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Using the trial equationmethod (TEM) andmodified trial equationmethod (MTEM), firstly, we find the analytical solutions of the
conformable time-fractional modified nonlinear Schrödinger equation (CTFMNLSE), and finally, we present numerical results in
tables and charts.

1. Introduction

In the past ten years, NLSEs have received a great deal of
interest from scholars and researchers. Actually, simplified
versions of Zakharov’s system give rise to certain NLSHs.
For more details, see [1]. NLSEs have applications in dif-
ferent subjects, e.g., quantum mechanics, biology, semi-
conductor industry, optical communication, energy
quantization, quantum chemistry, wave propagation,
protein folding and bending, condensed matter physics,
solid-state physics, nanotechnology and industry, laser
propagation, and nonlinear optics.

Lately, the investigation of the CTFNLSE in the form

iDα
τΨ +

1
2
ΨXX +|Ψ|

2Ψ + iZΨXXX � 0, α≤ 1, τ ≥ 0, (1)

including numerics, analysis, and applications becomes a
significant issue in applied mathematics, and diverse com-
putational methods have been designed to discuss the exact
solutions of it. Every method has its own proportion for-
mulas and merits for the application to the administering
equation for exploring the exact solutions.

In [2–4], the exact solution of CTFNLSE (1) is obtained
through different methods such as the first integral method,
functional variable method, sine-Gordonmethod, and direct
algebraic method. In [5], Younas et al. presented the
CTFMNLSE and studied the exact solutions of it by the
generalized exponential rational function method.

Motivated by Younas et al. [5], we consider the following
CTFMNLSE:

iDα
τΨ + σ1ΨXX + σ2|Ψ|

2Ψ � iδ1ΨXXX + iδ2Ψ
2Ψ∗X

− iδ3|Ψ|
2ΨX + δ4Ψ, 0< α≤ 1,

(2)

where σ1 � ((X0)/8K
2
0(− 3 cos(Θ) + 2)), σ2 � ((− X0

K2
0)/(2)), δ1 � ((X0 cos(Θ)) /(16K3

0(− 5 cos2(Θ) − 6))), δ2
� ((X0K0 cos(Θ))/(4)), δ3 � (3X0K0)/(2), δ4 � K0 |Ψ|2X|

X�0, X0 and K0 are the frequency and the wave number of
the carrier wave, respectively, and the operator Dα of order
α, where α ∈ (0, 1], represents the conformable fractional
derivative.

Here, using the TEM and MTEM, we investigate the
exact solutions for the above CTFMNLSE. For more details,
you can see [6–11].
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2. Preliminaries

Here, it would be helpful to present some properties and
definitions of the conformal derivative and other
preliminaries.

Definition 1 (see [12]). Suppose Ω: (0,∞)⟶ R is a
function. (en, the conformal fractional derivative of Ω of
order α is presented as

Tα(τ) � limϵ⟶0
Ω τ + ϵτ1− α

  − Ω(τ)

ϵ
, (3)

for all 0< α≤ 1, 0< τ.

Definition 2 (fractional integral; see [12]). Suppose ι≥ 0 and
τ ≥ ι. Also, suppose Ω is a function defined on (ι, τ] and
0< α< 1. (en, the α− fractional integral of Ω is defined by

Iαι Ω(τ) � 
τ

ι

Ω(ς)
ς1− α dς, (4)

if the Riemann improper integral exists.

Theorem 1 (see [12]). Suppose 0< α≤ 1 and Ω and [ are
α− differentiable at a point τ; then,

(i) Tα(ϖ1Ω + ϖ2[) � ϖ1Tα(Ω) + ϖ2Tα([), ∀ϖ1,
ϖ2 ∈ R

(ii) Tα(tϖ) � ϖτϖ− α,∀ϖ ∈ R
(iii) τTα(Ω[) � ΩTα([) + [Tα(Ω)

(iv) Tα(Ω/[) � (([Tα(Ω) − ΩTα([))/([2))

Furthermore, if Ω is differentiable, then Tα(Ω)

(τ) � τ1− α(dΩ/dτ).

