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Hirota’s direct method is one significant way to obtain solutions of soliton equations, but it is rarely studied under the time scale
framework. In this paper, the generalized KdV equation on time-space scale is deduced from one newly constructed Lax equation
and zero curvature equation by using the AKNS method, which can be reduced to the classical and discrete KdV equation by
considering different time scales. What is more, it is the first time that the single-soliton solution of the KdV equation under
the time scale framework is obtained by using the idea of Hirota’s direct method.

1. Introduction

In 1990, measure chain was proposed by Hilger as a bridge
connecting continuous and discrete cases [1]. The time scale
is a special case of the measure chain, which is an arbitrary
nonempty closed subset of the real number ℝ [2], and it
has been widely used in biology, medicine, and physics
[3–8]. For example, in biology, responses of both land sensi-
tivity and Earth’s terrestrial biomes to drought were assessed
by using drought time scale [3]. In medicine, hyperpolarized
3He diffusion MRI was used to compare the lung micro-
structure of healthy subjects and asthmatic patients on two
different time scales [5]. In physics, the interannual time
scale was used to assess the coupling and interaction
between monsoon system and Pacific trade wind field [7].
In addition, it has also been widely used in differential equa-
tions. However, due to the complexity of nonlinear partial
differential equations (PDEs), most of the researches on
time-space scale are still aimed at ordinary differential equa-
tions [9–12]. Therefore, we will focus on the soliton equa-
tions on time-space scale, which are one of the significant
branches of nonlinear partial differential equations [13–15].

There are many methods to solve the soliton equations,
mainly including Riemann-Hilbert’s method [16, 17], Dar-
boux’s transformation [18], Bäcklunds’s transformation

[19], and Hirota’s direct method [20]. Hirota’s direct
method was proposed by Hirota in 1977 to simplify PDEs
by linearizing them with various transformations [21]. Com-
pared with the first three methods or other methods [22–24],
the direct method is more universal because of targeting the
equation itself rather the Lax pair of the soliton equations.

Soliton equations have been widely studied in continu-
ous or discrete case [25–33], such as KdV equation and Toda
lattice equation. The N-soliton solutions for a class of more
generalized KdV equations have been carefully studied via
the Hirota bilinear method [31]. The Wronskian technique
was used to obtain more general soliton solutions of the
KdV equation in the continuous case [32]. In addition,
Casorati’s determinant was used to obtain more general sol-
iton solutions of the Toda lattice in the discrete case [33].
However, soliton equations have rarely been studied in the
simultaneous existence of continuous and discrete case in a
system via direct method. Therefore, in this paper, we focus
on the research of KdV equation under the time scale frame-
work via Hirota’s direct method.

The structure of this paper is as follows. In the second
section, some basic knowledge on time-space scale are intro-
duced. The third section is important that new AKNS sys-
tem is constructed, and specific parameters are selected to
obtain the KdV equation on time-space scale, which can be
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simplified into classical and discrete KdV equation. In Sec-
tion 4, the single-soliton solution of KdV equation under
the time scale framework is constructed by using the idea
of direct method, and the nonlinear dispersion relationship
of the equation is obtained. In particular, solutions of KdV
equation on two different time scales are obtained. The last
part is our conclusion.

2. Time-Space Scale Calculus

Some significant definitions and lemmas for the time-space
scale calculus are recalled, which is used throughout the rest
of this paper [34–37].

Definition 1. For ðt, xÞ ∈ T ×X (time-space scale), backward
jump operators are defined as

ς : T ⟶ T ,
ρ : X⟶X,

ς tð Þ = sup m ∈ T : m < tf g,
ρ xð Þ = sup n ∈X : n < xf g:

ð1Þ

Definition 2. If T has a right-scattered minimum n, define
T κ ≔ T − fng; otherwise, set T κ = T : The backward graini-
ness μ : T κ ⟶ℝ+

0 is defined by μðtÞ = t − ςðtÞ. Assume that
f : T ⟶ℝ is a function and let t ∈ T κ.

