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The (2 + 1)-dimensional Lax integrable equation is decomposed into solvable ordinary differential equations with the help of
known (1 + 1)-dimensional soliton equations associated with the Ablowitz-Kaup-Newell-Segur soliton hierarchy. Then, based
on the finite-order expansion of the Lax matrix, a hyperelliptic Riemann surface and Abel-Jacobi coordinates are introduced to
straighten out the associated flows, from which the algebro-geometric solutions of the (2 + 1)-dimensional integrable equation
are proposed by means of the Riemann θ functions.

1. Introduction

Algebro-geometric solutions are an important class among
exact solutions of soliton equations, which can be regarded
as explicit solutions of the nonlinear integrable evolution
equation and used to approximate more general solutions.
Based on the nonlinearization technique of Lax pairs and
direct method, many of algebro-geometric solutions of
(1 + 1)-dimensional [1–3], (2 + 1)-dimensional [4, 5], and
differential-difference [5, 6] soliton equations have been
obtained, such as the Gerdjikov-Ivanov, modified Kadomt-
sev-Petviashvili, and Toda lattice equations [7–9]. The exis-
tence of infinitely many exact solutions is a reflection of this
complete integrability.

Many other techniques for finding exact solutions have
been also discovered: inverse scattering theory, Darboux
transformation, Riemann-Hilbert method, etc. Recently,
more exact solutions of soliton equations are found
[10–13], and more dynamic behaviors are studied [14–16].

Ablowitz-Kaup-Newell-Segur (AKNS) soliton hierarchy
is an important class of integrable equations, which can be
reduced to Korteweg-de Vries (KdV), modified Korteweg-
de Vries (mKdV), sine-Gordon equation hierarchies, etc.
The purpose of the paper is to further develop the direct

method for constructing algebro-geometric solution of the
following (2 + 1)-dimensional integrable equation [15]
which concerns with the AKNS soliton hierarchy [17].

ut = −
1
2 uxy + u∂−1x uvð Þy,

vt =
1
2 vxy − v∂−1x uvð Þy:

8>><>>: ð1Þ

In fact, system (1) is the Lax integrable equations from
the AKNS soliton hierarchy, which has nonisospectral zero
curvature representation. B€acklund transformation for a
splitting of slð2Þ and a soliton exact solution for it was
obtained [18].

The whole paper is organized as follows: in Section 2, we
use Lenard operator pairs to briefly derive (1 + 1)-dimensional
AKNS soliton hierarchy and give the (2 + 1)-dimensional inte-
grable equation (1). Then, in Section 3, based on the solutions
of the (1 + 1)-dimensional soliton equations and the elliptic
coordinates, the solution of the (2 + 1)-dimensional integrable
equation is reduced to solving ordinary differential equations.
In Section 4, a hyperelliptic Riemann surface and Abel-Jacobi
coordinates are introduced to straighten the associated flows.
The Jacobi’s inversion problem is discussed, from which the
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algebro-geometric solution of the (2 + 1)-dimensional integra-
ble equation is obtained in terms of the Riemann theta func-
tions. A short summary is in Section 5.

2. The (2 + 1)-Dimensional Soliton Equation

It is well known that the AKNS soliton hierarchy is isospec-
tral evolution equation hierarchy associated with the spectral
problem [17].

ψx =Uψ =
−λ q

r λ

 !
ψ,

λt = 0,
ψ = ψ1, ψ2ð ÞT :

ð2Þ

Consider the Lenard gradient sequence fSjg∞j=0 by

KSj−1 = JSj,

Sj
��
q,rð Þ= 0,0ð Þ = 0,

S0 = 0, 0, 1ð ÞT ,
ð3Þ

where Sj = ðSð1Þj , Sð2Þj , Sð3Þj Þ and

K =

1
2 ∂ 0 −r

0 −
1
2 ∂ −q

−q r ∂

0BBBBB@

1CCCCCA,

J =
0 0 1
0 0 1
−q r ∂

0BB@
1CCA:

