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In this paper, a general criterion for unidirectionally coupled generalized chaotic synchronization between the response system
and the original chaotic system in the form of a desired manifold is presented. The expression of the response system
constructed with linear error feedback is given, and the validity of the criterion is proved based on the Lyapunov stability
theory. Two numerical examples are used to construct unidirectional coupled chaotic systems in the form of different types of
manifolds. Numerical simulation is carried out to verify the feasibility of the construction method and the criterion.

1. Introduction

In the field of chaotic synchronization [1], generalized cha-
otic synchronization [2] is an interesting and important
topic. It has been widely applied in many fields such as
secure communication [3], mechanical engineering [4], bio-
logical system [5], and fluid mixing [6]. According to the
two possible different coupling modes—bidirectional and
unidirectional—generalized synchronization can be divided
into mutual synchronization [7, 8] and master-slave syn-
chronization [9, 10], respectively. In 1995, Rulkov et al.
[11] first described the generalized synchronization phe-
nomenon and proposed a method of mutual false nearest
neighbors to determine generalized synchronization. Abar-
banel et al. [12] proposed the construction of an auxiliary
system and used a second identical response system to mon-
itor the generalized synchronization between a drive system
and a response system. Subsequently, Kocarev and Parlitz
[13] studied the sufficient and necessary conditions for the
generalized synchronization of unidirectionally coupled
dynamical systems, and they discussed the relationship
between the generalized synchronization, predictability,
and equivalence of dynamical systems. Boccaletti et al. [14]
reviewed the main ideas involved in the synchronization

field of chaotic systems and introduced several types of syn-
chronization features in detail.

Over the years, a variety of control methods have been
proposed to achieve generalized synchronization between
coupled chaotic systems. The linear error feedback control
used in this paper is one of the most common control
methods. Jiang et al. [15, 16] derived the universal criterion
for global chaotic synchronization between two linear unidi-
rectionally coupled chaotic systems. Lü et al. [17] and Yu
and Zhang [18] studied the chaotic synchronization between
two linear bidirectional coupled chaotic systems, and they
proposed some sufficient conditions for global asymptotic
synchronization. Wu et al. [19] applied linear error feedback
control to the chaotic synchronization of a master-slave gen-
eralized Lorentz system, strictly proving the sufficient syn-
chronization criterion of a general linear state error
feedback controller. Zhou et al. [20] studied the linear and
nonlinear bidirectional coupling synchronization of two
hyperchaotic Chen systems. Huang et al. [21] studied the
synchronization problem of a time-delay fractional-order
chaotic financial system with incommensurate orders, and
they obtained sufficient conditions for synchronization by
using a linear feedback control strategy and stability theory
for fractional-order delayed systems. There are many other
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control methods to achieve generalized chaotic synchroniza-
tion, and some typical ones are introduced in this paper.
Ouannas et al. [22] achieved chaotic synchronization
between two different chaotic systems by using the nonlinear
control law, and they deduced sufficient conditions to ensure
the complete synchronization of master-slave models. Ler-
escu et al. [23] and Guo and Li [24] used OPCL control
and adaptive feedback control to synchronize two identical
systems from Sprott’s simplest chaotic system set. Cheng
et al. [25] proposed an adaptive synchronization control

law for the Arneodo chaotic system with uncertain parame-
ters and input saturation, and an auxiliary system is used to
compensate the synchronization error. Tamba et al. [26]
applied the adaptive control to obtain the synchronization
of the system with an absolute nonlinearity. Tian et al. [27]
proposed an impulse control method for the synchroniza-
tion of two hyperchaotic Chen circuits with linear or nonlin-
ear delays, and they deduced sufficient conditions for the
synchronization of a chaotic system with a time delay. Cui
et al. [28] applied the finite time stability theory to design
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Figure 1: The synchronization relationships of different state variables in the unidirectionally coupled Chen system. (a) HðxÞ =
ðHðxÞ1,HðxÞ2,HðxÞ3ÞT and y = ðy1, y2, y3ÞT are in complete synchronization. (b) x = ðx1, x2, x3ÞT and y = ðy1, y2, y3ÞT are in generalized
synchronization with respect to the linear manifold y = Px +Q.
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Figure 2: Time histories of different state variables in the unidirectionally coupled Chen system with the linear manifold y = Px +Q.
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the finite time synchronous controller between the drive sys-
tem and the corresponding system. Che et al. [29] proposed
a robust adaptive neural network (NN) controller to achieve
the synchronization of two gap junction coupled chaotic
FitzHugh–Nagumo (FHN) neurons under external electrical
stimulation. Chaos synchronization is obtained by proper
choice of the control parameters. Li and Hernandez [30]

proposed a rule-based type-1 fuzzy logic controller (T1-
FLC) to synchronize chaotic systems and showed that
type-1 fuzzy logic system (T1-FLSs) can effectively deal with
uncertainties.

