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Some dynamical features of two- and three-level atoms interacting locally with an ideal cavity field are investigated. These
dynamical features are introduced by employing the statistical atomic inversion, entropy squeezing, and tomographic entropy.
Our results show that the initial setting states play an essential role in the temporal evolution of the three quantities. The
sensitivity of the two-level atomic state is less than that depicted by the three-level atom. The initial state has a small impact
on the two types of entropies for the two-level atom. However, it has an appreciable effect in the case of the three-level atom
for different regulations of the initial atomic state.

1. Introduction

The interaction between different substances is still a hot
topic in quantum optics and information issues. These issues
concern the linear atom-field interaction [1] and nonlinear
atom-field interaction [2]. The classical simulation of non-
linear atom-field interaction in photonic lattices has been
realized [3]. In the ultra-strong coupling regime, the quan-
tum simulation by applying a rotating wave approximation
for the light-matter interaction has been introduced [4].
Some theoretical and practical phenomena of field-atom
interaction, such as entanglement, revival, and collapse have
been explained [5]. The entanglement of field-field interac-
tion has been addressed [6]. Moreover, the effect of cross-
Kerr nonlinear on the decoherence of a quantum system
was studied [7]. The entanglement of time-dependent
atom-atom interaction was discovered [8]. Some conical
transformations are used to handle the atom-atom interac-
tion with the presence of time dependence. For these inter-
actions, some statistical and quantum information has
been illustrated to analyze different phenomena [9]. Among

these phenomena is the quantum entanglement [10], which
is a cornerstone of quantum information theory [11]. Via
employing the von Neumann entropy, the degree of entan-
glement has been studied for different substances, such as
the entanglement of atom-field interaction in resonance
and off-resonance cases, has been explored [12]. The degree
of entanglement has also been discussed under the Unruh
effect, for the two-qubit [13], qubit-qutrit [14], and two-
qutrit [15]. Furthermore, the dynamics of entanglement of
two isolated Jaynes-Cummings Hamiltonian have been
studied, where the first atom interacting only with one cavity
field and the second atom interacting with another cavity
[16]. In addition, the entanglement of linear atom-field
interaction has been illustrated under the influence of
Kerr-like medium [17], degenerate parametric amplifier
[18], vibrating graphene membrane [19, 20], external classi-
cal field [21], damping terms [22], Stark shift terms [23], and
deformed cavity field [24]. A double Jaynes-Cummings
models in the presence of non-Markovian environments
[25], and Kerr medium [26] have been developed to simulate
the entanglement dynamics. For high-dimensional atomic
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systems, the exact solution of double Tavis-Cummings
model has been obtained to explain the dynamics of sudden
death of entanglement [27]. On the other hand, the entan-
glement can be quantified by using some different indicators,
for example, concurrence [28], the entanglement of forma-
tion [29], and negativity [11].

The properties of Jaynes-Cummings model (JCM) were
theoretically suggested and studied in the 1960s, and the
results were confirmed in practice in the 1980s [30]. There-
fore, the JCM is a familiar and important content for
researchers in atomic and optical physics. Recently, JCM
has been used to describe the evolution of entanglement
between atoms and photons by researchers in quantum
information science [31]. A thermal JCM and a discussion
of the minimal entanglement between a two-level atom
and thermal photons were investigated [32]. Moreover, the
periods of sudden death and their association with the disen-
tanglement of two separate atoms have been discovered [33].
Furthermore, we are working on our proposal to become
one of the important candidates for a way to implement
quantum logic in comparing the entanglement periods
caused by the interaction of a two- or three-level atom with
an ideal field.

It is well known that the formula of the tomographic
probability representation is used to describe the quantum
states [34]. For the discrete spin observables, the tomo-
graphic probability and tomographic entropy have been
reconstructed [35]. A comparative study of quantum Fisher
information, tomographic entropy, and the von Neumann
entropy for a single qubit and optical radiation field in the
presence of excited and negative binomial distribution has
been introduced [36, 37]. The interaction between a collec-
tion of an atomic quantum system and a quantized cavity
field has been discussed [9].

