, which can be regarded
as an entire. By simple computing, we can get that Md =
Mf =Mg =

ffiffiffi
2

p
, Ld = Lf = 2/3,w = 1; similarly to example 1,

we can get k1 = 4 > 3:93, k2 = 1:9 > 1:893.
When we consider the drive-response systems without

controller, it can be seen from Figure 4 that the response sys-
tem cannot be synchronized with the drive system; so, the
curves of the error and error modulus cannot reach 0.

Substituting the calculated k1, k2 into formula (24), we
can obtain a state feedback controller that satisfies the condi-
tion of Theorem 11. Therefore, the system (29) can attain
synchronization. Figures 5(a)–5(d) describe the state trajec-
tory diagrams in the real and imaginary parts of the drive
response system, respectively, and the error signal is given
in Figure 5(e). Figure 5(f) shows the modulus of error under
the controller (24).

Example 4. Consider system (53) under the adaptive control-
ler (42) and according to formula (43) and the calculation
above, we can get the values of controller that k2 = 1:9.

Substituting the calculated k2 into controller (42), we can
obtain an adaptive controller that satisfies the condition of
Theorem 18. Therefore, the system (53) can attain synchro-
nization. Figures 6(a)–6(d) describe the state trajectory dia-
grams in the real and imaginary parts of the drive response
system, respectively, and the error signal is given in
Figure 6(e). Figure 6(f) shows the modulus of error under
the controller (42).

Remark 23. In this section, we use four examples to illustrate
the correctness of our conclusions. Examples 1 and 2 use
feedback and adaptive controllers, respectively. Further-

more, Examples 3 and 4 change the activation function into
an inseparable form to realize the finite-time synchroniza-
tion of the network by using the controller. Compared with
the separation method used in [30, 56, 57, 61], the nonse-
paration method used in this paper is universal to solve the
complex-valued activation functions, which are difficult to
divide.

5. Conclusions and Prospects

In this paper, the finite-time synchronization of a special
kind of Cohen-Grossberg neural network, which consists
of fractional-order, couple-valued, mixed time delays, and
state-dependent switching, is investigated. Different from
other papers, we did not separate the complex system into
real parts and imaginary parts but adopted a nonseparation
method. By applying set-valued map, differential inclusion
theory, fractional calculus theory, suitable state-feedback
controller, and adaptive controller are designed to achieve
the synchronization in a finite time. Finally, numerical sim-
ulations are also given to illustrate the effectiveness of our
strategy.

Further research mainly includes two aspects. Due to the
complexity and high cost of the constant control method in
large-scale networks, a method that consumes less energy
will be developed. Impulsive control or event control is used
to achieve the finite-time synchronization of our model.
Moreover, the nonseparation method used in this article
can be applied to achieve the synchronization of other
complex-valued CGNNs with specific qualities, such as fuzzy
CGNNs and CGNNs with impulses.
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