However, in some engineering applications, it is
expected that the response system and the drive system
can achieve generalized chaotic synchronization with a
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Figure 3: The chaotic trajectory of the unidirectionally coupled Chen system with the linear manifold y = Px +Q in 3D phase space: (a)
x1 − x2 − x3; (b) x2 − x3 − y1; (c) x3 − y1 − y2; (d) y1 − y2 − y3.
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Figure 4: The synchronization relationships of different state variables in the unidirectionally coupled Chen system. (a) HðxÞ =
ðHðxÞ1,HðxÞ2,HðxÞ3ÞT and y = ðy1, y2, y3ÞT are in complete synchronization; (b) x = ðx1, x2, x3ÞT and y = ðy1, y2, y3ÞT are in generalized

synchronization with respect to the high-order polynomial manifold y = ½x1, x2 + x22, x33�T .
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desired manifold. For example, the wide-spectrum charac-
teristics of chaotic signals can be used to conceal the line-
spectrum components in acoustic signals of underwater
vehicles [31–34]. It is hoped that the modulation of radiation
signals can be achieved in a desired manner to conceal the
information in the original signals and improve the stealth
performance of underwater vehicles. At present, the con-

struction method of a generalized chaotic synchronization
system with a desired manifold has yet to be further
studied.

Motivated by the above discussions, we propose a gen-
eral criterion of unidirectionally coupled generalized syn-
chronization between a response system and an original
chaotic system with a desired manifold. The expression of
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Figure 5: Time histories of different state variables in the unidirectionally coupled Chen system with the high-order polynomial manifold

y = ½x1, x2 + x22, x33�T .
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Figure 6: The chaotic trajectory of the unidirectionally coupled Chen system with the high-order polynomial manifold y = ½x1, x2 + x22, x33�T
in 3D phase space: (a) x1 − x2 − x3; (b) x2 − x3 − y1; (c) x3 − y1 − y2; (d) y1 − y2 − y3.
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a response system constructed with linear error feedback is
provided, and the stability of the zero solution of the error
system is proven based on the Lyapunov stability theory.
Finally, the validity of the construction method and criterion
is verified by numerical simulations.

The structure of this paper is as follows. In Section 2, the
definition of generalized synchronization and the expression
of the constructed response system are introduced, and the
general criterion is proposed and proven theoretically. In
Sections 3 and 4, the Chen system and Chua’s circuit are
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Figure 7: The synchronization relationships of different state variables in the unidirectionally coupled Chen system. (a) HðxÞ =
ðHðxÞ1,HðxÞ2,HðxÞ3ÞT and y = ðy1, y2, y3ÞT are in complete synchronization; (b) x = ðx1, x2, x3ÞT and y = ðy1, y2, y3ÞT are in generalized
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Figure 8: Time histories of different state variables in the unidirectionally coupled Chen system with the exponential manifold y =
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taken as examples, unidirectionally coupled chaotic systems
are constructed for a linear manifold, a higher order polyno-
mial manifold, and an exponential manifold. The analysis of
whether the mapping variables are in complete synchroniza-
tion with the state variables of the response system is used to
judge the generalized synchronization relationship between
the original chaotic system and the response system. Then,
whether the original chaotic system and the response system
achieve generalized synchronization in the form of the
desired manifold is determined. Time histories of different
state variables of the new system are demonstrated, and
the chaotic trajectory of the new system is depicted in
three-dimensional (3D) phase space to visualize the dynam-
ical behavior of the system. The conclusions are put forward
in the last section.