The paper is aimed at introducing a new interaction
between an optical radiation field and two different dimen-
sional atomic systems, where the two subsystems are two-
and three-level atoms. The impact of the initial setting state
of the two atoms on the temporal evolution of the physical
phenomena is reported. The main task is to investigate the
influence of initial atomic angles on some statistical infor-
mation and quantum correlations of this system. The paper
is organized as the following section briefly characterizes the
physical Hamiltonian model and obtains the exact solution
via the time-dependent Schrödinger equation. Accordingly,
the final output atomic state of the two-level and three-
level atoms is obtained. Section 3 studies the dynamical
behaviour of the atomic statistical inversion influenced by
the initial state of the two different dimension atoms. Section
4 dedicates a comparative study of the two quadratures of
entropy squeezing for the two atomic subsystems. We intro-
duced the mathematical form of tomographic entropy and
its temporal evolution in Section 5. Finally, Section 6
includes our conclusion.

2. The Physical Model

Let us briefly characterize a quantum system consisting of a
single-mode cavity field coupled to isolated two- and three-

level atoms, where the three-level atom is in Λ configuration
(this system is proposed on Figure 1). The total Hamiltonian
is expressed as (ℏ = 1),

H = ωf â
†â + 〠

j=e,g
1,2,3

ωj jj i jh j + λ â 1j i 2h j + â 1j i 3h j + â ej i gh j + h:c:ð Þ,

ð1Þ

where ωjðj = f , e, g,1,2,3Þ are the field, two-level atom, and

three-level atom frequencies, respectively. Also, â (â†) is the
common annihilation (creation) operator of a cavity field. λ
denotes the coupling strength of atomic-field interaction.

At any time t > 0, we assume that the temporal wave
function jψðtÞi corresponding to the entire Hamiltonian is
given by,

ψ tð Þj i = 〠
∞

n=0
A1 n, tð Þe−iη1t e, 1, nj i +A2 n, tð Þe−iη2t e, 2, n + 1j i�

+A3 n, tð Þe−iη3t e, 3, n + 1j i +A4 n, tð Þe−iη4t g, 1, n + 1j i
+A5 n, tð Þe−iη5t g, 2, n + 2j i +A6 n, tð Þe−iη6t g, 3, n + 2j i�,

ð2Þ

where A i represent the time-dependent probability ampli-
tudes, whilst ηs are defined by,

η1 = ωe + ω1 + nωf ,

η2 = ωe + ω2 + n + 1ð Þωf ,

η3 = ωe + ω3 + n + 1ð Þωf ,

η4 = ωg + ω1 + n + 1ð Þωf ,

η5 = ωg + ω2 + n + 2ð Þωf ,

η6 = ωg + ω3 + n + 2ð Þωf :

ð3Þ

Here, the initial state is considered as a separate state
(product state), and then the entanglement periods resulting
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Figure 1: A sketch of two- and three-level atoms interact with a
single mode of a quantized cavity field.
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from the interaction of the field with a two-level atom or a
three-level atom are detected via applying the time-
dependent Schrödinger equation iðð∂jψðtÞiÞ/∂tÞ =H jψðtÞi
[38]. Also, considering the initial state as a linear combina-
tion of product states between a superposition of atomic
state jΞi and the coherent state jαi, which is represented by,

ψ 0ð Þj i = Ξj i ⊗ αj i
= cos2Θ e, 1j i + cos Θ sin Θ e, 2j i + sin Θ e, 3j i� �

⊗ 〠
∞

n=0
Q nð Þ nij ,

ð4Þ

where QðnÞ = e−ðjαj
2/2Þðα/ðn!Þ−1/2Þ, while Θ ∈ ½0, π�.

The case of resonance is considered for both the two-level
atom and the three-level atom. For a two-level atom, the rela-
tion between atomic frequencies and field frequency is

ωe − ωg = ωf : ð5Þ

For a three-level atom, the relationship between the
atomic frequencies and the frequency of the field is

ω1 − ω2 = ωf ,
ω1 − ω3 = ωf :

ð6Þ

In the resonance case with the initial states (4), the prob-
ability amplitudes in Eq. (2) can be calculated as follows:

A1 n, tð Þ = a1
2 ffiffiffiffiffi

R1
p X+

1 n, tð Þ + X−
1 n, tð Þð Þ

−
i a2 + a3ð Þν1ffiffiffiffiffiffiffiffi

2R1
p X+

2 n, tð Þ + X−
2 n, tð Þð Þ,

A2 n, tð Þ = a2 + a3
4 ffiffiffiffiffi

R1
p X+

3 n, tð Þ + X−
3 n, tð Þ + 2

ffiffiffiffiffi
R1

p
cos ν2tð Þ

� �
−

ia1ν1ffiffiffiffiffiffiffiffi
2R1

p X+
2 n, tð Þ + X−

2 n, tð Þð Þ,

A3 n, tð Þ = a2 + a3
4 ffiffiffiffiffi

R1
p X+

3 n, tð Þ + X−
3 n, tð Þ − 2

ffiffiffiffiffi
R1

p
cos ν2tð Þ

� �
−

ia1ν1ffiffiffiffiffiffiffiffi
2R1

p X+
2 n, tð Þ + X−

2 n, tð Þð Þ,

A4 n, tð Þ = a2 + a3ffiffiffiffiffi
R1

p Y n, tð Þ − ia1ν1ffiffiffiffiffiffiffiffi
2R1

p X+
4 n, tð Þ + X−

4 n, tð Þð Þ,

A5 n, tð Þ = 2a1ν1ν2ffiffiffiffiffi
R1

p Y n, tð Þ − i a2 + a3ð Þ
2 ffiffiffiffiffiffiffi2R1
p X+

4 n, tð Þ + X−
4 n, tð Þð Þ

−
i a2 − a3ð Þffiffiffi

2
p sin ν2tð Þ,

A6 n, tð Þ = 2a1ν1ν2ffiffiffiffiffi
R1

p Y n, tð Þ − i a2 + a3ð Þ
2 ffiffiffiffiffiffiffi2R1
p X+

4 n, tð Þ + X−
4 n, tð Þð Þ

+ i a2 − a3ð Þffiffiffi
2

p sin ν2tð Þ:

ð7Þ

Here,

X±
1 n, tð Þ =

ffiffiffiffiffi
R1

p
± 3 ν22 − ν21
� �h i

cos t

ffiffiffiffiffiffiffi
D∓
2

r !
,

X±
2 n, tð Þ =

ffiffiffiffiffi
R1

p ± ν22 + 3ν21
� �
D±

� �
sin t

ffiffiffiffiffiffiffi
D±
2

r !
,

X±
3 n, tð Þ =

ffiffiffiffiffi
R1

p
± ν22 − ν21
� �h i

cos t

ffiffiffiffiffiffiffi
D∓
2

r !
,

X±
4 n, tð Þ =

ffiffiffiffiffi
R1

p ± 3ν22 + 5ν21
� �
D±

� �
sin t

ffiffiffiffiffiffiffi
D±
2

r !
,

Y n, tð Þ = ν21 + ν22
� �

cos t

ffiffiffiffiffiffiffi
D+
2

r !
− cos t

ffiffiffiffiffiffiffi
D−
2

r ! !
,

ð8Þ

with

a1 =Q nð Þ cos2Θ,

a2 =Q nð Þ cos Θ sin Θ,

a3 =Q nð Þ sin Θ,

ð9Þ

where

R1 = 9 ν41 + ν42
� �

+ 14ν21ν22,

D± =
ffiffiffiffiffi
R1

p
± 3 ν21 + ν22

� �� �
,

ν1 2ð Þ = λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1 2ð Þ

p
:

ð10Þ

By using Eqs. (2) and (7), the final output density opera-
tor of the total systems is given by

ρcA,B ,f = ψ tð Þj i ψ tð Þh j: ð11Þ

The main task of this manuscript is to discuss some sta-
tistical and dynamical aspects of the reduced density states
for the two-level and three-level atoms. To get the reduced
density operator, one can trace out the other two subsystems.
The reduced density state of the two-level atomic system is
defined by bρA = TrB,f jψðtÞihψðtÞj, which is obtained by

bρA = 〠
∞

n=0
A1 n, tð Þj j2 + A2 n, tð Þj j2 + A3 n, tð Þj j2� �

ei ehj j	
+ A4 n, tð Þj j2 + A5 n, tð Þj j2 + A6 n, tð Þj j2� �

gi ghj j
+ A1 n + 1, tð ÞA∗

4 n, tð Þ +A2 n + 1, tð ÞA∗
5 n, tð Þð

+A3 n + 1, tð ÞA∗
6 n, tð ÞÞ ei ghj j + h:c:



:

ð12Þ
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Likewise, the reduced density operator of the three-level
atom is given by

bρB = 〠
∞

n=0
A1 n, tð Þj j2 + A4 n, tð Þj j2� �

1i 1hj j	
+ A2 n, tð Þj j2 + A5 n, tð Þj j2� �

2i 2hj j
+ A3 n, tð Þj j2 + A6 n, tð Þj j2� �

3i 3hj j
+ A1 n + 1, tð ÞA∗

2 n, tð Þ +A4 n + 1, tð ÞA∗
5 n, tð Þð Þ 1i 2hj j

+ A1 n + 1, tð ÞA∗
3 n, tð Þ +A4 n + 1, tð Þð ÞA∗

6 n, tð Þ 1i 3hj j
+ A2 n, tð ÞA∗

3 n, tð Þ +A5 n, tð ÞA∗
6 n, tð Þð Þ 2i 3hj j + h:c:



:

ð13Þ

3. Atomic Inversion

Using the statistical population inversion, one can find the
possibility of populating an atom in its excited or ground
state. The population inversion of the two-level atom can
be achieved by using the reduced density state (12) as
follows:

W A tð Þ = A1 n, tð Þj j2 + A2 n, tð Þj j2 + A3 n, tð Þj j2 − A4 n, tð Þj j2
− A5 n, tð Þj j2 − A6 n, tð Þj j2:

ð14Þ

However, the statistical inversion of the three-level atom
via employing the reduced density state (13) reads

W B tð Þ = A1 n, tð Þj j2 − A2 n, tð Þj j2 − A3 n, tð Þj j2 + A4 n, tð Þj j2
− A5 n, tð Þj j2 − A6 n, tð Þj j2:

ð15Þ

The influence of the initial atomic state on the statistical
population inversion is displayed in Figure 2, where the pop-
ulation of the two- and three-level atoms are shown by the
blue and red curves, respectively. By setting the atomic sys-
tem in the superposition state with Θ = π/4, Figure 2(a)
shows that the collapse interval of the three-level atom is less
than that is depicted for the two-level atom. The oscillation
amplitudes of the two-level atom are greater than those dis-
played in the three-level atomic state. This means that the
largest dimension is very sensitive to the field, so the interac-
tion between the two-level atom and the cavity field is more
potent. While standing Θ with the value π/6, Figure 2(b)
discloses that the amplitude of the three-level atomic state
decreases, and the two-level atom does not change. This
illustrates that the three-level atomic state converges to the
ground state and that its interaction with the field becomes
fragile. By preparing the two atoms in the excited state,
Figure 2(c) displays that the two atoms have the same ampli-
tudes. The collapse intervals of the two-level atomic system
are longer than that depicted for the three-level atom. If
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Figure 2: The atomic inversion of two-level atom W AðtÞ (blue curve) and three-level atom W BðtÞ (red curve), where (a) Θ = π/4,
(b) Θ = π/6, (c) Θ = 0, and (d) Θ = π/2.
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the higher dimensional atomic state is initially prepared in
the ground state and the lower dimensional atomic system
at the initial excited state, Figure 2(d) shows that the statis-
tical inversion of the three-level atom always has a negative
behaviour, while the collapse interval of the two-level atom
increases. From this figure, we can deduce that the initial
atomic state plays a central role in the statistical inversion,
where the superposition state reduces the efficiency of the
interaction between the two atoms and the field. The high
atomic dimensionality is very sensitive to the cavity field.
The sensitivity of the two-level state of the cavity field
becomes fragile if we set the three-level atom in the ground
state.

4. Entropy Squeezing

In this section, we shall use the phenomena of entropy
squeezing to investigate the information entropy of either
the reduced two-level atomic system or the reduced three-
level atomic system. It gave the condition of entropy squeez-
ing in x and y directions by [39, 40]

εl σið Þ = exp Hl σið Þ½ �
−

γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp Hl σzð Þ½ �j jp < 0, l = A, B, and i = x, y,