(i) If f is nabla differentiable at t, then f is continuous
at t

(ii) If f is continuous at a left-scattered t, then f is nabla
differentiable at t with

∇t f tð Þ = f tð Þ − f ς tð Þ
μ tð Þ ð2Þ

(iii) If t is left-dense, then f is nabla differentiable at t iff
the limit

lim
s⟶t

f tð Þ − f sð Þ
t − s

ð3Þ

exists as a finite number. In this case,

∇t f tð Þ = lim
s⟶t

f tð Þ − f sð Þ
t − s

ð4Þ

(iv) If f is nabla differentiable at t, then

f ς tð Þ = f tð Þ − μ tð Þ∇t f tð Þ ð5Þ

Definition 3. The function b is μ-regressive if

1 − μ tð Þb tð Þ ≠ 0 for all t ∈ T κ: ð6Þ

Define the μ-regressive class of functions on T κ to be

Rμ = b : T ⟶ℝ : b is ld‐continuous and μ‐regressivef g:
ð7Þ

Definition 4. If b ∈Rμ, then we define the nabla exponential
function by

êb t, sð Þ≔ exp
ðt
s

bξμ τð Þ b τð Þð Þ∇τ
� �

for s, t ∈ T , ð8Þ

where the μ-cylinder transformation

bξh zð Þ≔ −
1
h
log 1 − zhð Þ, ð9Þ

and for h = 0, we define bξ0ðzÞ = z for all z ∈ℂ0 ≔ℂ.

Definition 5. If b ∈Rμ and y = êbðt, sÞ, then the first-order
linear dynamic equation

∇y = b tð Þy ð10Þ

is called μ-regressive.

Lemma 6. Take T ×X =ℝ ×ℝ. The backward jump opera-
tors are as follows:

ς tð Þ = sup −∞,tð Þ = t,
ρ xð Þ = sup −∞,xð Þ = x,

ð11Þ

and the graininess functions are as follows:

μ tð Þ = t − ς tð Þ = 0,
ν xð Þ = x − ρ xð Þ = 0:

ð12Þ

Lemma 7. Take T ×X =ℝ ×ℤ. The backward jump opera-
tors are as follows:

ς tð Þ = sup −∞,tð Þ = t,
ρ xð Þ = sup x − 1, x − 2,⋯f g = x − 1,

ð13Þ

and the graininess functions are as follows:

μ tð Þ = t − ς tð Þ = 0,
ν xð Þ = x − ρ xð Þ = 1:

ð14Þ
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Lemma 8. If the f , g : T ⟶ℝ is differentiable on the t ∈ T κ,
the following formula is easily proved by the definition of the
∇:

∇t af + bgð Þ = a∇t f + b∇tg, a, b ∈ℝ,
∇t f gð Þ = ∇t fð Þg + f ς ∇tgð Þ = f ∇tgð Þ + ∇t fð Þgς,

ggς ≠ 0, ∇t
1
g

� �
= −

∇tg
ggς

,

ggς ≠ 0, ∇t
f
g

� �
= ∇t fð Þg − f ∇tgð Þ

ggς
:

ð15Þ

3. KdV Equation on Time-Space Scale

In this section, in order to obtain the KdV equation on time-
space scale, we postulate the Lax pair of equation on time-
space scale:

∇xκ = Cκ,
∇tκ =Dκ,

ð16Þ

where

C =
−iϑ u

l iϑ

 !
,

D =
I J

K −I

 !
:

ð17Þ

Here, i is a imaginary number. κ is a 2-dimensional vec-
tor function of x, t. C and D are 2 × 2 matrices, the elements
of which contain spectral parameter ϑ and potential func-
tions uðx, tÞ and lðx, tÞ with x, t as independent variables.