2. Construction Method and Criterion

Two unidirectionally coupled dynamical systems are consid-
ered:

_x = F xð Þ, ð1Þ

_y =G x, yð Þ, ð2Þ

where x = ðx1,⋯, xnÞT ∈ Rn, y = ðy1,⋯, ymÞT ∈ Rm, the dif-
ferentiable vector function FðxÞ = ð f1ðxÞ,⋯, f nðxÞÞT ∈ Rn,
and Gðx, yÞ = ðg1ðx, yÞ,⋯, gnðx, yÞÞT ∈ Rm.

Definition 1. If there is a known differential homeomorphic
map H : Rn ⟶ Rm, and there are subsets B = Bx × By ⊂ Rn

× Rm such that all trajectories ðxð0Þ, yð0ÞÞ ∈ B in dynamical
systems (1) and (2) satisfy lim

t⟶∞
kyðt, yð0ÞÞ −Hðxðt, xð0ÞÞÞk

= 0, systems (1) and (2) are determined to have achieved
generalized synchronization with the manifold y =HðxÞ.

For chaotic system (1), the response system is con-
structed through linear error feedback. Then, system (2)
can be rewritten as

_y =DH xð Þ ⋅ F xð Þ + K y −H xð Þð Þ, ð3Þ

where DHðxÞ is the Jacobian matrix of HðxÞ, and K is the
diagonal matrix containing the coupling coefficient, denoted
by K = diag ðk1, k2,⋯, kmÞ, ki ∈ R, and i = 1, 2,⋯,m.

Theorem 2. If the coupling matrix K is chosen such that

λi < 0, i = 1, 2,⋯,m, ð4Þ

where λi is the eigenvalue of the matrix KTP + PK , and P is a
positive definite symmetric constant matrix, then unidirec-
tionally coupled dynamical systems (1) and (3) achieve gener-
alized synchronization with the manifold y =HðxÞ.

Proof of Theorem 1. Let the error term e = y −HðxÞ, the
equation of the error system is obtained from equations (1)

and (3) as follows:

_e = _y −DH xð Þ _x =DH xð Þ ⋅ F xð Þ + K y −H xð Þð Þ −DH xð Þ ⋅ F xð Þ = Ke:

ð5Þ

The Lyapunov function is chosen, given by

V = eTPe, ð6Þ

where P is a positive definite symmetric constant matrix.
Then,

_V = _eTPe + eTP _e = eTKTPe + eTPKe = eTQ1e, ð7Þ

where Q1 = KTP + PK .

Since Q1 =Q1
T , and Q1 is a real symmetric matrix, let

Q1 =U1
TΛU1, where U1 is an orthogonal matrix, and Λ =

diag ðλ1, λ2,⋯, λmÞ. Then,

_V = eTQ1e = eTU1
TΛU1e = e1

TΛe1 < 0, ð8Þ

where e1 =U1e. According to the Lyapunov stability theory,
lim

t⟶∞
keðtÞk = 0, the zero solution of the error system (5) is

asymptotically stable; so, systems (1) and (3) achieve gener-
alized synchronization with the manifold y =HðxÞ.□.

Remark 3. If P = I, then K is a negative definite matrix,
which meets the design requirements.

3. Chen System

The chaotic Chen system [35] can be expressed by the fol-
lowing nonlinear ordinary differential equation:

dx1
dt

= a x2 − x1ð Þ,
dx2
dt

= c − að Þx1 − x1x3 + cx2,

dx3
dt

= x1x2 − bx3,

8>>>>>>><
>>>>>>>:

ð9Þ

where a = 35, b = 3, and c = 28.

3.1. Linear Manifold. The mapping HðxÞ = Px +Q is chosen;
P = ½1 0 0 ; 0 2 0 ; 0 0 3�, and Q = ½1 2 3�T . At this time, DHðx
Þ = P. For system (9), the initial condition is set as xð0Þ =
ð−10, 0, 27ÞT and yð0Þ =Hðxð0ÞÞ = ð−9, 2, 84ÞT , and K =
diag ðk1, k2, k3Þ = diag ð−0:5,−0:5,−0:5Þ is selected. Accord-
ing to equation (3), linear error feedback is used to construct

6 Advances in Mathematical Physics
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the response system:
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It can be seen from Figure 1 that the mapping variable
HðxÞ = ðHðxÞ1,HðxÞ2,HðxÞ3ÞT of the Chen system and the
state variable y = ðy1, y2, y3ÞT of the response system are in
complete synchronization, and the state variable x =
ðx1, x2, x3ÞT of the Chen system and the state variable y =
ðy1, y2, y3ÞT of the response system achieve generalized syn-
chronization with the linear manifold y = Px +Q. Figure 2
shows time histories of different state variables in the unidi-
rectionally coupled Chen system with the linear manifold y
= Px +Q. The chaotic trajectory of the constructed system
in 3D phase space is shown in Figure 3. In summary, a uni-
directionally coupled generalized chaotic synchronization
system based on the Chen system is constructed for the lin-
ear manifold y = Px +Q.