ð4Þ

It is easy to see that Sj is uniquely determined by the
recursion relation. A direct calculation gives that

S1 =
−r

−q

0

0BB@
1CCA,

S2 =

−
1
2 rx

−
1
2 qx

−
1
2 qr

0BBBBBB@

1CCCCCCA,

S3 =

−
1
4 rxx +

1
2 qr

2
�

−
1
4 qxx +

1
2 q

2r
�

1
4 rqx − qrxð Þ

0BBBBBBBB@

1CCCCCCCCA
: ð5Þ

The auxiliary spectral of (2) is

ψtn = Vψ =
A B

C −A

 !
ψ =

〠
n

j=0
S 3ð Þ
j λn−j 〠

n

j=0
S 2ð Þ
j λn−j

〠
n

j=0
S 1ð Þ
j λn−j −〠

n

j=0
S 3ð Þ
j λn−j

0BBBBB@

1CCCCCAψ:

ð6Þ

The compatibility condition between (2) and (6) is the
zero curvature equation:

Utn −V nð Þ
x + U , V nð Þ

h i
= 0, ð7Þ

which is equivalent to the hierarchy of soliton equations

Xn =
qtn

rtn

 !
=

−2S 2ð Þ
n+1

2S 1ð Þ
n+1
�

0@ 1A =
0 −2
2 0

 !
S 1ð Þ
n+1

S 2ð Þ
n+1

0@ 1A, n = 1, 2,:⋯

ð8Þ

The first two nontrivial members in the hierarchy are

qt2 =
1
2 qxx − rq2
� �

,

rt2 =
1
2 −rxx + qr2
� �

,

8>><>>: ð9Þ

qt3 =
1
4 −qxxx + 6qrqxð Þ,

rt3 =
1
4 rxxx + 6rqrxð Þ:

8>><>>: ð10Þ

Let t2 = y, t3 = t, uðx, y, tÞ = qðx, y, tÞ, and vðx, y, tÞ = rðx
, y, tÞ in (9) and (10); then, we can obtain the (2 + 1
)-dimensional equation (1) by the use of the following equa-
tion:

uvx − uxvð Þx = −2 uvð Þy: ð11Þ

Therefore, if q and r are the compatible solutions of (9)
and (10), then we can get that u = q and v = r are also the
solutions of the (2 + 1)-dimensional equation (1).

3. Variable Separation

In this section, we shall show how the (1 + 1)-dimensional
(9) and (10) are reduced to solvable ordinary differential
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equations. Assume that (2) and (6) have two basic solutions
ψ = ðψ1, ψ2ÞT and ϕ = ðϕ1, ϕ2ÞT . We define a matrix W of
three functions f , g, h by

W = 1
2 ϕψT + ψϕT
� �

σ =
f g

h −f

 !
, σ =

0 −1
1 0

 !
:

ð12Þ

It is easy to verify by (2) and (6) that

Wx = U ,W½ �,
Wtn

= V nð Þ,W
h i

,
ð13Þ

which imply that the functions detW is a constant indepen-
dent of x and tm. Equation (13) can be written as

gx = −2gλ − 2qf ,
hx = 2hλ + 2rf , ð14Þ

f x = qh − rg, gt = −2gA − 2f B,
ht = 2hA + 2f C,
f t = hB − gC:

ð15Þ

Now, suppose that the functions f , g, and h are finite-
order polynomials in λ:

f = 〠
N+1

j=0
f jλ

N+1−j,

g = 〠
N+1

j=0
gjλ

N+1−j,

h = 〠
N+1

j=0
hjλ

N+1−j:

ð16Þ

Substituting (16) into (14) yields

KGj−1 = JGj,
JG0 = 0,
KGN = 0,

Gj = gj, hj, f j
� �T

:

ð17Þ

It is easy to see that JG0 = 0 has the general solution:

G0 = α0S0, ð18Þ

where α0 is constant of integration. So, KerJ = fcS0j∀cg. Act-
ing with the operator ðJ−1KÞK+1 upon (18), we can obtain

from (3) and (17) that

Gk = 〠
k

j=0
αjSk−j, k = 0, 1,⋯, ð19Þ

where α0,…, αk are integral constants. Substituting (19) into
(17) obtains the following stationary evolution equation:

α0KSN+⋯+αNKS0 = 0: ð20Þ

This means that expression (16) is existent.
In what follows, we decompose (9) and (10) into systems

of integrable ordinary differential equations. Without loss of
generality, let α0 = 1. From (3) and (19), we have

g0 = 0,
g1 = −q,

g2 =
1
2 qx − α1q,

g3 = −
1
4 qxx +

1
2 q

2r + α1
2 qx − α2q,

ð21Þ

h0 = 0,
h1 = −r,

h2 = −
1
2 rx − α1r,

h3 = −
1
4 rxx +

1
2 qr

2 −
α1
2 rx − α2r,

ð22Þ

f0 = 1,
f1 = α1,

f2 = −
1
2 qr + α2,

ð23Þ

f3 =
1
4 rqx − qrxð Þ − α1

2 qr + α3, g4

= 1
8 qxxx −

3
4 qrqx −

α1
2

1
2 qxx − q2r
� �

+ α2
2 qx − α3q,

ð24Þ

h4 = −
1
8 rxxx +

3
4 qrrx +

α1
2

−1
2 rxx + r2q

� �
−
α2
2 rx − α3r,⋯:

ð25Þ
We can write g and h as the following finite products:

g = −q
YN
i=1

λ − μið Þ,

h = −r
YN
i=1

λ − νið Þ:
ð26Þ

Comparing the coefficients of λN−1, λN−2, and λN−3, we
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get

g2 = q〠
N

i=1
μi,

h2 = r〠
N

i=1
νi,

g3 = −q〠
i<j
μiμj,

h3 = −r〠
i<j
νiνj,

g4 = q 〠
i<j<k

μiμ jμk,

h4 = r 〠
i<j<k

νiνjνk,

ð27Þ

which together with (23), we obtain

1
2 ∂xlnq = 〠

N

i=1
μi + α1,

1
2 ∂xlnr = −〠

N

i=1
νi − α1,

ð28Þ

1
2 ∂ylnq =〠

i<j
μiμj + α1 〠

N

i=1
μi + α1

2 − α2,

1
2 ∂ylnr = −〠

i<j
νiνj − α1 〠

N

i=1
νi − α1

2 + α2,
ð29Þ

1
2 ∂t lnq = − 〠

i<j<k
μiμ jμk − α1〠

i< j
μiμj − α1

2 − α2
� �

〠
N

i=1
μi − α1

3 + 2α1α2 − α3,

ð30Þ

1
2 ∂t lnr = 〠

i<j<k
νiνjνk + α1〠

i<j
νiνj + α1

2 − α2
� �

〠
N

i=1
νi + α1

3 − 2α1α2 + α3:

ð31Þ

Let us consider the function detW, which is a ð2N + 2Þ
-order polynomial in λ with constant coefficients of the x
flow and tn flow:

−detW = f 2 + gh =
Y2N+2

j=1
λ − λj

� �
≡ R λð Þ: ð32Þ

Substituting (16) into (32), comparing the coefficient of

λ2N+1, λ2N , and λ2N−1, and considering (23), we can obtain

α1 = −
1
2 〠
2N+2

j=1
λj,

α2 =
1
2〠i<j

λiλj −
1
8 〠

2N+2

j=1
λj

 !2

,

α3 =
1
2 〠
i<j<k

λiλjλk +
1
4 〠
2N+2

j=1
λj〠

i<j
λiλj −

1
16 〠

2N+2

j=1
λj

 !3

:

ð33Þ

From (32) we see that

f jλ=μk =
ffiffiffiffiffiffiffiffiffiffiffiffi
R μkð Þ

p
,

f jλ=νk =
ffiffiffiffiffiffiffiffiffiffiffi
R νkð Þ

p
:

