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The conformable fractional triple Laplace transform approach, in conjunction with the new Iterative method, is used to examine
the exact analytical solutions of the (2 + 1)-dimensional nonlinear conformable fractional Telegraph equation. All the fractional
derivatives are in a conformable sense. Some basic properties and theorems for conformable triple Laplace transform are
presented and proved. The linear part of the considered problem is solved using the conformable fractional triple Laplace
transform method, while the noise terms of the nonlinear part of the equation are removed using the novel Iterative method’s
consecutive iteration procedure, and a single iteration yields the exact solution. As a result, the proposed method has the
benefit of giving an exact solution that can be applied analytically to the presented issues. To confirm the performance,
correctness, and efficiency of the provided technique, two test modeling problems from mathematical physics, nonlinear
conformable fractional Telegraph equations, are used. According to the findings, the proposed method is being used to solve
additional forms of nonlinear fractional partial differential equation systems. Moreover, the conformable fractional triple
Laplace transform iterative method has a small computational size as compared to other methods.

1. Introduction

The fractional formulation of differential equations is a develop-
ment of the fractional calculus, whichwas initially introduced in
1695 when L’Hôpital and Leibniz addressed the expansion of
the integer-order derivative to the order 1/2 derivative. Both
Euler and Lacroix researched the fractional-order derivative
and defined it using the power function’s nth derivative formula-
tion [1]. Fractional partial differential equations (FPDEs) have
become increasingly important in recent years for modeling a
wide range of applications in real-world sciences and engineer-
ing, including fluid dynamics, mathematical biology, electrical
circuits, optics, and quantum mechanics [2]. As a result, many
researchers have focused on solving FPDEs in recent decades
[3, 4]. Since many physical and mechanical systems contain
internal damping,whichmakes it impossible toderive equations
describing the physical behavior of a non-conservative system
using the traditional energy-based approach, fractional deriva-

tive formulations can be used to model them more accurately.
In non-conservative systems, fractional derivative formulations
can be constructed by minimizing specific functionals contain-
ing fractional derivative terms using techniques from the calcu-
lus of variations [5]. Many definitions of fractional derivatives
and integrals have been published in the literature, including
Riemann-Liouville fractional definitions [6], Caputo fractional
definitions [7], Grünwald-Letnikov fractional derivatives [8],
and Hadamard fractional integral [9]. All known fractional
derivatives satisfy one of the well-known properties of classical
derivatives, namely, the linear property. However, the other
properties of classical derivatives, such as the derivatives of a
constant are zero, the product rule, quotient rule, and the chain
rule either do not hold or are too complicated for many frac-
tional derivatives. For instance, Dα

að1Þ = 0 does not fulfill the
Riemann-Liouville definition. In Caputo’s definition, f ðxÞ is
assumed to be differentiable; otherwise, one cannot use such a
definition. Moreover, Liouville’s theorem in the fractional
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setting does not hold. Therefore, it is clear that all definitions of
fractional derivatives seem deficient regarding certain mathe-
matical properties, such as Rolle’s theorem and the mean value
theorem [10].

To resolve these issues, Khalil et al. [11] recently introduced
anovel fractional derivative called conformable fractional deriv-
ative (CFD) in 2014. This definition is formulated as follows:

Definition 1 (see [12–14]). For the initial real value a, the
conformable fractional derivative Dα

a f ðxÞ of a real
function f : ½a,∞Þ⟶ℝ, α ∈ ð0, 1� is defined as

Dα
a f xð Þ = lim

h⟶0

f x + h x − að Þ1−α� �
− f xð Þ

h
, for all x > a, α ∈ 0, 1ð �:

ð1Þ

The initial value a can be zero, and if the limit exists, fðxÞ
is said to be partially α − differentiable at t > 0.

The CFD’s Definition 1 is very similar to the classical
derivative. It depends upon the basic limit definition and
consequently allows the easier extension of some typical the-
orems in calculus that the existing definitions of fractional
derivatives did not allow, due to its simple nature. Along
with the CFD’s Definition 1, various classical properties,
such as the mean value theorem and the product, quotient,
and chain rules, are fulfilled. Moreover, this definition is
provided by the Leibniz rule, which other fractional deriva-
tives cannot achieve (see [15]). Another study [16] con-
ducted by Abdeljawad presented the left and right
conformable fractional derivatives and fractional integrals
of higher order concepts. In addition, the authors also
defined the fractional chain rule, fractional integration by
parts formulae, Gronwall inequality, fractional power series
expansion, and fractional Laplace transform. Following this
definition, a new approach for finding fractional operators
was introduced by Antagan and Baleanu [17] with a nonsin-
gular Mittag-Leffler kernel with a memory effect. Growing
attention has been paid to exploring the conformable frac-
tional derivative due to the enormous number of its mean-
ingful applications in many fields of science. Recently, in
[18], Rabha et al. introduced different vitalization of the
growth of COVID-19 by using controller terms based on
the concept of conformable calculus. Ghanbari et al. [19]
studied the dynamic behavior of allelopathic stimulator phy-
toplankton species with Mittag-Leffler (ML) law by using the
Atangana-Baleanu fractional derivative (ABC). The inter-
ested reader might consult the monograph [20–22] for more
information.

The conformable telegraph equations have a wide range
of applications in science and engineering, with the most
common application being in optimizing propagation-
oriented and propagating electrical communication systems
[23, 24]. Therefore, as one of the crucial equations in differ-
ent fields of sciences, many scholars have recently focused
their efforts on investigating the solutions of conformable
fractional telegraph equations using various methodologies.
Using a double conformable Sumudu matching transfor-

mation approach, [25] discovered accurate and convergent
numerical solutions of linear space-time matching tele-
graph fractional equations in 2021. Using the cosine family
of linear operators, Bouaouid et al. [26] established the
existence, uniqueness, and stability of the integral solution
of a nonlocal telegraph equation in the conformable time-
fractional derivative (see [12, 27–30] for more related work
on the solution of conformable telegraph equations).

Because the Laplace transform method (LTM) [13, 14,
31] is an integral transform method for getting the
approximate and precise solutions of FDEs, many authors
are still working hard to develop and generalize this trans-
form so that it can be used with the newly created frac-
tional derivatives and integrals. For instance, the authors
of the paper [32] present a fractional Laplace transform
in terms of conformable fractional-order Bessel functions
(CFBFs). They also established several important formulas
of the fractional Laplace integral operator acting on the
CFBFs and give the solutions of a generalized class of frac-
tional kinetic equations associated with the CFBFs in view
of the fractional Laplace transform method. Ozan €ozkan
and Ali Kurt in 2018 proposed a new generalization of
the double Laplace transform called the conformable dou-
ble Laplace transform (CDLT), which they used to solve
the conformable fractional partial heat equation and the
conformable fractional partial Telegraph equation [33].
This method was later used by many authors to handle
a variety of real-world challenges resulting from various
occurrences such as conformable fractional partial differ-
ential equations, Singular conformable pseudoparabolic
equations, and system of conformable fractional differen-
tial equations [34–36].

Several researchers have recently extended the conform-
able double Laplace transform method to the conformable
triple Laplace transform method (CTLTM) to obtain the
exact/approximate solution of two-dimensional nonlinear
CFDEs that occur in a variety of natural events. The
conformable triple Laplace transform reduces a linear differ-
ential equation to an algebraic equation, which can then be
solved by the formal rules of algebra. The original differen-
tial equation can then be solved by applying the inverse
triple conformable Laplace transform. In comparison to
other known approaches, the conformable triple Laplace
transform method provides rapid convergence of the exact
solution without any restrictive assumptions about the
answer. Unfortunately, some complex nonlinear partial
differential equations that arise in mathematical physics,
engineering, and other relevant branches of research that
involve nonlinear phenomena are not solved by this tech-
nique. In such cases, the conformable triple Laplace trans-
form method is frequently used with other efficient
approaches, such as the Adomian decomposition method
and homotopy analysis method to tackle a similar problem.
For example, the conformable triple Laplace transform
decomposition was employed by the authors in [37] to dis-
cover the solution of linear and nonlinear homogeneous
and nonhomogeneous partial fractional differential equa-
tions. This method’s important result and theorems are also
discussed. In 2022, [38] gives some key discoveries on
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conformable fractional partial derivatives and shows how to
solve nonlinear partial differential equations in two dimen-
sions using the conformable triple Laplace and Sumudu
transform method in conjunction with the Adomian decom-
position approach. In paper [39], the authors present the
solution of the incompressible second-grade fluid models
by using the generalized ρ-Laplace transform method in
conjunction with the homotopy analysis method in the sense
of the Liouville-Caputo fractional derivative.