ð16Þ

where the parameter γ equals 2 and 2
ffiffiffi
2

p
for two and three-

level atom, respectively, and HlðσiÞ are the observable
Shannon information entropics with HlðσiÞ = −∑N

n=jP
l
jðσiÞ

ln P l
jðσiÞ. For the two-level atom (N = 2) the probabilities

P A
j ðσiÞ are obtained by

P A
1,2 σxð Þ = 1

2 1 ± Re ρA12
	 
� �

, P A
1,2 σy
� �

= 1
2 1 ± Im ρA12

	 
� �
,

P A
1 σzð Þ = ρA11,

P A
2 σzð Þ = 1 − ρA11, with

ρA12 =A1 n + 1, tð ÞA∗
4 n, tð Þ +A2 n + 1, tð ÞA∗

5 n, tð Þ
+A3 n + 1, tð ÞA∗

6 n, tð Þ,

ρA11 = A1 n, tð Þj j2 + A2 n, tð Þj j2 + A3 n, tð Þj j2:
ð17Þ

However, the probabilities P B
j ðσiÞ of the three-level

atomic subsystem (N = 3) are computed as follows:

P B
1 σxð Þ = 1

2 ρB11 + ρB33 − 2 Re ρB13
	 
� �

,

P B
2,3 σxð Þ = 1

4 1 + ρB22 ± 2 Re
ffiffiffi
2

p
ρB12 + ρB23
� �

± ρB13

h i� �
P B

1 σy
� �

= 1
2 ρB11 + ρB33 + 2 Re ρB13

	 
� �
,

P B
2,3 σy

� �
= 1
4 1 + ρB22 − 2 Re ρB13

	 

± 2

ffiffiffi
2

p
Im ρB12 + ρB23
	 
� �

,

P B
1 σzð Þ = ρB11,P B

2 σzð Þ = ρB22,P B
3 σzð Þ = ρB33, ð18Þ

with

ρB11 = A1 n, tð Þj j2 + A4 n, tð Þj j2,

ρB12 =A1 n + 1, tð ÞA∗
2 n, tð Þ +A4 n + 1, tð ÞA∗

5 n, tð Þ,

ρB22 = A2 n, tð Þj j2 + A5 n, tð Þj j2,

ρB13 =A1 n + 1, tð ÞA∗
3 n, tð Þ +A4 n + 1, tð ÞA∗

6 n, tð Þ,

ρB33 = A3 n, tð Þj j2 + A6 n, tð Þj j2,

ρB23 =A2 n, tð ÞA∗
3 n, tð Þ +A5 n, tð ÞA∗

6 n, tð Þ:

ð19Þ

The effect of initial atomic setting state of squeezing
degree for the first quadrature εlðσxÞ is displayed in
Figure 3, where we present the two-level atom εAðσxÞ in
the blue solid curve and the three-level atom εBðσxÞ red dash
curve. From Figure 3, we remarked that the two-level atom
always has no squeezing along the scaled time, where the
behaviour of εAðσxÞ > 0 for different Θ. Squeezing of the
three-level atom is depicted with the initial superposition
states and the ground state. The entropy squeezing at
Θ = π/3 is greater than that displayed for Θ = π/4, where
εBðσxÞ < 0 always with Θ = π/3. For the ground state, we
disclose the entropy squeezing for a small period, where
εBðσxÞ < 0 at the scaled time λt ∈ ½0:05,0:06�. Therefore,
the superposition state generates large degrees of squeez-
ing for the three-level atom.

On the other hand, Figure 4 shows the general behaviour
of the second quadrature εlðσyÞ. We noticed that the squeez-
ing phenomenon of the two-level atom is generated after the
first onset interaction, and it has a symmetric behaviour for
different initial states. For the ground state, we disclose the
entropy squeezing for a small period, where εBðσxÞ < 0 at
the scaled time λt ∈ ½0:05,0:06�. Therefore, the superposition
state generates large degrees of squeezing for the three-level
atom. In contrast, the squeezing phenomenon of the
three-level atom is dissipated according to the superposi-
tion state or the excited state. The reduced three-level
atomic state generates a small-scale squeezing when the
two-level atom is prepared in an excited state. From
Figures 3 and 4, the two quadratures of entropy squeez-
ing εlðσxÞ and εlðσyÞ are reflected behaviors. The robust-
ness of entropy squeezing for the three-level atom is
stronger than the two-level atom.