Theorem 2 (see [12]). Suppose Ω: (0,∞)⟶ R is a
function such that Ω is differentiable and also
α− differentiable. Suppose [ is a function defined in the range
of Ω and also differentiable; then, one has the following rule:

Tα(Ωo[)(τ) � τ1− α
[(τ)Ω′([(τ)). (5)

3. Methods and Applications

In this section, we present the first step of the TEM and the
MTEM for finding analytical solutions of the CTFMNLSE
defined as (2). For more details, see [5].

Suppose a CTFNLPDE

Γ Φ,Φτ ,ΦX,Dα
τΦ,Dβ

XΦ,D2α
τ ,D2β

X , . . .  � 0,

0< α≤ 1, 0< β< 1,
(6)

whereΦ and Γ are an unknown function and a polynomial in
its arguments, respectively.

Using a fractional travelling wave transformation

Φ(X, τ) � Λ(ξ), ξ � X −
V

α
τα, (7)

whereV is the velocity and substituting (7) into (6), we have
a NLODE given by

Υ Λ,Λ′,Λ″,Λ″′, . . .(  � 0, (8)

where ′ denotes the derivative with respect to ξ.
Here, sinceΨ � Ψ(X, τ) in (2) is a complex function, for

proceeding, we begin with the following travelling wave
assumption:

Ψ(X, τ) � Λ(ξ)e
iψ

, (9)

where ξ � η(X − (V/α)τα) and ψ � − KX + (X/α)τα + ζ,
and ζ,X, and K are parameters, representing the phase
constant, frequency, and wave number, respectively.
Substituting (9) into (2), we get real and imaginary parts as
follows:

η2 σ1 − 3δ1K( Λ″ + σ2 + δ2 + δ3( K( Λ3

+ − P − σ1K
2

+ δ1K
3

− δ4 Λ � 0,
(10)

3δ1K
2

− V − 2σ1K Λ′ − δ1η
2Λ′′′ + δ3 − δ2( Λ2Λ′ � 0.

(11)

Now, integrating the imaginary part of the equation and
taking constant equal to zero, one may have

3 3δ1K
2

− V − 2σ1K Λ − 3δ1η
2Λ′′ + δ3 − δ2( Λ3 � 0.

(12)

From (10) and (12), it can be followed that

K
3δ1 − X − σ1K

2
− δ4

3 3δ1K
2

− V − 2σ1 K
�
σ1 − 3δ1K

− 3δ1

�
Kδ2 + Kδ3 + σ2

δ3 − δ2
.

(13)

From the above, it can be followed that

V � −
δ1X + δ1δ4 + 2K σ1 − 2δ1K( 

2

σ1 − 3δ1K
,

K �
σ1 δ2 − δ3(  − 3σ2δ1

6δ1δ2
.

(14)

Rewrite (10) into the following form:

Λ′′ + λ1Λ
3

− λ2Λ � 0, (15)

orΛ″ � λ2Λ − λ1Λ
3
, (16)

where λ1 � (σ2 + (δ2 + δ3)K)/(η2(σ1 − 3δ1)) and
λ2 � − (− X − σ1K

2 + δ1K
3 − δ4)/(η2(σ1 − 3δ1K)).

In the next two sections, we investigate the primary steps
for detecting the exact solution of (10) by using the TEM and
the MTEM.

(e exact solution of (12) can be found in a similar way.
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3.1.Trial EquationMethod (TEM). Firstly, CTFNLPDE (6) is
reduced to NLODE (8) under transformation (7). Secondly,
consider the trial equation

Λ′( 
2

� 
n

i�0
aiΛ

i
, (17)

where ai and n are constants, which are derived from the
solution of the system and the balancing principle, re-
spectively. Finally, the solution of (17) can be given by the
integral form:

± ξ − ξ0(  � 
1

��������


n
i�0 aiΛ

i
 dΛ. (18)

Note 1. If

Λ″ � a0 + a1Λ + · · · + anΛ
n
, (19)

then integrating (19) with respect to ξ once, we get

Λ′( 
2

�
2an

n + 1
Λn+1

+ · · · + a1Λ
2

+ 2a0Λ + d, (20)

where n, ai, and integration constant d are to be determined.