The main objective of this paper is to introduce the new
method called the conformable triple Laplace transform iter-
ative method (CTLTIM) to investigate an accurate solution
to the two-dimensional nonlinear conformable telegraph
equation under the given initial and boundary conditions.
This method is the combination of the two powerful tech-
niques, the conformable triple Laplace transform method
(CTLTM) and the new iterative method (NIM) introduced
by Daftardar-Gejji and Jafari [40]. In practical scientific
areas, solving integer and fractional-order nonlinear differ-
ential equations with linear and nonlinear ordinary and par-
tial differential equations utilizing the NIM is a fascinating
problem [41]. The iterative strategy employed in this
method produces a series that can be summed to obtain an
analytical formula or utilized to construct an appropriate
approximation with a faster convergent series solution [42,
43]. The approximation error can be reduced by properly
truncating the series [44]. Recently, the NIM is combined
with other known methods like the Sumudu transform
method and Laplace transform method to obtain the
approximate or exact solution of the nonlinear partial differ-
ential equation. The authors of the paper [45] successfully
implemented the combined double Sumudu transform with
the iterative method to get the approximate analytical solu-
tion of the one-dimensional coupled nonlinear sine-
Gordon equation (NLSGE) subject to the appropriate initial
and boundary conditions which cannot be solved by apply-
ing double Sumudu transform only. Through this approach,
the solution of the linear part was solved by the double
Sumudu transform method, and the nonlinear part of the
problem was solved by a successive iterative method.
Deresse et al. [46] present the triple Laplace transform
coupled with an iterative method to obtain the exact solu-
tion of the two-dimensional nonlinear sine-Gordon equa-
tion (NLSGE) subject to the appropriate initial and
boundary conditions. The noise term in this equation van-
ished by a successive iterative method. As a result, the pro-
posed technique has the advantage of producing an exact
solution, and it is easily applied to the given problems ana-
lytically. However, the amalgamation of the conformable
triple Laplace transform method and the new iterative
method that is CTLTIM has not previously been studied
to solve the two-dimensional nonlinear fractional telegraph
equations; this is the main motivation of the current
research work.

The proposed CTLTIM has been utilized to solve the
problems as follows. First, the source term f ððxβ/βÞ, ðyγ/γÞ,
ðtα/αÞÞ of the considered problem (2) is decomposed into
two functions namely f1ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ and f2ððxβ/
βÞ, ðyγ/γÞ, ðtα/αÞÞ. The importance of this decomposition

is that the part f1ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ with the terms in
Equation (2) always leads to the simple algebraic expression
while applying the conformable triple Laplace transform
and the part f2ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ is combined with
the nonlinear term of Equation (2) to avoid noise terms
in the iteration process. Next, the conformable triple
Laplace transform method is applied to the linear part of
the problem. Finally, the successive iterative method is
applied to the nonlinear part of the problem as it intro-
duced in Section 4. While applying this iterative method,
the noise terms in the iteration process are avoided, and a
single iteration gives the exact solution. Therefore, using
the described method one can obtain the exact solution to
nonlinear partial fractional derivatives with less computa-
tional size. Moreover, the proposed approach allows the
user with analytical approximation, and it is applied directly
to the problems without requiring any discretization, linear-
ization, or perturbation parameters like Adomian polyno-
mials and SOS polynomials ([42, 47] see the references
therein). This is the main advantage of the proposed
method CFTLTIM over the other existing approaches in
the literature.

The following two-dimensional nonlinear conformable
telegraph equation was the subject of the current study (for
α = β = 1 see [30]):

∂2αu
∂t2α

+ a
∂αu
∂tα

+ bN u
xβ

β
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γ

γ
, t

α

α

� �� �
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ð2Þ
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ð3Þ

and boundary conditions (Cauchy type BCs)
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α

α

� �
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α

α

� �
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γ

γ
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α

α

� �
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γ
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α

α

� �
,

ð4Þ
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β
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α

α

� �
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xβ

β
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α

α

� �
, ∂γ
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u

xβ

β
, 0, t

α

α

� �

= g4
xβ

β
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α

α

� �
,

ð5Þ

where a, b and c are known real constants; uððxβ/βÞ, ðyγ/γÞ,
ðtα/αÞÞ denotes either the voltage or current through the
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two-dimensional conductor at position ðx, yÞ at the time t; N
is the general continuous nonlinear resorting term; and f
ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ is the source term which is
assumed to be analytic in time t. Equation (2) reduces
to the undamped telegraph equation in two space variables
when α = 0, and to the damped one when α > 0.

The rest of the paper is organized as follows: Section 2
covers the definitions, properties, and theorems of conform-
able fractional derivatives. Section 3 contains some basic
CFTLTM definitions, properties, and theorem proofs. In
Section 4, the details of the new iterative method and its con-
vergence are discussed. Section 5 displays the model’s
description and how CTLTIM is used to obtain the exact
analytical solutions to the specified conformable fractional
telegraph equations. In Section 6, we demonstrate the pro-
posed method’s reliability, convergence, and efficiency using
two exemplary instances. Finally, Section 7 outlines conclud-
ing observations.

2. Conformable Fractional Derivative

This section introduces the essential definitions and features
of conformable fractional partial derivatives, which are then
applied to the current topic.

Definition 2 (see [48]). The fractional derivative of a suitable
mapping f by Riemann-Liouville is given as

Dα
x f xð Þ = 1

Г n − αð Þ
d
dx

� �nðx
0
x − tð Þn−α−1f tð Þdt, n − 1 < α ≤ n:

ð6Þ

Caputo fractional derivative of a suitable mapping f is
given as

Dα
xf xð Þ = 1

Г n − αð Þ
ðx
0
x − tð Þn−α−1f nð Þ tð Þdt, n − 1 < α ≤ n, ð7Þ

where α is the order of fractional derivative and α ∈ Z+.
If this limit exists, f is said to be partially α − differen-

tiable at t > 0.

Definition 3 (see [37, 38]). Given a function f : ℝ+ ×ℝ+ ×
ℝ+, then the conformable partial fractional derivatives
(CPFDs) of f ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ having order α, β and γ
are defined by.

where 0 < α, β, γ ≤ 1, xβ/β, yγ/γ, tα/α > 0, and ∂βx f = ð∂β/∂xβ
Þf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ, ∂γy f = ð∂γ/∂yγÞf ððxβ/βÞ, ðyγ/γÞ, ðtα
/αÞÞ, and ∂αt f = ð∂α/∂tαÞf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ are called
the fractional partial derivatives of orders α, β and γ,
respectively.