ð34Þ

Using (14) and (26), we get

gx λ=μk = −2qf
��� ���

λ=μk
= −qμkx

YN
i=1,i≠k

μk − μið Þ,

hx λ=νk = 2rf
�� ��

λ=νk
= −rνkx

YN
i=1,i≠k

νk − νið Þ:
ð35Þ

Together with (34), we get

μkx =
2
ffiffiffiffiffiffiffiffiffiffiffiffi
R μkð ÞpQN

i=1,i≠k μk − μið Þ
,

νkx =
−2

ffiffiffiffiffiffiffiffiffiffiffi
R νkð ÞpQN

i=1,i≠k νk − νið Þ
:

ð36Þ

Similarly, using (6) (n = 2, n = 3), (16), (26), and (34), we
get

μkt2 =
2
ffiffiffiffiffiffiffiffiffiffiffiffi
R μkð ÞpQN

i=1,i≠k μk − μið Þ
−μ2k + 〠

N

i=1
μi + α1

 !
μk −〠

i<j
μiμj

 

− α1 〠
N

i=1
μi − α21 + α2

!
,

ð37Þ

νkt2 =
−2

ffiffiffiffiffiffiffiffiffiffiffi
R νkð ÞpQN

i=1,i≠k νk − νið Þ
−ν2k + 〠

N

i=1
νi + α1

 !
νk −〠

i<j
νiνj

 

− α1 〠
N

i=1
νi − α21 + α2

!
,

ð38Þ
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μkt3 =
2
ffiffiffiffiffiffiffiffiffiffiffiffi
R μkð ÞpQN

i=1,i≠k μk − μið Þ
−μ3k + 〠

N

i=1
μi + α1

 !
μ2k − 〠

i< j
μiμj + α1 〠

N

i=1
μi + α21 − α2

 !
μk

 

+ 〠
i<j<k

μiμjμk + α1〠
i<j
μiμ j + α21 − α2

� �
〠
N

i=1
μi + α31 − 2α1α2 + α3

!
:

ð39Þ

Therefore, if λ1,⋯, λ2N+2 are 2N + 2 distinct parameters
and μk, νkðk = 1,⋯,NÞ are compatible solutions of differen-
tial equations (36), (37), and (39), then q and r determined
by (28) are the compatible solution of (9) and (10), so we
can get that u and v are also the solution of the (2 + 1
)-dimensional equation (1).

4. Algebro-Geometric Solution

We first introduce the hyperelliptic Riemann surface

Γ : ξ2 = R λð Þ,

R λð Þ =
Y2N+2

j=1
λ − λj

� �
,

ð40Þ

with genus g =N . On Γ, there are two infinite points ∞1
and ∞2, which are not branch points of Γ. Equip Γ with
the canonical basis of cycles a1,⋯, aN , b1,⋯, bN , and the
holomorphic differentials

~ωl =
λl−1dλffiffiffiffiffiffiffiffiffiffi
R λð Þp , l = 1, 2,⋯,N: ð41Þ

Then, the period matrices A and B are defined by

Aij =
ð
aj

~ωi,

Bij =
ð
bj

~ωi:

ð42Þ

Using A and B, we can define the matrices C and τ,
where

C = Cij

� �
= A−1,

τ = τij
� �

= CB = A−1B:
ð43Þ

Then, matrix τ can be shown to be symmetric, and it has
positive define imaginary part. We normalize fωj into the
new basis ωj:

ωj = 〠
N

l=1
Cjlfωl , l = 1, 2,⋯,N: ð44Þ

which satisfy

ð
ak

ωi = 〠
N

l=1
Cjl

ð
ak

fωl = 〠
N

l=1
CjlAlk = δjk,

ð
bk

ωi = 〠
N

l=1
Cjl

ð
bk

fωl = 〠
N

l=1
CjlBlk = τjk:

ð45Þ

For a fixed point p0, then we introduce Abel-Jacobi coor-
dinate as follows:

ρm = ρ 1ð Þ
m , ρ 2ð Þ

m ,⋯,ρ Nð Þ
m

� �T
,m = 1, 2, ð46Þ

whose components are

ρ
jð Þ
1 x, y, tð Þ = 〠

N

k=1

ðμk x,y,tð Þ

p0

ωj = 〠
N

k=1
〠
N

l=1

ðμk x,y,tð Þ

p0

Cjl
λl−1dλffiffiffiffiffiffiffiffiffiffi
R λð Þp ,

ð47Þ

ρ
jð Þ
2 x, y, tð Þ = 〠

N

k=1

ðνk x,y,tð Þ

p0

ωj = 〠
N

k=1
〠
N

l=1

ðνk x,y,tð Þ

p0

Cjl
λl−1dλffiffiffiffiffiffiffiffiffiffi
R λð Þp :

ð48Þ
From (47) and the fist expression of (36), we get

∂xρ
jð Þ
1 = 〠

N

k=1
〠
N

l=1
Cjl

μl−1k μkxffiffiffiffiffiffiffiffiffiffiffiffi
R μkð Þp = 〠

N

k=1
〠
N

l=1
Cjl

μl−1kQ
i≠k μk − μj

� �
= 2CjN =Ω

jð Þ
0 , j = 1,⋯,N ,

ð49Þ

with the help of the following equality

〠
N

k=1

μl−1kQN
i=i,i≠k μk − μið Þ

= δlN , l = 1,⋯,N: ð50Þ

In a similar way, we obtain from (36)–(39), (47), and
(48) that

∂yρ
jð Þ
1 = 2 −Cj,N−2 + α1Cj,N−1 − α21 − α2

� �
Cj,N

� �
=Ω

jð Þ
1 ,

∂tρ
jð Þ
1 = 2 −Cj,N−3 + α1Cj,N−2 − α21 − α2

� �
Cj,N−1 + α31 − 2α1α2 + α3

� �
Cj,N

� �
=Ω

jð Þ
2 ,

∂xρ
jð Þ
2 = −Ω jð Þ

0 ,

∂yρ
jð Þ
2 = −Ω jð Þ

1 ,

∂tρ
jð Þ
2 = −Ω jð Þ

2 :

ð51Þ

On the basis of these results, we get the following:

ρ
jð Þ
1 x, y, tð Þ =Ω

jð Þ
0 x +Ω

jð Þ
1 y +Ω

jð Þ
2 t + γ

jð Þ
0 ,

ρ
jð Þ
2 x, y, tð Þ = −Ω jð Þ

0 x −Ω
jð Þ
1 y −Ω

jð Þ
2 t + γ

jð Þ
1 ,

ð52Þ
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where

γ
jð Þ
0 = 〠

N

k=1

ðμk 0,0,0ð Þ

p0

ωj,

γ
jð Þ
1 = 〠

N

k=1

ðνk 0,0,0ð Þ

p0

ωj:

ð53Þ

An Abel map on Γ is defined as

A pð Þ =
ðp
p0

ω, ω = ω1,⋯,ωNð ÞT ,

A 〠nkpk
� �

=〠nkA pkð Þ:
ð54Þ

Consider two special divisors ∑N
k=1p

ðkÞ
m ðm = 1, 2Þ, and we

have

A 〠
N

k=1
p kð Þ
1

 !
= 〠

N

k=1
A p kð Þ

1
� �

= 〠
N

k=1

ðeμk
p0

ω = ρ1,

A 〠
N

k=1
p kð Þ
2

 !
= 〠

N

k=1
A p kð Þ

2
� �

= 〠
N

k=1

ðeνk
p0

ω = ρ2,

ð55Þ

where pðkÞ1 = ð eμk, ξð eμkÞÞ, pðkÞ2 = ð eμk, ξð eμkÞÞ. The Riemann
theta function of Γ is defined as