3.2. Higher-Order Polynomial Manifold. The mapping HðxÞ
= ½x1, x2 + x22, x33�T is chosen, and at this time, DHðxÞ =

diag ð1, 1 + 2x2, 3x23Þ. For system (9), the initial condition is
set as xð0Þ = ð1, 0, 0ÞT and yð0Þ =Hðxð0ÞÞ = ð1, 0, 0ÞT , and
K = diag ðk1, k2, k3Þ = diag ð−1,−1,−1Þ is selected.

Linear error feedback is used to construct the response
system:
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It can be seen from Figure 4 that the mapped variables
HðxÞ = ðHðxÞ1,HðxÞ2,HðxÞ3ÞT of the Chen system and the
state variables y = ðy1, y2, y3ÞT of the response system are in
complete synchronization, and the state variable x =
ðx1, x2, x3ÞT of the Chen system and the state variable y =
ðy1, y2, y3ÞT of the response system achieve generalized syn-

chronization with the high-order polynomial manifold y =
½x1, x2 + x22, x33�T . Figure 5 shows time histories of different
state variables in the unidirectionally coupled Chen system

with the high-order polynomial manifold y =
½x1, x2 + x22, x33�T . The chaotic trajectory of the constructed
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system in the 3D phase space is shown in Figure 6. In sum-
mary, a unidirectionally coupled generalized chaotic syn-
chronization system based on the Chen system is

constructed for the high-order polynomial manifold y =
½x1, x2 + x22, x33�T .

3.3. Exponential Manifold. The mapping HðxÞ =
½x1, ex2 , e−x3 �T is chosen, and at this time, DHðxÞ = diag ðx1
, ex2 ,−e−x3Þ. For system (9), the initial condition is set as xð
0Þ = ð1, 0, 0ÞT and yð0Þ =Hðxð0ÞÞ = ð1, 1, 1ÞT , and K = diag
ðk1, k2, k3Þ = diag ð−1,−1,−1Þ is selected.
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system:

_y1

_y2

_y3

2
6664

3
7775 =

x1

ex2

−e−x3

2
6664

3
7775

a x2 − x1ð Þ
c − að Þx1 − x1x3 + cx2

x1x2 − bx3

2
6664

3
7775

+

k1

k2

k3

2
6664

3
7775

y1 −H xð Þ1
y2 −H xð Þ2
y3 −H xð Þ3

2
6664

3
7775

=

ax1 x2 − x1ð Þ + k1 y1 − x1ð Þ
ex2 c − að Þx1 − x1x3 + cx2½ � + k2 y2 − ex2ð Þ

−e−x3 x1x2 − bx3½ � + k3 y3 − e−x3ð Þ

2
6664

3
7775:

ð12Þ

It can be seen from Figure 7 that the mapped variables
HðxÞ = ðHðxÞ1,HðxÞ2,HðxÞ3ÞT of the Chen system and the
state variables y = ðy1, y2, y3ÞT of the response system are in
complete synchronization, and the state variable x =
ðx1, x2, x3ÞT of the Chen system and the state variable y =
ðy1, y2, y3ÞT of the response system achieve generalized syn-
chronization with the exponential manifold y =
½x1, ex2 , e−x3 �T . Figure 8 shows time histories of different state
variables in the unidirectionally coupled Chen system with
the exponential manifold y = ½x1, ex2 , e−x3 �T . The chaotic tra-
jectory of the constructed system in the 3D phase space is
shown in Figure 9. In summary, a unidirectionally coupled
generalized chaotic synchronization system based on the
Chen system is constructed for the exponential manifold y
= ½x1, ex2 , e−x3 �T . In addition, it should be noted that the
amplitude of the state variable x3 of the Chen system is
always much greater than zero; so, the amplitude of the state
variable y3 of the response system attenuate sharply to zero
and remains unchanged. This feature has positive signifi-

cance for concealing acoustic signals and improving the
acoustic stealth performance of underwater vehicles.