Theorem 4 (see [37, 38]). Let α, β, γ ∈ ð0, 1� and f ððxβ/βÞ,
ðyγ/γÞ, ðtα/αÞÞ be differentiable at a point forxβ/β, yγ/γ, tα/
α > 0. Then,

(1) ∂βx f ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = ð∂β/∂xβÞf ððxβ/βÞ, ðyγ/γ
Þ, ðtα/αÞÞ = x1−βð∂/∂xÞf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ:

(2) ∂γy f ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = ð∂γ/∂yγÞf ððxβ/βÞ, ðyγ/γ
Þ, ðtα/αÞÞ = y1−γð∂/∂yÞf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ:

(3) ∂αt f ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = ð∂α/∂tαÞf ððxβ/βÞ, ðyγ/γ
Þ, ðtα/αÞÞ = t1−αð∂/∂tÞf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ:

Proof (1). With the help of CFPD definition, we have

∂βx f =
∂β

∂xβ
f

xβ

β
, y

γ

γ
, t

α

α

� �
= lim

h⟶0

f xβ/β
� �

+ hx1−β, yγ/γð Þ, tα/αð Þ
� �

− f xβ/β
� �

, yγ/γð Þ, tα/αð Þ� �
h

,

∂γy f =
∂γ

∂yγ
f

xβ

β
, y

γ

γ
, t

α

α

� �
= lim

k⟶0

f xβ/β
� �

, yγ/γð Þ + ky1−γ, tα/αð Þ� �
− f xβ/β

� �
, yγ/γð Þ, tα/αð Þ� �

k
,

∂αt f =
∂α

∂tα
f

xβ

β
, y

γ

γ
, t

α

α

� �
= lim

ε⟶0

f xβ/β
� �

, yγ/γð Þ, tα/αð Þ + εt1−α
� �

− f xβ/β
� �

, yγ/γð Þ, tα/αð Þ� �
ε

,

8>>>>>>>>>><
>>>>>>>>>>:

ð8Þ

∂βx f =
∂β

∂xβ
f

xβ

β
, y

γ

γ
, t

α

α

� �
= lim

h⟶0

f xβ/β
� �

+ hx1−β, yγ/γð Þ, tα/αð Þ
� �

− f xβ/β
� �

, yγ/γð Þ, tα/αð Þ� �
h

: ð9Þ
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Using λ = hx1−β in the above equation, we get

We can prove the results of (2) and (3) in the same way.

Proposition 5. Let α, β, γ ∈ ð0, 1� and a, b, c ∈ℝ, l,m, n ∈ℕ.
Then, we have the following:

(i) ð∂β/∂xβÞðaf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ + bgððxβ/βÞ, ðyγ
/γÞ, ðtα/αÞÞÞ = að∂β/∂xβÞf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ +
bð∂β/∂xβÞgððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ

(ii) ð∂β/∂xβÞð f gÞððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = gððxβ/βÞ, ðyγ
/γÞ, ðtα/αÞÞð∂β/∂xβÞf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ + f ððxβ
/βÞ, ðyγ/γÞ, ðtα/αÞÞð∂β/∂xβÞgððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ

(iii) ð∂β/∂xβÞð f /gÞððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = gððxβ/βÞ, ð
yγ/γÞ, ðtα/αÞÞð∂β/∂xβÞf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ − f ðð
xβ/βÞ, ðyγ/γÞ, ðtα/αÞÞð∂β/∂xβÞgððxβ/βÞ, ðyγ/γÞ, ðtα/α
ÞÞ/ðgððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞ2

provided that gððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ≠0.

(iv) ð∂α/∂tαÞf ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = 0, if ððxβ/βÞ,
ðyγ/γÞ, ðtα/αÞÞ was a function depending only on
ðxβ/βÞ&ðyγ/γÞ

(v) ð∂β+γ+α/∂xβ∂yγ∂tαÞððxβ/βÞmðyγ/γÞnðtα/αÞlÞ =mnl

ðxβ/βÞm−βðyγ/γÞn−γðtα/αÞl−α

(vi) ð∂β/∂xβÞððxβ/βÞmðyγ/γÞnðtα/αÞlÞ =mðxβ/βÞm−1

ðyγ/γÞnðtα/αÞl, ð∂γ/∂yγÞððxβ/βÞmðyγ/γÞnðtα/αÞlÞ =
nðxβ/βÞmðyγ/γÞn−1ðtα/αÞland ð∂α/∂tαÞððxβ/βÞm
ðyγ/γÞnðtα/αÞlÞ = lðxβ/βÞmðyγ/γÞnðtα/αÞl−1

(vii) ð∂β/∂xβÞðeaðxβ/βÞ+bðyγ/γÞ+cðtα/αÞÞ =
aeaðx

β/βÞ+bðyγ/γÞ+cðtα/αÞ, ð∂γ/∂yγÞðeaðxβ/βÞ+bðyγ/γÞ+cðtα/αÞÞ
= beaðx

β/βÞ+bðyγ/γÞ+cðtα/αÞ and ð∂α/∂tαÞð
eaðx

β/βÞ+bðyγ/γÞ+cðtα/αÞÞ = ceaðx
β/βÞ+bðyγ/γÞ+cðtα/αÞ

(viii) ð∂β/∂xβÞ sin ðxβ/βÞ cos ðtα/αÞ = cos ðxβ/βÞ cos ðtα
/αÞ andð∂γ/∂yγÞ sin ðxβ/βÞ cos ðyγ/γÞ cos ðtα/αÞ =
−sin ðxβ/βÞ sin ðyγ/γÞ cos ðtα/αÞ:

3. Some Results and Theorems of the
Conformable Triple Laplace Transform

In this section, we will go over the fundamental concepts of
fractional conformable Laplace transforms as well as certain
results that will be useful later. The conformable triple
Laplace transform is also defined (see [36–39, 46] for more
information).

Definition 6. Let the function u : ð0,∞Þ⟶ℝ and 0 < α ≤ 1.
The conformable Laplace transform (CLT) of the exponen-
tial of order α function uðtα/αÞ is thus defined and denoted
by

Lαt u
tα

α

� �� �
=Uα sð Þ =

ð∞
0
e−s

tα
αð Þu tα

α

� �
tα−1dt, t > 0: ð11Þ

Definition 7. Let uððxβ/βÞ, ðyγ/γÞÞ be a piece-wise continu-
ous function of exponential order on the domain D of ℝ+

×ℝ+. After that, the conformable double Laplace transform
(FCDLT) of uððxβ/βÞ, ðyγ/γÞÞ is defined and denoted by

LβxL
γ
y u

xβ

β
, y

γ

γ

� �� �
=Uβ,γ k, pð Þ =

ð∞
0

ð∞
0
e−β

xβ

β

� �
−γ yγ

γ

� �
u

� xβ

β
, y

γ

γ

� �
xβ−1yγ−1dxdy,

ð12Þ

where xβ/β, yγ/γ > 0, k, p ∈ℂ, β, γ ∈ ð0, 1�:
Now, we define fractional conformable triple Laplace

transform, for α, β, γ ∈ ð0, 1� and k, p, s ∈ℂ are the
Laplace variables.

Definition 8. Let uððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ be a piece-wise
continuous function of exponential order on the domain D
of ℝ+ ×ℝ+ ×ℝ+. After that, the conformable triple Laplace
transform (FCDLT) of uððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ is defined
and denoted by

∂βx f =
∂β

∂xβ
f

xβ

β
, y

γ

γ
, t

α

α

� �
= lim

λ⟶0

f xβ/β
� �

+ λ, yγ/γð Þ, tα/αð Þ� �
− f xβ/β

� �
, yγ/γð Þ, tα/αð Þ� �

λxβ−1
,

= x1−β lim
λ⟶0

f xβ/β
� �

+ λ, yγ/γð Þ, tα/αð Þ� �
− f xβ/β

� �
, yγ/γð Þ, tα/αð Þ� �

λ

= x1−β f
xβ

β
, y

γ

γ
, t

α

α

� �
:

ð10Þ
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LβxL
γ
yL

α
t u

xβ

β
, y

γ

γ
, t

α

α

� �� �
=Uα,β,γ k, p, sð Þ

=
ð∞
0

ð∞
0

ð∞
0
e−k

xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þu

� xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1dxdydt,

ð13Þ

where k, p, s ∈ℂ are Laplace variables of xβ/β, ðyγ/γÞ and
ðtα/αÞ > 0,, respectively, and α, β, γ ∈ ð0, 1�:

The conformable inverse triple Laplace transform, abbre-
viated by uððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ, is defined as follows:

u
xβ

β
, y

γ

γ
, t

α

α

� �
= L−1k L−1p L−1s Uα,β,γ k, p, sð Þ� �

= 1
2πi

ðβ+i∞
β−i∞

ek
xβ

β

� � 1
2πi

ðγ+i∞
γ−i∞

ep
yγ

γ

� � 1
2πi

ðα+i∞
α−i∞

es
tα
αð ÞUα,β,γ k, p, sð Þds

� 	
dp

" #
dk:

ð14Þ

Definition 9. The following is the definition of a unit step or
Heaviside unit step function:

H
xβ

β

� �
− a, yγ

γ

� �
− b, tα

α

� �
− c

� �
=

1 ; x
β

β
> a, y

γ

γ
> b, t

α

α
> c

0 ; x
β

β
< a, y

γ

γ
< b, t

α

α
< c

8>>><
>>>:

9>>>=
>>>;
:

ð15Þ

Theorem 10. If LβxL
γ
yLαt ðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞ =Uα,β,γðk,

p, sÞ, LβxLγyLαt ðvððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞ =Vα,β,γsðk, p, sÞ, and
a, b and c are constants then the followings hold:

(1) Linearity property:

LβxL
γ
yL

α
t au

xβ

β
, y

γ

γ
, t

α

α

� �
+ bv

xβ

β
, y

γ

γ
, t

α

α

� �� �

= aLβxL
γ
yL

α
t u

xβ

β
, y

γ

γ
, t

α

α

� �
+ bLβxL

γ
yL

α
t v

xβ

β
, y

γ

γ
, t

α

α

� �
= aUα,β,γ k, p, sð Þ + bVα,β,γ k, p, sð Þ

ð16Þ

(2) LβxL
γ
yLαt ðcÞ = c/kps, where c is the constant

(3) LβxL
γ
yLαt ððxβ/βÞ

mðyγ/γÞnðtα/αÞlÞ = Γðm + 1ÞΓðn + 1ÞΓ
ðl + 1Þ/km+1pn+1sl+1, where Γð:Þ is the gamma func-
tion. Note that Γðn + 1Þ = n!, for n = 0, 1, 2, 3,⋯.

(4) LβxL
γ
yLαt ðeaðx

β/βÞ+bðyγ/γÞ+cðtα/αÞÞ = LxLyLtðeax+by+ctÞ = 1/ð
k − aÞðp − bÞðs − cÞ and LβxL

γ
yLαt ðeaðx

β/βÞ−bðyγ/γÞ−cðtα/αÞÞ
= LxLyLtðeax−by−ctÞ = 1/ðk + aÞðp + bÞðs + cÞ

(5) The conformable triple Laplace transform’s first shift-
ing theorem:

If LβxL
γ
yLαt ðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞ =Uα,β,γðk, p, sÞ, then

LβxL
γ
yLαt ðeaðx

β/βÞ+bðyγ/γÞ+cðtα/αÞuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞ =Uα,β,γ
ðk − a, p − b, s − cÞ.

(6) LβxL
γ
yLαt ðsin ðaðxβ/βÞÞ sin ðbðyγ/γÞÞ sin ðcðtα/αÞÞÞ = a

bc/ðk2 + a2Þðp2 + b2Þðs2 + c2Þ,

LβxL
γ
yLαt ðcos ðaðxβ/βÞÞ cos ðbðyγ/γÞÞ cos ðcðtα/αÞÞÞ =

kps/ðk2 + a2Þðp2 + b2Þðs2 + c2Þ
(7) If LβxL

γ
yLαt ðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞ =Uα,β,γðk, p, sÞ,

then LβxL
γ
yLαt ððxβ/βÞmðyγ/γÞnðtα/αÞluððxβ/βÞ, ðyγ/γÞ, ð

tα/αÞÞÞ = ð−1Þm+n+lðdm+n+l/dkmdpndslÞUα,β,γðk, p, sÞ:

Proof (7). Using the definition of the conformable triple
Laplace transform method, the demonstration of outcomes
1–6 is simple. As a result, we will show how to prove result
7 using the conformable triple Laplace transform definition.

LβxL
γ
yL

α
t u

xβ

β
, y

γ

γ
, t

α

α

� �� �
=Uα,β,γ k, p, sð Þ
=
ð∞
0

ð∞
0

ð∞
0
e−k

xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þu

Än
xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1dxdydt:

ð17Þ

Differentiating with respect to k, m − times, we get

dm

dkm
Uα,β,γ k, p, sð Þ = dm

dkm

ð∞
0

ð∞
0

ð∞
0
e−k

xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þu



� xβ

β
, y

γ

γ
, t

α

α

� �
× xβ−1yγ−1tα−1dxdydtg,

=
ð∞
0

ð∞
0

ð∞
0

dm

dkm
e−k

xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þ
�

× u
xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1

	
dxdydt:

ð18Þ

This suggests that

dm

dkm
Uα,β,γ k, p, sð Þ =

ð∞
0

ð∞
0

ð∞
0

−
xβ

β

� �� �m

� e−k
xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þ
�

× u
xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1

	
dxdydt:

ð19Þ
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Differentiating (19) with respect to p, n − times, produces

dn

dpn
Uα,β,γ k, p, sð Þ =

ð∞
0

ð∞
0

ð∞
0

−
yγ

γ

� �� �n

� e−k
xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þ
�

× u
xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1

	
dxdydt:

ð20Þ

Again, differentiating (20) with respect to s, l − times,
we obtain

dl

dsl
Uα,β,γ k, p, sð Þ =

ð∞
0

ð∞
0

ð∞
0

−
tα

α

� �� �l

� e−k
xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þ
�

× u
xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1

	
dxdydt:

ð21Þ

Using Equations (19), (20), and (21), we get

dm+n+l

dkmdpndsl
nUα,β,γ k, p, sð Þ =

ð∞
0

ð∞
0

ð∞
0

−
xβ

β

� �� �m

−
yγ

γ

� �� �n

−
tα

α

� �� �l

�
e−k

xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þ

× u
xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1

2
664

3
775dxdydt,

= −1ð Þm+n+l
ð∞
0

ð∞
0

ð∞
0

e−k
xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þ × xβ

β

� �m
yγ

γ

� �n tα

α

� �l

× u
xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1

2
66664

3
77775dxdydt:

ð22Þ

This suggests that

dm+n+l

dkmdpndsl
Uα,β,γ k, p, sð Þ = −1ð Þm+n+lLβx L

γ
yL

α
t

� xβ

β

� �m
yγ

γ

� �n tα

α

� �l

u
xβ

β
, y

γ

γ
, t

α

α

� � !
:

ð23Þ

Multiplying both sides of the Equation (23) by
ð−1Þm+n+l, we obtain

LβxL
γ
yL

α
t

xβ

β

� �m
yγ

γ

� �n tα

α

� �l

u
xβ

β
, y

γ

γ
, t

α

α

� � !

= −1ð Þm+n+l dm+n+l

dkmdpndsl
Uα,β,γ k, p, sð Þ:

ð24Þ

Theorem 11. If LβxL
γ
yLαt ðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞ =Uα,β,γðk, p, sÞ,

then

LβxL
γ
yL

α
t u

xβ

β
−
ξβ

β
, y

γ

γ
−
ηγ

γ
, t

α

α
−
μα

α

 ! 

×H
xβ

β
−
ξβ

β
, y

γ

γ
−
ηγ

γ
, t

α

α
−
μα

α

 !!

= e−k
ξβ

β

� �
−p ηγ

γ

� �
−s μα

α

� �
Uα,β,γ k, p, sð Þ,

ð25Þ

where the Heaviside unit step function Hðx, y, tÞis defined as
in Equation (15)

(see [37, 38] for the proof).