θ ζð Þ = 〠
z∈ZN

exp πi τz, zh i + 2πi ζ, zh ið Þ, ζ ∈ CN , ð56Þ

where ζ = ðζ1,⋯,ζNÞT , hζ, zi =∑N
j=1ζjz j. According to the

Riemann theorem, there exist two constant vector M1,M2
∈ CN such that

Fm = θ A pð Þ − ρm −Mmð Þ,m = 1, 2, ð57Þ

has exactly zeros at μ1,⋯, μN for m = 1 or ν1,⋯, νN for m
= 2 and m = 3. To make the function single valued, the sur-
face Γ is cut along all ak, bk to form a simple connected
region, whose boundary is denoted by γ. Notice the fact that
the integrals

1
2πi

ð
γ

λkdlnFm λð Þ = Ik Γð Þ, k ≥ 1, ð58Þ

are constants independent of ρ1, ρ2 with I = IðΓÞ =∑N
j=1
Ð
aj

λkωj. By the residue theorem, we have

Ik Γð Þ = 〠
N

l=1
μkl + 〠

2

s=1
Re sλ=∞s

λkdlnF1 λð Þ, ð59Þ

Ik Γð Þ = 〠
N

l=1
νkl + 〠

2

s=1
Re sλ=∞s

λkdlnF2 λð Þ: ð60Þ

Here, we only need to compute the residues in (59) for
k = 1, 2, 3. In the way similar to calculations in [1, 2, 4], we
obtain

Re sλ=∞s
λdlnFm λð Þ = Re sz=0z−1dlnFm z−1

� �
= −1ð Þs∂xlnθ mð Þ

s , s = 1, 2 ;m = 1, 2:
ð61Þ

where θð1Þs = θðΩ0x +Ω1y +Ω2t + πsÞ, θð2Þs = θð−Ω0x −Ω1y
−Ω2t + ηsÞ, and πs, ηs are constants. Thus from, we arrive at

〠
N

j=1
μ j = I1 − ∂xln

θ
1ð Þ
2

θ
1ð Þ
1

,

〠
N

j=1
νj = I1 − ∂xln

θ
2ð Þ
1

θ
2ð Þ
2

:

ð62Þ

Similarly, we obtain

〠
N

j=1
μ2j = I2 +

1
2 ∂yln

θ
1ð Þ
2

θ
1ð Þ
1

−
1
2 ∂

2
xlnθ

1ð Þ
1 θ

1ð Þ
2 ,

〠
N

j=1
ν2j = I2 +

1
2 ∂yln

θ
2ð Þ
2

θ
2ð Þ
1

−
1
2 ∂

2
xlnθ

1ð Þ
1 θ

1ð Þ
2 ,

ð63Þ

Then, we can get

∂x ln q = 2 I1 − ∂x ln
θ

1ð Þ
2

θ
1ð Þ
1

 !
+ 2α1 =Θ1,

∂x ln r = −2 I1 − ∂x ln
θ

2ð Þ
1

θ
2ð Þ
2

 !
− 2α1 =Λ1,

∂y ln q = I1 − ∂x ln
θ

1ð Þ
1

θ
1ð Þ
2

 !2

− I2 +
1
2 ∂y ln

θ
1ð Þ
2

θ
1ð Þ
1

−
1
2 ∂

2
xlnlnθ

1ð Þ
1 θ

1ð Þ
2

 !

+ 2α1 I1 − ∂x ln
θ

1ð Þ
2

θ
1ð Þ
1

 !
+ 2 α21 + α2
� �

=Θ2,

∂y ln r = − I1 − ∂x ln
θ

2ð Þ
1

θ
2ð Þ
2

 !2

+ I2 +
1
2 ∂y ln

θ
1ð Þ
2

θ
1ð Þ
1

−
1
2 ∂

2
x ln θ

1ð Þ
1 θ

1ð Þ
2

 !