4. Chua’s Circuit

The chaotic Chua’s circuit [36] can be expressed by the fol-
lowing nonlinear ordinary differential equation:

dx1
dt

= α x2 − x1ð Þ − αf x1ð Þ,
dx2
dt

= x1 − x2 + x3

dx3
dt

= −βx2,

8>>>>>>><
>>>>>>>:

, f x1ð Þ = bx1 +
1
2 a − bð Þ x1 + 1j j − x1 − 1j jð Þ,

ð13Þ

where α = 9:78, β = 14:97, a = −1:31, and b = −0:75.

4.1. Linear Manifold. The mapping HðxÞ = Px +Q is chosen;
P = ½1 0 0 ; 0 2 0 ; 0 0 3�, and Q = ½1 2 3�T , and at this time, D
HðxÞ = P. For system (13), the initial condition is set as xð0
Þ = ð1, 0, 0ÞT and yð0Þ =Hðxð0ÞÞ = ð2, 2, 3ÞT , and K = diag ð
k1, k2, k3Þ = diag ð−0:5,−0:5,−0:5Þ is selected. The response
system is constructed according to equation (3):

_y1

_y2

_y3

2
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3
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1

2

3

2
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3
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α x2 − x1ð Þ − αf x1ð Þ
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−βx2

2
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3
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k3

2
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3
7775

y1 −H xð Þ1
y2 −H xð Þ2
y3 −H xð Þ3

2
6664

3
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α x2 − x1ð Þ − αf x1ð Þ + k1 y1 − x1 + 1ð Þ½ �
2 x1 − x2 + x3ð Þ + k2 y2 − 2x2 + 2ð Þ½ �

−3βx2 + k3 y3 − 3x3 + 3ð Þ½ �

2
6664

3
7775:

ð14Þ
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Figure 14: Time histories of different state variables in the unidirectionally coupled Chua’s circuit with the high-order polynomial manifold

y = ½x1, x2 + x22, x33�T .
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It can be seen from Figure 10 that the mapping variable H
ðxÞ = ðHðxÞ1,HðxÞ2,HðxÞ3ÞT of Chua’s circuit and the state
variable y = ðy1, y2, y3ÞT of the response system are in com-
plete synchronization, and the state variable x =
ðx1, x2, x3ÞT of Chua’s circuit and the state variable y =

ðy1, y2, y3ÞT of the response system achieve generalized
synchronization with the linear manifold y = Px +Q.
Figure 11 shows time histories of different state variables in
the unidirectionally coupled Chua’s circuit with the linear
manifold y = Px +Q. The chaotic trajectory of the con-
structed system in 3D phase space is shown in Figure 12.
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Figure 15: The chaotic trajectory of the unidirectionally coupled Chua’s circuit with the high-order polynomial manifold y =
½x1, x2 + x22, x33�T in 3D phase space: (a) x1 − x2 − x3; (b) x2 − x3 − y1; (c) x3 − y1 − y2; (d) y1 − y2 − y3.
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Figure 16: The synchronization relationships of different state variables in the unidirectionally coupled Chua’s circuit. (a) HðxÞ =
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synchronization with respect to the exponential manifold y = ½x1, ex2 , e−x3 �T .
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In summary, a unidirectionally coupled generalized chaotic
synchronization system based on Chua’s circuit is con-
structed for the linear manifold y = Px +Q.

4.2. Higher-Order Polynomial Manifold. The mapping HðxÞ
= ½x1, x2 + x22, x33�T is chosen, and at this time, DHðxÞ =
diag ð1, 1 + 2x2, 3x23Þ. For system (13), the initial condition
is set as xð0Þ = ð1, 0, 0ÞT and yð0Þ =Hðxð0ÞÞ = ð1, 0, 0ÞT ,
and K = diag ðk1, k2, k3Þ = diag ð−1,−1,−1Þ is selected.