Now, considering (16) and balancing Λ″ and Λ3, we
obtain n � 4. So, the trial equation is

Λ′( 
2

� a0 + a1Λ + a2Λ
2

+ a3Λ
3

+ a4Λ
4
, (21)

in which

Λ′( 
2

� −
λ1
2
Λ4 + λ2Λ

2
+ d, (22)

so we have

a0 � d, a1 � 0, a2 � λ2, a3 � 0, a4 � −
λ1
2

. (23)

Now, (18) is rewritten with (23):

± ξ − ξ0(  � 
1

�����������������

a0 + λ2Λ
2

− λ1/2( Λ4
 dΛ. (24)

If we set a0 � 0 in (24) and integrate this equation, the
exact solution of (2) is obtained:

If λ2 > 0, then we have bright and singular solutions,
respectively:

Ψ(X, τ) � ±
�������

2 λ2/λ1( 



e
i − XK+(X/α)τα+ζ( )sech

��

λ2


η X −
V

α
τα  + ξ0  , (25)

Ψ(X, τ) � ±

�����

− 2
λ2
λ1



e
i − XK+(X/α)τα+ζ( )csch

��

λ2


η X −
V

α
τα  + ξ0  . (26)

If λ2 < 0, the singular periodic solutions appear as

Ψ(X, τ) � ±

����

2
λ2
λ1



e
i − XK+(X/α)τα+ζ( )sec

���

− λ2


η X −
V

α
τα  + ξ0  , (27)

Ψ(X, τ) � ±

����

2
λ2
λ1



e
i − KX+(X/α)τα+ζ( )csc

���

− λ2


η X −
V

α
τα  + ξ0  , (28)

where ξ0 is an arbitrary constant. For more details, see
[13–15].

3.2. Modified Trial Equation Method (MTEM). In this sec-
tion, instead of using (17), the trial equation can be chosen as

Λ′ �
F(Λ)
G(Λ)

�
aNΛ

N
+ · · · + a1Λ + a0

bMΛ
M

+ · · · + b1Λ + b0
, (29)

which is seen as the modified trial equation method when
the same procedure is applied with the integral form solution
of (29) as

± ξ − ξ0(  � 
F(Λ)
G(Λ)

dΛ. (30)

Similarly, one can solve integral (30) and find the exact
travelling wave solution of equation (6).

Note 3.2. If equation (29) holds, then we have

Λ″ �
F(Λ) F′(Λ)G(Λ) − F(Λ)G′(Λ)( 

G
3
(Λ)

. (31)

If we now use trial (29) in (16) for balancing the pro-
cedure, we get N − M � 2. Choosing N � 2 and M � 0, the
trial equation is
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Λ′ �
a0 + a1Λ + a2Λ

2

b0
, (32)

and we have

Λ″ �
a1 + 2a2Λ(  a0 + a1Λ + a2Λ

2
 

b
2
0

, (33)

where a2 ≠ 0 and b0 ≠ 0.
(e corresponding system is

a0a1

b
2
0

� 0,

2a0a2 + a
2
1

b
2
0

� λ2,

3a1a2b
2
0 � 0,

2a
2
2

b
2
0

� − λ1.

(34)

Solving the corresponding system, we obtain

a0 � ± i
1
2
b
2
0

��
λ1
2



λ2, a1 � 0, a2 � ± ib0

��
λ1
2



, b0 � b0. (35)

Using these coefficients in (30), we get

± ξ − ξ0(  � 
b0

± i(1/2)b
2
0

������

λ1/2( 



λ2 ± ib0

������

λ1/2( 



Λ2
dΛ.

(36)

When we integrate this equation and use the wave
transformation, the exact travelling wave solutions of (2) are
obtained as follows.

If b0λ1λ2 < 0, then we have

Ψ(X, τ) � ±
�����
− b0λ2
2



e
i − KX+(X/α)τα+ζ( )tanh

1
2

�������

− b0λ1λ2


η X −
V

α
τα  + ξ0  , (37)

Ψ(X, τ) � ±
�����
− b0λ2
2



e
i − KX+(X/α)τα+ζ( )coth

1
2

�������

− b0λ1λ2


η X −
V

α
τα  + ξ0  , (38)

and if b0λ1λ2 > 0, then we have

Ψ(X, τ) � ±
����
b0λ2
2



e
i − KX+(X/α)τα+ζ( ) tan

1
2

������

b0λ1λ2


η X −
V

α
τα  + ξ0  , (39)

Ψ(X, τ) � ±
����
b0λ2
2



e
i − KX+(X/α)τα+ζ( ) cot

1
2

������

b0λ1λ2


η X −
V

α
τα  + ξ0  , (40)

where ξ0 is an arbitrary constant. For more details, see
[16–18].