5. Tomographic Entropy

For the atomic states, we constructed the tomographic
entropy to indicate the entanglement of a quantum system.
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Figure 3: (a–d) The entropy squeezing in x direction of two-level atom εAðσxÞ (blue curve) and three-level atom εBðσxÞ (red curve), with the
Θ parameter same as Figure 2.
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Figure 4: (a–d) The entropy squeezing in y direction of two-level atom εAðσyÞ (blue curve) and three-level atom εBðσyÞ (red curve), with the
Θ parameter same as Figure 2.
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The spin tomogram entropy of an arbitrary spin-j is
expressed by [35]

T α, βð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
2j + 1
4π

r ð2π
0

ðπ
0
〠
j

m=−j

−Qm α, βð Þ ln Qm α, βð Þ sin α dα dβ,
ð20Þ

where Qiðα, βÞ represent the generic spin tomograms [35].
For the reduced two-level atom (j = 1/2), the tomographic
entropy is given by [37]

T A α, βð Þ =
ffiffiffiffiffiffi
1
2π

r ð2π
0

ðπ
0
〠
2

m=1

−QA
m α, βð Þ ln QA

m α, βð Þ sin α dα dβ:

ð21Þ

Here,

QA
1 α, βð Þ = 1

2 + ρA11 −
1
2

� �
cos α + sin α Re ρA12e

iβ
h i

,

QA
2 α, βð Þ = 1

2 + 1
2 − ρA11

� �
cos α − sin α Re ρA12e

iβ
h i

,

ð22Þ

where ρAij are defined in Eq. (17). Likewise, the tomographic
entropy of the reduced three-level system (j = 1) is computed
as [35]

T B α, βð Þ =
ffiffiffiffiffiffi
3
4π

r ð2π
0

ðπ
0
〠
3

m=0

−QB
m α, βð Þ ln QB

m α, βð Þ sin α dα dβ,
ð23Þ

with the generic spin,

QB
1 α, βð Þ = ρB11 cos4

α

2 + ρB22
2 sin2α + ρB33 sin4

α

2

+ sin2α
2 Re ρB13 exp 2iβ½ �	 


+
ffiffiffi
2

p
sin α cos2 α2 Re ρB12 exp iβ½ �	 
�

+ sin2 α2 Re ρB23 exp iβ½ �	 
�
,

QB
2 α, βð Þ = ρB11

2 sin2 α2 + ρB11 cos2α +
ρB33
2 sin2 α2

− sin2α Re ρB13 exp 2iβ½ �	 

−

1ffiffiffi
2

p sin 2α Re ρB12 exp iβ½ �	 

− Re ρB23 exp iβ½ �	 
� �

,

QB
3 α, βð Þ = ρB11 sin4

α

2 + ρB22
2 sin2α + ρB33 cos4

α

2

+ sin2α
2 Re ρB13 exp 2iβ½ �	 


−
ffiffiffi
2

p
sin α sin2 α2 Re ρB12 exp iβ½ �	 
�

+ cos2 α2 Re ρB23 exp iβ½ �	 
�
:

ð24Þ

The tomographic entropy of the two- and three-level
atomic systems is displayed in Figures 5(a) and 5(b), respec-
tively. For the two-level state, the initial atomic state has no
clear influence on the tomographic entropy. The function
T Aðα, βÞ osculates between 2:55 and 3:5. The maximum
bounds when the initial two atoms are prepared in the
excited state are less than that shown in the superposition
state. The upper bounds of the function T Aðα, βÞ increase
when the first atom is excited and the second in the
ground state. For the three-level atomic state, Figure 5(b)
shows that the parameter Θ plays a controlled role in
tomographic entropy. The lower bounds of the function
T Bðα, βÞ at Θ = 0, π/2 exit 4:7, while the upper bounds
at Θ = 0 are greater than that are displayed at Θ = π/2.
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Figure 5: The tomographic entropy where Θ = 0 blue curve, Θ = π/2 red curve, Θ = π/3 green curve, and Θ = π/4 gray curve. (a) T Aðα, βÞ
two-level atom. (b) T Bðα, βÞ three-level atom.
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Moreover, at superposition states with Θ = π/4, π/3, the
lower and upper bounds of the tomographic entropy are
convergent. The two-level atom is exchanged from a sepa-
rable state into a partial (maximum) entangled state. How-
ever, the initial product state between the excited and
ground state generates a maximally entangled state of the
three-level atom.