According to the compatibility condition ∇xtκ = ∇txκ
and ∇-derivative product rules, the zero curvature equation
on time-space scale is obtained:

∇tC − ∇xD + CςD −DρC = 0: ð18Þ

Then substituting Equation (17) into Equation (18),
these relations are obtained:

−∇xI − iϑI + uςK + iϑIρ − lJρ = 0,
∇tu − ∇x J − iϑJ − uςI − uIρ − iϑJρ = 0,
∇t l − ∇xK + lςI + iϑk + iϑKρ + lIρ = 0,

∇xI + lς J − iϑI − uKρ + iϑIρ = 0:

ð19Þ

Taking I, J , and K as the cubic polynomials of ϑ,

I = 〠
3

j=0
ajϑ

j,

J = 〠
3

j=0
bjϑ

j,

K = 〠
3

j=0
cjϑ

j,

ð20Þ

u = U +Uρ

2 ,

l = L + Lρ

2 :

ð21Þ

Then substituting Equations (20) and (21) into Equation
(19) and comparing coefficients of ϑjðj = 0,⋯, 3Þ, these rela-
tions are obtained:

a3 = a03,
b3 = 0,
c3 = 0,
a2 = a02,

b2 = i
U +U ς

2

� �
a03,

c2 = i
L + Lς

2

� �
a03,

b1 = 2 − ν∇xð Þ−1 −i
Uς +Uρς +U +Uρ

2 a02 − ∇x
U +U ς

2 a03

� �
,

c1 = 2 − ν∇xð Þ−1 i
Lς + Lρς + L + Lρ

2 a02 + ∇x
L + Lς

2 a03

� �
,

a1 = ∇−1
x
uςc1 + ucρ1 − lbρ1 − lςb1

2 + a01,

b0 = i 2 − ν∇xð Þ−1 ∇xb1 + uςa1 + uaρ1
À Á

,

c0 = −i 2 − ν∇xð Þ−1 ∇xc1 − lςa1 − laρ1
À Á

,

a0 =
1
2∇

−1
x uςc0 − lbρ0 + ucρ0 − lςb0
À Á

+ a00:

ð22Þ

The evolution equations on time-space scale are
obtained:

∇tu = ∇xb0 + uςa0 + ua0
ρ,

∇t l = ∇xc0 − lςa0 − la0
ρ:

ð23Þ
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Taking specific values

a00 = a01 = a02 = 0,
a03 = −4i,
l = −1,

ð24Þ

then the KdV equation on time-space scale is obtained:

In the case μðtÞ = 0, νðxÞ ≠ 0, Equation (25) becomes

−4∇3
x 2 − ν∇xð Þ−2U − 2 − ν∇xð Þ−1∇x 2 − ν∇xð ÞU½ �2

− 2 − ν∇xð ÞU½ � ∇xUð Þ = 2 − ν∇xð ÞU
2

� �
t

:

ð26Þ

In the following, two special cases of Equation (26) are
given, respectively.

Case 1. Taking T ×X =ℝ ×ℝ, we find μðtÞ = 0, νðxÞ = 0:
Equation (22) is reduced to

u =U ,
b0 = −uxx − 2u2,

a0 = −uxx,
l = −1,
c0 = 2u:

ð27Þ

The classical KdV equation is obtained:

ut + 6uux + uxxx = 0: ð28Þ

Case 2. Taking T ×X =ℝ ×ℤ, we find μðtÞ = 0, νðxÞ = 1:

f ς x, tð Þ = f x, tð Þ,
f ρ x, tð Þ = Ef x, tð Þ = f x, tð Þ − 1 − Eð Þf x, tð Þ,

ð29Þ

where E is the shift operator.

Equation (26) becomes

−4 1 − Eð Þ3 1 + Eð Þ−2U − 1 + Eð Þ−1 1 − Eð Þ 1 + Eð ÞU½ �2

− 1 + Eð ÞU½ � 1 − Eð ÞU½ � = 1 + Eð ÞU
2

� �
t

:

ð30Þ

4. Direct Method of KdV Equation on Time-
Space Scale

In this section, we utilize the idea of direct method to trans-
form the KdV equation and obtain its single-soliton solution
on time-space scale.