4. Numerical Results in Tables and Charts

Here, we let δ1 � δ3 � η � 1, X � δ2 � δ4 � σ2 � 2, ζ � V �

0.5, K � 0.25, σ1 � − 1, α � 0.90, and ξ0 � 0. (erefore, we
have λ1 � − 1.57143 and λ2 � − 2.24107. Now, in the fol-
lowing sections, we calculate the exact solutions of
CTFMNLSE (2) obtained through the two different methods
presented in Section 3.

Figures 1(a), 1(c), 2(a), and 2(c) and also Figures 1(b),
1(d), 2(b), and 2(d) display 3D and 2D with the real part of
solutions Ψ1,1,Ψ1,3,Ψ2,1, and Ψ2,3 obtained by the TEM and
MTEM under the values presented in the above paragraph.

Tables 1–4 present the numerical results of analytical so-
lutions of CTFMNLSE (2) obtained by the TEM and MTEM
with several point sources through arbitrary. In addition,
Figures 2–5 display 2D with the real part of solutions Ψ1,1
and Ψ2,1 for fixed X � 0.062 and different values of α.
Figure 3 displays 3D with the imaginary and the real part of
solutions Ψ1,1 and Ψ1,3. Also, Figure 6 displays 3D with the
imaginary and real part of solutionΨ2,1 and also 2D with the
imaginary part of the solution Ψ2,1 for fixed X � 0.062 and
different values of α.

4.1. <e Exact Solutions of CTFMNLSE (2) Obtained through
the TEM. Considering the given values in Section 4, we get
Tables 1 and 2.
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Figure 1: (a, b) 3D and 2Dwith the real part of solutionΨ1,1. (c, d) 3D and 2Dwith the real part of solutionΨ1,3 obtained via the TEM under
the values presented in Section 4.
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Figure 2: 2D with the real part of solution Ψ1,1 for fixed X � 0.062 and different values of α.
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Table 1: (e real part of exact solutions of CTFMNLSE (1) obtained by the TEM with several point sources through arbitrary.

X τ Ψ1,1(X, τ) Ψ1,2(X, τ) Ψ1,3(X, τ) Ψ1,4(X, τ)

0.012
0.012 1.44911 − 1.44911 351.38054 − 351.38054
0.037 1.38186 − 1.38186 − 39.15774 39.15774
0.062 1.31204 − 1.31204 − 21.19424 21.19424

0.037
0.012 1.45334 − 1.45334 21.46932 − 21.46932
0.037 1.38820 − 1.38820 75.68599 − 75.68599
0.062 1.32018 − 1.32018 − 83.68726 83.68726

0.062
0.012 1.45547 − 1.45547 10.95095 − 10.95095
0.037 1.39254 − 1.39254 18.97941 − 18.97941
0.062 1.32642 − 1.32642 41.97445 − 41.97445

Table 2: (e imaginary part of exact solutions of CTFMNLSE (1) obtained by the TEM with several point sources through arbitrary.

X τ Ψ1,1(X, τ) Ψ1,2(X, τ) Ψ1,3(X, τ) Ψ1,4(X, τ)

0.012
0.012 0.86568 − 0.86568 − 588.19565 588.19565
0.037 0.96853 − 0.96853 55.86884 − 55.86884
0.062 1.05867 − 1.05867 26.26665 − 26.26665

0.037
0.012 0.85592 − 0.85592 − 36.45427 36.45427
0.037 0.96009 − 0.96009 − 109.43494 109.43494
0.062 1.05167 − 1.05167 105.05287 − 105.05287

0.062
0.012 0.84497 − 0.84497 − 18.86303 18.86303
0.037 0.95027 − 0.95027 − 27.81244 27.81244
0.062 1.04316 − 1.04316 − 53.37174 53.37174

Table 3: (e real part of exact solutions of CTFMNLSE (1) obtained by the MTEM with several point sources through arbitrary.