Theorem 12. For α, β, γ ∈ ð0, 1�: Let uððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ
be the real-valued piece-wise continuous function defined on
the domain ð0,∞Þ × ð0,∞Þ × ð0,∞Þ: The CFTLT of the con-
formable partial fractional derivatives of order α, β, andγ is
given bySS

(1) LβxL
γ
yLαt ðð∂β/∂xβÞðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞÞ = kUðk,

p, sÞ −Uð0, p, sÞ
(2) LβxL

γ
yLαt ðð∂γ/∂yγÞðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞÞ = pUðk,

p, sÞ −Uðk, 0, sÞ
(3) LβxL

γ
yLαt ðð∂α/∂tαÞðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞÞ = sUðk,

p, sÞ −Uðk, p, 0Þ
(4) LβxL

γ
yLαt ðð∂2β/∂x2βÞðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞÞ = k2U

ðk, p, sÞ − kUð0, p, sÞ − ð∂/∂xÞUð0, p, sÞ
(5) LβxL

γ
yLαt ðð∂2γ/∂y2γÞðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞÞ = p2Uð

k, p, sÞ − pUðk, 0, sÞ − ð∂/∂yÞUðk, 0, sÞ
(6) LβxL

γ
yLαt ðð∂2α/∂t2αÞðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞÞ = s2Uð

k, p, sÞ − sUðk, p, 0Þ − ð∂/∂tÞUðk, p, 0Þ
(7) LβxL

γ
yLαt ðð∂3β/∂x3βÞðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞÞ = k3U

ðk, p, sÞ − k2Uð0, p, sÞ − ð∂/∂xÞUð0, p, sÞ − ð∂2/∂x2ÞU
ð0, p, sÞ

(8) LβxL
γ
yLαt ðð∂β+γ+α/∂xβ∂yγ∂αÞðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞ

Þ = kpsUðk, p, sÞ − kUðk, 0, 0Þ − pUð0, p, 0Þ − sUð0, 0
, sÞ − kpUðk, p, 0Þ − ksUðk, 0, sÞ − psUð0, p, sÞ −Uð0,
0, 0Þ
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Proof (1). Using the CFTLT definition (6), we have

LβxL
γ
yL

α
t

∂β

∂xβ
u

xβ

β
, y

γ

γ
, t

α

α

� �� � !

=
ð∞
0

ð∞
0

ð∞
0
e−k

xβ

β

� �
−p yγ

γ

� �
−s tα

αð Þ ∂β

∂xβ
u

Än
xβ

β
, y

γ

γ
, t

α

α

� �
xβ−1yγ−1tα−1dxdydt:

ð26Þ

By using Theorem 4, we have

∂β

∂xβ
u

xβ

β
, y

γ

γ
, t

α

α

� �
= x1−β

∂
∂x

u
xβ

β
, y

γ

γ
, t

α

α

� �
: ð27Þ

Then, Equation (26) reduced to

LβxL
γ
yL

α
t

∂β

∂xβ
u

xβ

β
, y

γ

γ
, t

α

α

� �� � !

=
ð∞
0

ð∞
0
e−p

yγ

γ

� �
−s tα

αð Þ
ð∞
0
e−k

xβ

β

� � ∂
∂x

u
xβ

β
, y

γ

γ
, t

α

α

� �
dx

� �
� yγ−1tα−1dydt:

ð28Þ

Taking integration by parts and Theorem 4 to the inte-
grals inside the bracket produces

ð∞
0
e−k

xβ

β

� � ∂
∂x

u
xβ

β
, y

γ

γ
, t

α

α

� �
dx = kU k, y, tð Þ −U 0, y, tð Þ:

ð29Þ

We get the needed outcome by substituting Equation
(29) into Equation (28), then simplifying LβxL

γ
yLαt ðð∂β/∂xβÞ

ðuððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞÞÞ = kUðk, p, sÞ −Uð0, p, sÞ, and
this result can be generalized to

LβxL
γ
yL

α
t

∂mβ

∂xmβ
u

xβ

β
, y

γ

γ
, t

α

α

� �� � !

= kmU k, p, sð Þ − 〠
m−1

n=0
km−1−n ∂

n

∂x
U 0, p, sð Þ:

ð30Þ

The process outlined above can be used to receive
verification of the remaining results.

4. Basic Idea of the New Iterative Method(NIM)

Consider the following general functional equation [40] for
the main principle of the new iterative method:

u
xβ

β
, y

γ

γ
, t

α

α

� �
=N u

xβ

β
, y

γ

γ
, t

α

α

� �� �
+ f

xβ

β
, y

γ

γ
, t

α

α

� �
,

ð31Þ

where N is a nonlinear operator in a Banach space such that
N : B⟶ B and f is a known function.

We are looking for a solution u of the Equation (31)
having the series form:

u
xβ

β
, y

γ

γ
, t

α

α

� �
= 〠

∞

i=0
ui

xβ

β
, y

γ

γ
, t

α

α

� �
: ð32Þ

The nonlinear operation N can then be decomposed as

N 〠
∞

i=0
ui

 !
=N u0ð Þ + 〠

∞

i=1
ui N 〠

i

r=0
ur

 !
−N 〠

i−1

r=0
ur

 !( )
:

ð33Þ

From Equations (33) and (32), Equation (31) is
equivalent to

〠
∞

i=0
ui = f +N u0ð Þ + 〠

∞

i=1
ui N 〠

i

r=0
ur

 !
−N 〠

i−1

r=0
ur

 !( )
:

ð34Þ

Equation (34) yields the following recurrence relation:

G0 = u0 = f0, ð35Þ

G1 = u1 =N u0ð Þ, ð36Þ
Gm = um+1 =N u0+⋯+umð Þ

−N u0+⋯+um−1ð Þ,m = 1, 2,⋯
ð37Þ

Then,

u1+⋯+um+1 =N u0+⋯+umð Þ,m = 1, 2,⋯, ð38Þ

and hence,

u = 〠
∞

i=0
ui = f +N 〠

∞

i=1
ui

 !
: ð39Þ

As a result, the m − term approximate solution of
Equation (31) is defined as follows:

u = u0 + u1 + u2+⋯+um−1,m > 1: ð40Þ

4.1. Convergence of the NIM. The conditions for the
series (32) convergence are presented in this subsection.
And [41] is a good place to start for more information.

Theorem 13. If N is a continuously differentiable functional
in a neighborhood of u0 and kNðnÞðu0Þk ≤ L, for each n and
for some real L > 0 and kuik ≤M < 1/e, i = 1, 2, 3,⋯, then
the series ∑∞

n=0Gn is absolutely convergent and moreover,
kGnk ≤ LMnen−1ðe − 1Þ, n = 1, 2,⋯.
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Theorem 14. If N is a continuously differentiable functional
in a neighborhood of u0 and kNðnÞðu0Þk ≤M ≤ 1/e for all n,
then the series ∑∞

n=0Gn is absolutely convergent.

5. Description of the Model

To solve the problem (2)-(5) by using the proposed method
first, the source term f ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞmust be decom-
posed into two functions namely f1ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ
and f2ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ as explained in the introduction
section. The part f1ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ with the terms in
Equation (2) always leads to the simple algebraic expression
while applying the fractional conformable triple Laplace
transform. The part f2ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ is combined
with the nonlinear term of Equation (2) to avoid noise
terms in the iteration process.

The following are the steps to determine the analytical
solution of Equations (2)-(6) using the proposed techniques:

Step 1. On both sides of Equation (2), we use the properties
of the conformable triple Laplace transform and Theorem
(12) to obtain

s2U k, p, sð Þ − sU k, p, 0ð Þ − ∂
∂t

U k, p, 0ð Þ
+ a sU k, p, sð Þ −U k, p, 0ð Þð Þ

= bLβxL
γ
yL

α
t N u

xβ

β
, y

γ

γ
, t

α

α

� �� �� �

= c k2U k, p, sð Þ − kU 0, p, sð Þ − ∂
∂x

U 0, p, sð Þ
�

+ p2U k, p, sð Þ − pU k, 0, sð Þ − ∂
∂y

U k, 0, sð Þ
�

+ �f 1 k, p, sð Þ + LβxL
γ
yL

α
t f2

xβ

β
, y

γ

γ
, t

α

α

� �� �
:

ð41Þ

Here, �f 1ðk, p, sÞ is the conformable triple Laplace
transform of f1ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ:.