− 2α1 I1 − ∂x ln
θ

2ð Þ
1

θ
2ð Þ
2

 ! 
− 2 α21 + α2
� �

=Λ2,
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∂t ln q = −
1
3 I1 − ∂x ln

θ
1ð Þ
2

θ
1ð Þ
1

  !3

− I2 +
1
2 ∂y ln

θ
1ð Þ
2

θ
1ð Þ
1

−
1
2 ∂

2
x ln θ

1ð Þ
1 θ

1ð Þ
2

 !

� I1 − ∂x ln
θ

1ð Þ
2

θ
1ð Þ
1

 !
+ 2
3 I3 −

1
4 ∂t ln

θ
1ð Þ
2

θ
1ð Þ
1

−
1
4 ∂

2
y ln θ

1ð Þ
1 θ

1ð Þ
2

 

+ 1
4 ∂x ln θ

1ð Þ
1

� �3
+ 1
4 ∂x ln θ

1ð Þ
2

� �3�
+ α1 I1 − ∂x ln

θ
1ð Þ
2

θ
1ð Þ
1

 !20@
− I2 +

1
2 ∂y ln

θ
1ð Þ
2

θ
1ð Þ
1

−
1
2 ∂

2
x ln θ

1ð Þ
1 θ

1ð Þ
2

 !!
+ 2 α21 − α2
� �

� I1 − ∂x ln
θ

2ð Þ
2

θ
2ð Þ
1

!3

+ 2 α31 − 2α1α2 + α3
� �0@ 1A =Θ3,

∂t ln r = 1
3 I1 − ∂x ln

θ
2ð Þ
1

θ
2ð Þ
2

!30@ 1A − I2 +
1
2 ∂y ln

θ
2ð Þ
1

θ
2ð Þ
2

−
1
2 ∂

2
x ln θ

1ð Þ
1 θ

1ð Þ
2

 !

� I1 − ∂x ln
θ

2ð Þ
1

θ
2ð Þ
2

 !
+ 2
3 I3 −

1
4 ∂t ln

θ
2ð Þ
1

θ
2ð Þ
2

+ 1
4 ∂

2
y ln θ

2ð Þ
1 θ

2ð Þ
2

 

+ 1
4 ∂x ln θ

2ð Þ
1

� �3
+ 1
4 ∂x ln θ

2ð Þ
2

� �3�
− α1 I1 − ∂x ln

θ
2ð Þ
1

θ
2ð Þ
2

 !20@
− I2 +

1
2 ∂y ln

θ
2ð Þ
2

θ
2ð Þ
1

−
1
2 ∂

2
x ln θ

1ð Þ
1 θ

1ð Þ
2

 !

− 2 α21 − α2
� �

I1 − ∂x ln
θ

2ð Þ
1

θ
2ð Þ
2

 !3

− 2 α31 − 2α1α2 + α3
� ��

=Λ3:

ð64Þ

With the help of the above equations, we arrive at the
algebro-geometric solution of the (2 + 1)-dimensional equa-
tion (1):

u = q = exp
ð x,y,tð Þ

0,0,0ð Þ
Θ1dx +Θ2dy +Θ3dt + c1

 !
,

v = r = exp
ð x,y,tð Þ

0,0,0ð Þ
Λ1dx +Λ2dy +Λ3dt + c2

 !
,

ð65Þ

where c1 and c2 are constants.

5. Summary

The nonisospectral (2 + 1)-dimensional breaking soliton sys-
tem is given by the Lenard gradient sequence for a classical
(1 + 1)-dimensional AKNS spectral problem. Then, the
(2 + 1)-dimensional Lax integrable equation associated with
the AKNS soliton hierarchy (1) is decomposed into solvable
ordinary differential equations with the help of known (1 + 1
)-dimensional soliton equations. With introducing the
hyperelliptic Riemann surface and the Abel-Jacobi coordi-
nates, the flow can be straighten out, and the algebro-
geometric solutions of the (2 + 1)-dimensional soliton sys-
tem (1) are presented by means of the Riemann θ functions.
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