X τ Ψ2,1(X, τ) Ψ2,2(X, τ) Ψ2,3(X, τ) Ψ2,4(X, τ)

0.012
0.012 − 0.00084 0.00084 − 351.20377 351.20377
0.037 0.00941 − 0.00941 39.17921 − 39.17921
0.062 0.02081 − 0.02081 21.20630 − 21.20630

0.037
0.012 − 0.01342 0.01342 − 21.47600 21.47600
0.037 − 0.00479 0.00479 − 75.67674 75.67674
0.062 0.00519 − 0.00519 83.77139 − 83.77139

0.062
0.012 − 0.02575 0.02575 − 10.95634 10.95634
0.037 − 0.01873 0.01873 − 18.98482 18.98482
0.062 − 0.01019 0.01019 − 41.97342 41.97342

Table 4: (e imaginary part of exact solutions of CTFMNLSE (1) obtained by the MTEM with several point sources through arbitrary.

X τ Ψ2,1(X, τ) Ψ2,2(X, τ) Ψ2,3(X, τ) Ψ2,4(X, τ)

0.012
0.012 0.00140 − 0.00140 587.89974 − 587.89974
0.037 − 0.01342 0.01342 − 55.89947 55.89947
0.062 − 0.02579 0.02579 − 26.28158 26.28158

0.037
0.012 0.02279 − 0.02279 36.46563 − 36.46563
0.037 0.00691 − 0.00691 109.42158 − 109.42158
0.062 − 0.00651 0.00651 − 105.15849 105.15849

0.062
0.012 0.04436 − 0.04436 18.87231 − 18.87231
0.037 0.02745 − 0.02745 27.82036 − 27.82036
0.062 0.01295 − 0.01295 53.37043 − 53.37043
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Figure 3: 3D with the imaginary and the real part of solutions Ψ1,1 and Ψ1,3.
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Figure 4: (a, b) 3D and 2D with the real part of solution Ψ2,1. (c, d) 3D and 2D with the real part of solution Ψ2,3 obtained via the MTEM
under the values presented in Section 4.
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Figure 6: 3D with the imaginary and the real part of solutions Ψ2,1 and also 2D with the imaginary part of the solution Ψ2,1 for fixed
X � 0.062 and different values of α.

Table 5: Calculation of the difference between solutionsΨ1,1 and also Ψ2,1, represented by ΔTEM and ΔMTEM, for different values ofX and τ.

τ � 0.012, 0.037, and 0.062
X� 0.012 X� 0.037 X� 0.062

ΔTEM 0.33695 0.13707 0.06982 0.06514 0.13316 0.06802 0.06293 0.12905 0.06612
ΔMTEM 0.01025 0.02165 0.01140 0.00863 0.01861 0.00998 0.00792 0.01556 0.00854
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Figure 7: (a, e, b) 3D and 2D with the real part of solutions Ψ1,1 obtained via the TEM under the values presented in Section 4. (c, f, d) 3D
and 2D with the real part of solutions Ψ2,1 obtained via the MTEM under the values presented in Section 4.
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4.2. <e Exact Solutions of CTFMNLSE (2) Obtained through
the MTEM. Considering the given values in Section 4, we
get Tables 3 and 4.

5. Concluding Remarks

Using the TEM and MTEM, firstly, we found the exact
solutions of CTFMNLSE (2), and finally, we presented
numerical results in tables and charts.

According to Table 5, we can observe that the differences
between solutionsΨ1,1 and alsoΨ2,1 for fixedX and different
values of τ are considerable. It is clear that these differences
obtained through the MTEM are less than those of the TEM.
In other words, for fixed X, by changing the value of τ, the
MTEM results in more minor changes than the TEM. Also,
based on Figure 7, we can observe that the results gained by
the MTEM have higher accuracy than the TEM.

Figure 8 displays the differences between the real part of
solutions obtained by the TEM and MTEM for fixed
X � 0.062 and α � 0.90. As you can see, the difference
obtained among Ψ1,3,Ψ1,4 and Ψ2,3,Ψ2,4 is more minor than
the difference obtained among Ψ1,1,Ψ1,2 and Ψ2,1,Ψ2,2.
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