To eliminate the negative power term, assuming

U = 1
4 2 − ν∇xð Þ2F, ð31Þ

∇t
U +Uρ

2

� �
= i 2 − ν∇xð Þ−1∇x ∇x 2 − ν∇xð Þ−1 2i∇x U +Uςð Þð Þ + U ς +Uρς

2 i U +U ςð Þ + U +Uρ

2 i Uρ +U ςρð Þ
� �

+ Uσ +Uρς

2
1
2∇

−1
x

Uς +Uρς

2 2 − ν∇xð Þ−1 U +U ς +Uρ +U ςρð Þ
�

+ i ∇x 2 − ν∇xð Þ−1 2i∇x U +U ςð Þð Þ + Uς +Uρς

2 i U +Uςð Þ + U +Uρ

2 i Uρ +U ςρð Þ
� �

+U +Uρ

2 1 − ν∇xð Þ 2 − ν∇xð Þ−1 U +U ς +Uρ +U ςρð Þ
�

+ U +Uρ

2 1 − ν∇xð Þ 12∇
−1
x

U ς +Uρς

2 2 − ν∇xð Þ−1 U +Uς +Uρ +U ςρð Þ
�

+ i ∇x 2 − ν∇xð Þ−1 2i∇x U +U ςð Þð Þ + Uς +Uρς

2 i U +Uςð Þ + U +Uρ

2 i Uρ +U ςρð Þ
� �

+U +Uρ

2 1 − ν∇xð Þ 2 − ν∇xð Þ−1 U +U ς +Uρ +U ςρð Þ
�
:

ð25Þ
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Equation (26) becomes

1
8 2 − ν∇xð Þ3F
� �

t

+ ∇3
xF + 2 − ν∇xð Þ−1∇x

1
4 2 − ν∇xð Þ3F
� �2

+ 1
4 2 − ν∇xð Þ3F
� �

· 1
4∇x 2 − ν∇xð Þ2F
� �

= 0:

ð32Þ

Then assuming

F = ∇xw, ð33Þ

it is easy to obtain

1
8 2 − ν∇xð Þ4wÂ Ã

t
+ 2 − ν∇xð Þ∇3

xw + 1
4 2 − ν∇xð Þ3∇xw
� �2

+ 2 − ν∇xð Þ 1
4 2 − ν∇xð Þ2∇xw
� �2

= 0:

ð34Þ

Finally, assuming

w = 2∇xG
G

, ð35Þ

then the formula for G is obtained:

1
4 2 − ν∇xð Þ4 ∇xG

G

� �� �
t

+ 2 2 − ν∇xð Þ∇3
x

∇xG
G

� �

+ 1
2 2 − ν∇xð Þ3∇x

∇xG
G

� �� �2

+ 2 − ν∇xð Þ 1
2 2 − ν∇xð Þ2∇x

∇xG
G

� �� �2
= 0:

ð36Þ

In order to get the single-solution of KdV equation on
time-space scale, the perturbation method is used to expand
G into a power series with a small parameter ε:

G = 1 + εg1 + ε2g2+⋯: ð37Þ

Substituting the expansion of G into Equation (36), rear-
range it according to the power of ε:

When

g1 = eat êb xð Þ,
gi = 0, i ≥ 2,

ð39Þ

the relation between ν and b is obtained:

2 − νbð Þνb5 −ν4b4 + 9ν3b3 − 21ν2b2 + 26νb − 12
À Á

= 0:
ð40Þ

In the following, several situations are discussed.

When ν ≠ 2/b,

a = −8 2 − νbð Þb3
16 − 32νb + 24ν2b2 − 8ν3b3 + ν4b4

,

u = 1
4 2 − ν∇xð Þ3 · b2

1/ eat êb xð Þð Þeat êb xð Þð Þ + 2 + 1 − νbð Þeat êb xð Þ − νb

" #
:

ð41Þ

The relation between a and b is known as the nonlinear
dispersion relation, and the expression of single-soliton solu-
tion is given.

Then, we discuss two special cases.