Linear error feedback is used to construct the response
system:

_y1

_y2

_y3

2
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3
7775 =

1

1 + 2x2
3x23

2
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3
7775

α x2 − x1ð Þ − αf x1ð Þ
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y1 −H xð Þ1
y2 −H xð Þ2
y3 −H xð Þ3

2
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3
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=

α x2 − x1ð Þ − αf x1ð Þ + k1 y1 − x1ð Þ
1 + 2x2ð Þ x1 − x2 + x3ð Þ + k2 y2 − x2 + x22

� �� �

−3βx23x2 + k3 y3 − x33
� �

2
6664

3
7775:

ð15Þ

It can be seen from Figure 13 that the mapped variables
HðxÞ = ðHðxÞ1,HðxÞ2,HðxÞ3ÞT of Chua’s circuit and the
state variables y = ðy1, y2, y3ÞT of the response system are in
complete synchronization, and the state variable x =
ðx1, x2, x3ÞT of Chua’s circuit and the state variable y =
ðy1, y2, y3ÞT of the response system achieve generalized syn-

chronization with the high-order polynomial manifold y =

½x1, x2 + x22, x33�T . Figure 14 shows time histories of different
state variables in the unidirectionally coupled Chua’s circuit

with the high-order polynomial manifold y =
½x1, x2 + x22, x33�T . The chaotic trajectory of the constructed
system in the 3D phase space is shown in Figure 15. In sum-
mary, a unidirectionally coupled generalized chaotic syn-
chronization system based on Chua’s circuit is constructed

for the high-order polynomial manifold y =
½x1, x2 + x22, x33�T .
4.3. Exponential Manifold. The mapping HðxÞ =
½x1, ex2 , e−x3 �T is chosen, and at this time, DHðxÞ = diag ðx1
, ex2 ,−e−x3Þ. For system (13), the initial condition is set as x
ð0Þ = ð1, 0, 0ÞT and yð0Þ =Hðxð0ÞÞ = ð1, 1, 1ÞT , and K =
diag ðk1, k2, k3Þ = diag ð−1,−1,−1Þ is selected.

Linear error feedback is used to construct the response
system:
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It can be seen from Figure 16 that the mapped variables
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HðxÞ = ðHðxÞ1,HðxÞ2,HðxÞ3ÞT of Chua’s circuit and the
state variables y = ðy1, y2, y3ÞT of the response system are in
complete synchronization, and the state variable x =
ðx1, x2, x3ÞT of Chua’s circuit and the state variable y =
ðy1, y2, y3ÞT of the response system achieve generalized syn-
chronization with the exponential manifold y =
½x1, ex2 , e−x3 �T . Figure 17 shows time histories of different
state variables in the unidirectionally coupled Chua’s circuit
with the exponential manifold y = ½x1, ex2 , e−x3 �T . The chaotic
trajectory of the constructed system in the 3D phase space is
shown in Figure 18. In summary, a unidirectionally coupled
generalized chaotic synchronization system based on the
Chua’s circuit is constructed for the exponential manifold
y = ½x1, ex2 , e−x3 �T .

5. Conclusions

In order to modulate the signal in an ideal way, this paper
proposes a criterion for constructing a unidirectional
coupled system based on the original system, inspired by
the linear error feedback method, so that the response sys-
tem and the drive system achieve generalized chaotic syn-
chronization in the form of a desired manifold. The
criterion gives an expression for a unidirectional coupled
system constructed by linear error feedback. The validity
and feasibility of the criterion are demonstrated by theoreti-
cal analysis and numerical simulation. The simulation shows
that the mapped variables of the original chaotic system and
the state variables of the response system are completely syn-
chronized, and the state variables of the original chaotic sys-
tem and the state variables of the response system achieve
generalized synchronization in the form of the desired man-
ifold. The dynamic behavior of the new system is visualized

by describing the time histories of different state variables
and the chaotic trajectories of the system. This paper extends
the research results of generalized synchronization between
coupled chaotic systems, which is an important reference
for the application of generalized chaotic synchronization
in practical systems.

Recently, fractional-order systems and fractional-order
control have received significant attention in academia and
industry. They provide increased flexibility over integer-
order systems, allow more accurate modeling of complex
systems and meet more challenging control requirements.
Therefore, the method and criterion for chaotic synchroni-
zation of fractional-order nonlinear systems in the form of
the desired manifold may be one of the future research
projects.
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