Step 2. We get the following result by applying the
conformable double Laplace transform to the initial
circumstance (2):

U k, p, 0ð Þ = φ1 k, pð Þ, ∂
∂t

U k, p, 0ð Þ = φ2 k, pð Þ: ð42Þ

Step 3. The conformable double Laplace transform is applied
to the boundary Conditions (4) and (5) to obtain

U 0, p, sð Þ = g1 p, sð Þ, ∂
∂x

U 0, p, sð Þ = g2 p, sð Þ, ð43Þ

U k, 0, sð Þ = g3 k, sð Þ, ∂
∂y

U k, 0, sð Þ = g4 k, sð Þ: ð44Þ

Step 4. Using Equations (42), (43), and (44) into the
Equation (41), and simplifying, we obtain

Step 5. Taking Equation (43) and applying the inverse
conformable triple Laplace transform, we get

Step 6. Applying the iterative process to Equation (46),
assume that the given problem (2) has the series solution
of the form:

u
xβ

β
, y

γ

γ
, t

α

α

� �
= 〠

∞

i=0
ui

xβ

β
, y

γ

γ
, t

α

α

� �
: ð47Þ

U k, p, sð Þ = 1
s2 + as − ck2 − cp2

s + að Þφ1 k, pð Þ + φ2 k, pð Þ
−c kg1 p, sð Þ + g2 p, sð Þ + pg3U k, sð Þ + g4U k, sð Þð Þ

+�f 1 k, p, sð Þ + LβxL
γ
yL

α
t f2

xβ

β
, y

γ

γ
, t

α

α

� �
− bN u

xβ

β
, y

γ

γ
, t

α

α

� �� �� �
8>>>><
>>>>:

9>>>>=
>>>>;
: ð45Þ

u x, y, tð Þ = Lxyt
−1 1

s2 + as − ck2 − cp2

s + að Þφ1 k, pð Þ + φ2 k, pð Þ
−c kg1 p, sð Þ + g2 p, sð Þ + pg3U k, sð Þ + g4U k, sð Þð Þ

+�f 1 k, p, sð Þ + LβxL
γ
yL

α
t f2

xβ

β
, y

γ

γ
, t

α

α

� �
− bN u

xβ

β
, y

γ

γ
, t

α

α

� �� �� �
8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775: ð46Þ
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Step 7. Plugging Equation (47) into Equation (46), we obtain

Step 8. Decomposing the nonlinear term Nðuððxβ/βÞ, ðyγ/γÞ,
ðtα/αÞÞÞ in Equation (48) as follows:

Step 9. Using the Equation (49) in Equation (48) produces

Step 10. The following recurrence relations are defined from
Equation (50) according to iteration ((35)-(37)):

〠
∞

i=0
ui

xβ

β
, y

γ

γ
, t

α

α

� �
= Lxyt

−1 1
s2 + as − ck2 − cp2

s + að Þφ1 k, pð Þ + φ2 k, pð Þ + �f 1 k, p, sð Þ
−c kg1 p, sð Þ + g2 p, sð Þ + pg3U k, sð Þ + g4U k, sð Þð Þ

+LβxLγyLαt f2
xβ

β
, y

γ

γ
, t

α

α

� �
− bN u

xβ

β
, y

γ

γ
, t

α

α

� �� �� �
8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775: ð48Þ

N 〠
∞

i=0
ui

xβ

β
, y

γ

γ
, t

α

α

� � !
=N u0

xβ

β
, y

γ

γ
, t

α

α

� �� �
+ 〠

∞

i=1
ui

xβ

β
, y

γ

γ
, t

α

α

� �
N 〠

i

r=0
ur

xβ

β
, y

γ

γ
, t

α

α

� � !
−N 〠

i−1

r=0
ur

xβ

β
, y

γ

γ
, t

α

α

� � !( )
:

ð49Þ

〠
∞

i=0
ui

xβ

β
, y

γ

γ
, t

α

α

� �
= Lxyt

−1 1
s2 + as − ck2 − cp2

s + að Þφ1 k, pð Þ + φ2 k, pð Þ + �f 1 k, p, sð Þ
−c kg1 p, sð Þ + g2 p, sð Þ + pg3U k, sð Þ + g4U k, sð Þð Þ

+LβxLγyLαt f2
xβ

β
, y

γ

γ
, t

α

α

� �
− b

N u0ð Þ

+〠
∞

i=1
ui N 〠

i

r=0
ur

 !
−N 〠

i−1

r=0
ur

 !( )
0
BB@

1
CCA

0
BB@

1
CCA

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

ð50Þ

u0
xβ

β
, y

γ

γ
, t

α

α

� �
= Lxyt

−1 1
s2 + as − ck2 − cp2

s + að Þφ1 k, pð Þ + φ2 k, pð Þ + �f 1 k, p, sð Þ
−c kg1 p, sð Þ + g2 p, sð Þ + pg3U k, sð Þ + g4U k, sð Þð Þ

( )" #
, ð51Þ

u1
xβ

β
, y

γ

γ
, t

α

α

� �
= Lxyt

−1 1
s2 + as − ck2 − cp2

LβxL
γ
yL

α
t f2

xβ

β
, y

γ

γ
, t

α

α

� �
− bN u0

xβ

β
, y

γ

γ
, t

α

α

� �� �� �
 �� 	
, ð52Þ

um+1
xβ

β
, y

γ

γ
, t

α

α

� �
= Lxyt

−1 1
s2 + as − ck2 − cp2

LβxL
γ
yL

α
t

f2
xβ

β
, y

γ

γ
, t

α

α

� �

−b 〠
∞

i=1
ui N 〠

i

r=0
ur

 !
−N 〠

i−1

r=0
ur

 !( ) !
0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775, n ≥ 1: ð53Þ
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Step 11. The series solution to the given problem (2)–(5) can
be found by using (40) as follows:

u
xβ

β
, y

γ

γ
, t

α

α

� �
= u0

xβ

β
, y

γ

γ
, t

α

α

� �
+ u1

xβ

β
, y

γ

γ
, t

α

α

� �

+ u2
xβ

β
, y

γ

γ
, t

α

α

� �
+⋯+um

xβ

β
, y

γ

γ
, t

α

α

� �
+:⋯

ð54Þ

6. Application

Two test instances will be examined in this part to assess the
performance of the suggested method.

Example 1. Consider the following two-dimensional nonlin-
ear conformable telegraph equation in the region Ω = ½0, 2�2
as follows:

∂2αu
∂t2α

+ 2 ∂
αu
∂tα

= ∂2βu
∂x2β

+ ∂2γu
∂y2γ

− u2 + e2 xβ/βð Þ+2 yγ/γð Þ−4 tα/αð Þ

− 2e xβ/βð Þ+ yγ/γð Þ−2 tα/αð Þ,
ð55Þ

with preliminary conditions

u
xβ

β
, y

γ

γ
, 0

� �
= ex

β/β+yγ/γ, ∂α

∂tα
u

xβ

β
, y

γ

γ
, 0

� �

= −2exβ/β+yγ/γ,
ð56Þ

and boundary conditions

u 0, y
γ

γ
, t

α

α

� �
= e yγ/γð Þ−2 tα/αð Þ, ∂β

∂xβ
u 0, y

γ

γ
, t

α

α

� �
= e yγ/γð Þ−2 tα/αð Þ,

ð57Þ

u
xβ

β
, 0, t

α

α

� �
= e xβ/βð Þ−2 tα/αð Þ, ∂γ

∂yγ
u

xβ

β
, 0, t

α

α

� �

= e xβ/βð Þ−2 tα/αð Þ:

ð58Þ

Solution: To both sides of Equation (55), we use the
properties of the conformable triple Laplace transform and
Theorem (12) to get

s2U k, p, sð Þ − sU k, p, 0ð Þ − ∂
∂t

U k, p, 0ð Þ
+ 2 sU k, p, sð Þ −U k, p, 0ð Þð Þ

= k2U k, p, sð Þ − kU 0, p, sð Þ
−

∂
∂x

U 0, p, sð Þ + p2U k, p, sð Þ

− pU k, 0, sð Þ − ∂
∂y

U k, 0, sð Þ

−
2

k − 1ð Þ p − 1ð Þ s + 2ð Þ

+ LβxL
γ
yL

α
t e2 xβ/βð Þ+2 yγ/γð Þ−4 tα/αð Þ − u2

xβ

β
, y

γ

γ
, t

α

α

� �� �
:

ð59Þ

We get the following results by applying the conform-
able fractional double Laplace transform to the initial
condition (56).