Case 1. Taking T ×X =ℝ ×ℝ, we find μðtÞ = 0, νðxÞ = 0:

ε0 : 0 = 0,
ε1 : 2 − ν∇xð Þ4∇xg1t

Â Ã
+ 8 2 − ν∇xð Þ∇4

xg1 = 0,

ε2 : 2 − ν∇xð Þ4∇xg2t
Â Ã

+ 2 − v∇xð Þ4 ∇xg1tð Þg1 − ∇xg1ð Þg1t½ �
+ 8 2 − ν∇xð Þ ∇4

xg2 + ∇4
xg1

À Á
g1 − ∇3

xg1
À Á

∇xg
ρρ
1

À Á
− 2 ∇3

xg1
À Á

∇xg
ρ
1

À Á
− 2 ∇2

xg1
À Áρ ∇2

xg
ρ
1

À Á
− ∇3

xg1
À Á

∇xg1ð Þ − ∇2
xg1

À Áρ ∇2
xg1

À Áh i
+ 2 − ν∇xð Þ3∇2

xg1
Â Ã2 + 2 − ν∇xð Þ 2 − ν∇xð Þ2∇2

xg1
Â Ã2 = 0,

⋮

ð38Þ
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The classical KdV equation is obtained:

ut + 6uux + uxxx = 0: ð42Þ

Setting

g1 = eη1 , η1 = at + bx + η01, ð43Þ

it is easy to obtain the classic nonlinear dispersion relation
and the expression of single-soliton solution of KdV equa-

tion.

a = −b3,

u = b2

2 sec h2 at + bx + η01
2 :

ð44Þ

The graph of the single-soliton solution is presented in
Figure 1.

Case 2. Taking T ×X =ℝ ×ℤ, we find μðtÞ = 0, νðxÞ = 1:

At this time, the nonlinear dispersion relation and the
expression of single-soliton solution are given, respectively.

When ν = 2/b, u = 0: This is a trivial solution.

5. Conclusions

In this paper, a method of generating integrable system on
time-space scale is introduced. Starting from the ∇-dynam-
ical system, the coupled KdV equation on time-space scale
is derived from the Lax pair and zero curvature equation.
When different time scales are considered, different soliton
equations can be obtained. In addition, the variable transfor-
mation of the KdV equation on time-space scale is con-
structed to obtain its single-soliton solution.

As we all know, the KdV equation appears in the study
of many different physical systems, such as water waves,

plasma physics, anharmonic lattices, and elastic rods, which
serves as a model equation governing weakly nonlinear long
waves whose phase speed attains a simple maximum for
waves of infinite length [32] and describes the long-time
evolution of dispersive waves of small but finite amplitude
[38]. In the continuous case, the nonlinear dispersion rela-
tion in the single-soliton solution of the classical KdV equa-
tion explains the equilibrium phenomenon of shallow water
wave motion. In the discrete case, the single-soliton solution
of the KdV equation can explain some basic principles in
quantum mechanics [39].

The results obtained in this paper effectively unify the
continuous and discrete cases. Equations (44) and (45) are
the nonlinear dispersion relations in the classical continuous
and discrete cases, respectively. In addition, we expect this
model to describe the phenomenon which contain both

0.05
|u
|

20

t

x

–20
–15 –10 –5 5 10 150

0

0.1

0.15

0.2

0

Figure 1: The single-soliton solution with b = 0:6 and η01 = 0:6.

a = −8 2 − bð Þb3
16 − 32b + 24b2 − 8b3 + b4

,

u = 1
4 1 + Eð Þ3 · b2

1/ eat 1/ 1 − bð Þð Þx−x0ð Þeat 1/1 − bð Þx−x0ð Þ + 2 + 1 − bð Þeat 1/ 1 − bð Þð Þx−x0 − b

" #
:

ð45Þ
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continuous and discrete case and provide a new idea for
solving the complex model. Due to the limitations of com-
puter algorithms, it is difficult to obtain its dynamic graph
in this case, and the problem of defining an operator on
time-space scale to make the equation billinearized and fur-
ther solved remains to be studied. Therefore, we mainly
focus on finding a more efficient way to simplify the struc-
ture of equation (25) or solution (45) in the future research
and apply this model in more fields.
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