U k, p, 0ð Þ = 1
k − 1ð Þ p − 1ð Þ ,

∂
∂t

U k, p, 0ð Þ = −
2

k − 1ð Þ p − 1ð Þ :

ð60Þ

The boundary conditions (57) and (58) are transformed
using the conformable double Laplace transform as follows:

U 0, p, sð Þ = 1
p − 1ð Þ s + 2ð Þ ,

∂
∂x

U 0, p, sð Þ = 1
p − 1ð Þ s + 2ð Þ ,

ð61Þ

U k, 0, sð Þ = 1
k − 1ð Þ s + 2ð Þ ,

∂
∂y

U k, 0, sð Þ = 1
k − 1ð Þ s + 2ð Þ :

ð62Þ

Substituting Equations (60), (61), and (62) into Equation
(59), and simplifying, we obtain

U k, p, sð Þ = 1
s2 + 2s − k2 − p2

s + 2
k − 1ð Þ p − 1ð Þ −

k + 1
p − 1ð Þ s + 2ð Þ −

p + 1
k − 1ð Þ s + 2ð Þ −

2
k − 1ð Þ p − 1ð Þ s + 2ð Þ

+LβxLγyLαt e2 xβ/βð Þ+2 yγ/γð Þ−4 tα/αð Þ − u2
xβ

β
, y

γ

γ
, t

α

α

� �� �
8>>><
>>>:

9>>>=
>>>;
: ð63Þ
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Again, performing some mathematical manipulation to
Equation (63), it is reduced to

U k, p, sð Þ = 2
k − 1ð Þ p − 1ð Þ s + 2ð Þ + 1

s2 + 2s − k2 − p2

�


LβxL

γ
yL

α
t

�
e2 xβ/βð Þ+2 yγ/γð Þ−4 tα/αð Þ

− u2
xβ

β
, y

γ

γ
, t

α

α

� ���
:

ð64Þ

Taking the inverse conformable triple-Laplace transform
to both sides of Equation (62), we get

u
xβ

β
, y

γ

γ
, t

α

α

� �
= e xβ/βð Þ+ yγ/γð Þ−2 tα/αð Þ + Lxyt

−1
� 1
s2 + 2s − k2 − p2

�


LβxL

γ
yL

α
t

�
e2 xβ/βð Þ+2 yγ/γð Þ−4 tα/αð Þ

− u2
xβ

β
, y

γ

γ
, t

α

α

� ���	
:

ð65Þ

Now, apply the new iterative method to Equation (65).

Using (49) into (65) and using (51), (52), and (53), the
components of the solution are obtained as follows:

u0
xβ

β
, y

γ

γ
, t

α

α

� �
= e xβ/βð Þ+ yγ/γð Þ−2 tα/αð Þ,

u1
xβ

β
, y

γ

γ
, t

α

α

� �

= Lxyt
−1
� 1
s2 + 2s − k2 − p2



LβxL

γ
yL

α
t

�
e2 xβ/βð Þ+2 yγ/γð Þ−4 tα/αð Þ

− u0
2 xβ

β
, y

γ

γ
, t

α

α

� ���	

= Lxyt
−1
� 1
s2 + 2s − k2 − p2

n
LβxL

γ
yL

α
t

�
e2 xβ/βð Þ+2 yγ/γð Þ−4 tα/αð Þ

− e2 xβ/βð Þ+2 yγ/γð Þ−4 tα/αð Þ
�o	

= 0,

ð66Þ

um+1ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = Lxyt
−1½ð1/s2 + 2s − k2 − p2Þ

fLβxLγyLαt ð∑i
r=0ur

2ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ − ∑i−1
r=0ur

2ððxβ/βÞ, ð
yγ/γÞ, ðtα/αÞÞÞg�, n ≥ 1:As a result,

Similarly, we get u4ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = u5ððxβ/βÞ,
ðyγ/γÞ, ðtα/αÞÞ = 0 and so on.

Therefore, using Equation (54), the solution to Example
1 is given by

u
xβ

β
, y

γ

γ
, t

α

α

� �
= e xβ/βð Þ+ yγ/γð Þ−2 tα/αð Þ: ð68Þ

Remark 15. For α = β = 1, in two dimensions, the conform-
able fractional telegraph in Equation (55) reduces to the clas-

sical (or non-fractional) space-time telegraph equation, and
its exact solution is uðx, tÞ = ex+y−2t , which is the same as
the result obtained in [28, 30, 49].

For β = γ = 1&α = 0:5, the exact solution is uðx, y, tÞ
= ex+yðe2t + e2tðerf cð ffiffiffiffi

2t
p

− 1ÞÞÞ:
For β = α = 1&γ = 0:5, the exact solution is uðx, y, tÞ

= ex+2tðey + eyð−erf cð ffiffiffi
y

p + 1ÞÞÞ:
For α = γ = 1&β = 0:5, the exact solution is uðx, y, tÞ

= ey+2tðex + exð−erf cð ffiffiffi
x

p + 1ÞÞÞ:
Whenever erf ðtÞ = 2/ ffiffiffi

π
p Ð t

0ðe−z
2Þdz and erf cðtÞ = 1 −

erf ðtÞ:

u2
xβ

β
, y

γ

γ
, t

α

α

� �
= Lxyt

−1 1
s2 + 2s − k2 − p2

LβxL
γ
yL

α
t

u0
xβ

β
, y

γ

γ
, t

α

α

� �
+ u1

xβ

β
, y

γ

γ
, t

α

α

� �� �2

− u0
xβ

β
, y

γ

γ
, t

α

α

� �� �2

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775 = 0,

u3
xβ

β
, y

γ

γ
, t

α

α

� �

= Lxyt
−1 1

s2 + 2s − k2 − p2
LβxL

γ
yL

α
t

u0
xβ

β
, y

γ

γ
, t

α

α

� �
+ u1

xβ

β
, y

γ

γ
, t

α

α

� �
+ u2

xβ

β
, y

γ

γ
, t

α

α

� �� �2

− u0
xβ

β
, y

γ

γ
, t

α

α

� �
+ u1

xβ

β
, y

γ

γ
, t

α

α

� �� �2

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775 = 0:

ð67Þ
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The 3D graphical simulation of exact solution corre-
sponding to Example 1 for different fractional-order values
α, β, and γ are depicted in Figure 1.

Example 2. Consider the time fractional-order nonlinear
telegraph equation with the external source term as follows:

∂2αu
∂t2α

+ 5 ∂
αu
∂tα

+ u3 = ∂2βu
∂x2β

+ ∂2γu
∂y2γ

− 2e−tα/α sin xβ

β

� �
cos yγ

γ

� �

+ e−3t
α/α sin3 xβ

β

� �
cos3 yγ

γ

� �
,

ð69Þ

under the initial conditions

u
xβ

β
, y

γ

γ
, 0

� �
= sin xβ

β

� �
cos yγ

γ

� �
, ∂α

∂tα
u

xβ

β
, y

γ

γ
, 0

� �

= − sin xβ

β

� �
cos yγ

γ

� �
,

ð70Þ

and boundary conditions

u 0, y
γ

γ
, t

α

α

� �
= 0, ∂β

∂xβ
u 0, y

γ

γ
, t

α

α

� �
= e−t

α/α cos yγ

γ

� �
, ð71Þ

u
xβ

β
, 0, t

α

α

� �
= e−t

α/α sin xβ

β

� �
, ∂γ

∂yγ
u

xβ

β
, 0, t

α

α

� �
= 0: ð72Þ

Solution. On both sides of Equation (69), we use the
properties of the conformable triple Laplace transform and
Theorem (12) to obtain

s2U k, p, sð Þ − sU k, p, 0ð Þ − ∂
∂t

U k, p, 0ð Þ + 5 sU k, p, sð Þ −U k, p, 0ð Þð Þ

= k2U k, p, sð Þ − kU 0, p, sð Þ − ∂
∂x

U 0, p, sð Þ + p2U k, p, sð Þ

− pU k, 0, sð Þ − ∂
∂y

U k, 0, sð Þ − 2p
k2 + 1
� �

p2 + 1ð Þ s + 1ð Þ

+ LβxL
γ
yL

α
t e−3 tα/αð Þ sin3 xβ

β

� �
cos3 yγ

γ

� �
− u3

xβ

β
, y

γ

γ
, t

α

α

� �� �
:

ð73Þ
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Figure 1: 3D solution plots of Example 1 at (a) α = 0:5, β = 0:8, γ = 0:6, t = 0:1, (b) α = 0:6, β = 0:9, γ = 0:5, t = 0:4, (c) α = 0:8, β = 0:5,
γ = 0:7, t = 0:8, and (d) α = 0:9, β = 1, γ = 0:2, t = 1.
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We get the following result by applying the conformable
double Laplace transform to the initial condition (70):

U k, p, 0ð Þ = p

k2 + 1
� �

p2 + 1ð Þ
, ∂
∂t

U k, p, 0ð Þ = −
p

k2 + 1
� �

p2 + 1ð Þ
:

ð74Þ

The boundary conditions (70) and (71) are transformed
using the conformable fractional double Laplace transform

as follows:

U 0, p, sð Þ = 0, ∂
∂x

U 0, p, sð Þ = p
p2 + 1ð Þ s + 1ð Þ , ð75Þ

U k, 0, sð Þ = 1
k2 + 1
� �

s + 1ð Þ
, ∂
∂y

U k, 0, sð Þ = 0: ð76Þ

Using Equations (74), (75), and (76) into the Equation
(73), and simplifying, we get
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0
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Figure 2: 3D solution plots of Example 1 at (a) α = 0:4, β = 0:5, γ = 0:7, t = 0:2, (b) α = 0:5, β = 0:6, γ = 0:8, t = 0:4, (c) α = 0:7, β = 0:9,
γ = 0:5, t = 0:8, and (d) α = 1, β = 1, γ = 0:9, t = 1.

U k, p, sð Þ = 1
s2 + 5s − k2 − p2

p s + 5ð Þ − p

k2 + 1
� �

p2 + 1ð Þ −
p

p2 + 1ð Þ s + 1ð Þ −
p

k2 + 1
� �

s + 1ð Þ −
2p

k2 + 1
� �

p2 + 1ð Þ s + 1ð Þ

+LβxLγyLαt e−3t
α/α sin3 xβ

β

� �
cos3 yγ

γ

� �
− u3

xβ

β
, y

γ

γ
, t

α

α

� �� �
8>>>><
>>>>:

9>>>>=
>>>>;
: ð77Þ
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By simplifying Equation (77), we obtain

U k, p, sð Þ = p

k2 + 1
� �

p2 + 1ð Þ s + 1ð Þ + 1
s2 + 5s − k2 − p2

�


LβxL

γ
yL

α
t

�
e−3t

α/α sin3 xβ

β

� �
cos3 yγ

γ

� �

− u3
xβ

β
, y

γ

γ
, t

α

α

� ���
:

ð78Þ

We get the following results by applying the inverse
conformable triple-Laplace transform to both sides of
Equation (78):

u
xβ

β
, y

γ

γ
, t

α

α

� �
= e−t

α/α sin xβ

β

� �
cos yγ

γ

� �

+ Lxyt
−1
� 1
s2 + 5s − k2 − p2



LβxL

γ
yL

α
t

�
�
e−3t

α/α sin3 xβ

β

� �
cos3 yγ

γ

� �

− u3
xβ

β
, y

γ

γ
, t

α

α

� ���	
:

ð79Þ

Now, apply the new iterative method to Equation (79).

Substituting (49) into (79) and using (51), (52), and (53),
we obtain the components of the solution as follows:

u0
xβ

β
, y

γ

γ
, t

α

α

� �
= e−t

α/α sin xβ

β

� �
cos yγ

γ

� �
,

u1
xβ

β
, y

γ

γ
, t

α

α

� �

= Lxyt
−1
� 1
s2 + 5s − k2 − p2



LβxL

γ
yL

α
t

�
e−3t

α/α sin3 xβ

β

� �

� cos3 yγ

γ

� �
− u0

3 xβ

β
, y

γ

γ
, t

α

α

� ���	

= Lxyt
−1
� 1
s2 + 5s − k2 − p2



LβxL

γ
yL

α
t

�
e−3t

α/α sin3 xβ

β

� �

� cos3 yγ

γ

� �
− e−3t

α/α sin3 xβ

β

� �
cos3 yγ

γ

� ���	
= 0,

ð80Þ

um+1ððxβ /βÞ, ðyγ/γÞ, ðtα/αÞÞ = Lxyt
−1½ð1/s2 + 5s − k2 − p2Þ

fLβxLγyLαt ð∑i
r=0ur

3ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ − ∑i−1
r=0ur

3ððxβ/βÞ, ð
yγ/γÞ, ðtα/αÞÞÞg�, n ≥ 1:As a result,

Similarly, we get u4ððxβ/βÞ, ðyγ/γÞ, ðtα/αÞÞ = u5ððxβ/βÞ,
ðyγ/γÞ, ðtα/αÞÞ = 0 and so on.

Therefore, the solution to the Example 2 using Equation
(54) is

u
xβ

β
, y

γ

γ
, t

α

α

� �
= e−t

α/α sin xβ

β

� �
cos yγ

γ

� �
: ð82Þ

Remark 16. For α = β = 1, in two dimensions, the conform-
able fractional telegraph equation (69) reduces to the classi-
cal (or non-fractional) space-time telegraph equation, and its

exact solution is uðx, tÞ = e−t sin ðxÞ cos ðyÞ, which is the
same as the result obtained by [29, 30].

For β = γ = 1&α = 0:5, the exact solution is uðx, y, tÞ =
ex+yðet + etðerf cð ffiffi

t
p

− 1ÞÞÞ:
The 3D graphical simulation of exact solution corre-

sponding to Example 2 for different fractional-order values
α, β, and γ are depicted in Figure 2.

7. Conclusion

The conformable triple Laplace transform has been exam-
ined in this study using all of our newly discovered results
and theorems. The solution of the conformable fractional

u2
xβ

β
, y

γ

γ
, t

α

α

� �
= Lxyt

−1 1
s2 + 5s − k2 − p2

LβxL
γ
yL

α
t

u0
xβ

β
, y

γ

γ
, t

α

α

� �
+ u1

xβ

β
, y

γ

γ
, t

α

α

� �� �3

− u0
xβ

β
, y

γ

γ
, t

α

α

� �� �3

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775 = 0,

u3
xβ

β
, y

γ

γ
, t

α

α

� �

= Lxyt
−1 1

s2 + 5s − k2 − p2
LβxL

γ
yL

α
t

u0
xβ

β
, y

γ

γ
, t

α

α

� �
+ u1

xβ

β
, y

γ

γ
, t

α

α

� �
+ u2

xβ

β
, y

γ

γ
, t

α

α

� �� �3

− u0
xβ

β
, y

γ

γ
, t

α

α

� �
+ u1

xβ

β
, y

γ

γ
, t

α

α

� �� �3

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775 = 0:

ð81Þ
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nonlinear Telegraph equation in two dimensions is found
using the new conformable triple Laplace transform iterative
approach. We give the basic definitions and properties of the
conformable fractional derivative, conformable triple
Laplace transform method, and the new iterative method.
The proposed method CTLTIM has been put to the test in
a numerical experiment, and the outcome is also supported
by a 3D graphical representation for different values of frac-
tional orders α, β, and γ as shown in Figures 1 and 2. Note
that in Examples 1 and 2, if we use α = β = γ, we obtain an
exact solution which was considered in [28, 30, 49], and
further, nontrivial problems that are solved using earlier
methods become trivial in the sense that the decomposition,

u
xβ

β
, y

γ

γ
, t

α

α

� �
= u0

xβ

β
, y

γ

γ
, t

α

α

� �
+ u1

xβ

β
, y

γ

γ
, t

α

α

� �

+ u2
xβ

β
, y

γ

γ
, t

α

α

� �
+⋯+um

xβ

β
, y

γ

γ
, t

α

α

� �
+⋯,

ð83Þ

consists of only one term, i.e.,

u
xβ

β
, y

γ

γ
, t

α

α

� �
= u0

xβ

β
, y

γ

γ
, t

α

α

� �
: ð84Þ

Due to the critical need to explore new analytical solu-
tions to understand the dynamics of solutions for such
important equations in physics and engineering, our find-
ings highlight the importance of exploring new generalized
methods for solving fractional partial differential equations,
mainly the nonlinear ones.
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