6. Summary

In this paper, we have introduced a physical Hamiltonian
comprising of an isolated two- and three-level atoms which
are interacting locally with a single mode of a quantized
cavity field. The exact solution of this system under differ-
ent initial setting states by using the time-dependent
Schrödinger picture is obtained. The temporal evolution
of the statistical atomic inversion, entropy squeezing, and
tomographic entropy of the two- and the three-level atoms
are investigated. We remarked that the initial state has an
active role in the dynamics of the statistical atomic inver-
sion, where the superposition state suppresses the efficacy
of the interaction between the atom and the field. The
high-dimensional atomic system is sensitive to the cavity
field. However, the sensitivity between the two-level state
and the cavity field become more fragile if we set the
three-level atom in the ground state. Also, the robustness
of the entropy squeezing depends on the dimension of
the atomic system, where the three-level state is stronger
than the two-level atom. The general behaviours of the
two quadratures of the entropy squeezing are reflected.
By controlling the initial setting states, one can increase/
suppress the temporal evolution of the tomographic
entropy induced by the influence of the separability in
the quantum system.

Data Availability

The data used is generated from the models presented in the
manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by Taif University, Saudi
Arabia, supporting project number TURSP-2020/17.

References

[1] E. T. Jaynes and F. W. Cummings, “Comparison of quantum
and semiclassical radiation theories with application to the
beam maser,” Proceedings of the IEEE, vol. 51, no. 1, pp. 89–
109, 1963.

[2] M. Sebawe Abdalla, M. M. A. Ahmed, and A.-S. F. Obada,
“Dynamics of a non-linear Jaynes-Cummings model,” Physica
A: Statistical Mechanics and its Applications, vol. 162, no. 2,
pp. 215–240, 1990.

[3] B. M. Rodríguez-Lara, F. Soto-Eguibar, A. Z. Cárdenas, and
H. M. Moya-Cessa, “A classical simulation of nonlinear
Jaynes–Cummings and Rabi models in photonic lattices,”
Optics Express, vol. 21, no. 10, pp. 12888–12898, 2013.

[4] J. Braumüller, M.Marthaler, A. Schneider et al., “Analog quan-
tum simulation of the Rabi model in the ultra-strong coupling
regime,” Nature communications, vol. 8, no. 1, pp. 1–8, 2017.

[5] W. Bruce, “The Jaynes-Cummings model,” Journal of Modern
Optics, vol. 40, no. 7, pp. 1195–1238, 1993.

[6] F. Jahanbakhsh and M. K. Tavassoly, “The field-field and
dipole-dipole coupling effects on the entanglement of the
interaction between two qutrits with a two-mode field,” Mod-
ern Physics Letters A, vol. 35, no. 22, article 2050183, 2020.

[7] L.-J. Feng, Y. Yu, and H.-X. Dong, “Enhancing cross-Kerr
coupling via mechanical parametric amplification,” Optics
Express, vol. 29, no. 18, pp. 28835–28842, 2021.

[8] G. Sadiek, E. I. Lashin, and M. S. Abdalla, “Entanglement of a
two-qubit system with anisotropic XYZ exchange coupling in
a nonuniform time-dependent external magnetic field,” Phy-
sica B, vol. 404, no. 12-13, pp. 1719–1728, 2009.

[9] M. Sebawe, “Statistical properties of multiphoton time-
dependent three-boson coupled oscillators,” Josa B, vol. 23,
no. 6, pp. 1146–1160, 2006.

[10] M. Sebawe Abdalla, M. M. A. Ahmed, E. M. Khalil, and A.-S. F.
Obada, “The interaction between a single two-level atom
coupled to an N-level quantum system through three cou-
plings,” Annals of Physics, vol. 364, pp. 168–181, 2016.

[11] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
“Quantum entanglement,” Reviews of Modern Physics, vol. 81,
no. 2, pp. 865–942, 2009.

[12] G. Sadiek, W. Al-Drees, and S. Abdallah, “Manipulating
entanglement sudden death in two coupled two-level atoms
interacting off-resonance with a radiation field: an exact treat-
ment,” Optics express, vol. 27, no. 23, pp. 33799–33825, 2019.

[13] M. Ramzan and M. K. Khan, “Decoherence and entanglement
degradation of a qubit-qutrit system in non-inertial frames,”
Quantum Information Processing, vol. 11, no. 2, pp. 443–454,
2012.

[14] N. Metwally, “Entanglement routers via a wireless quantum
network based on arbitrary two qubit systems,” Physica
Scripta, vol. 89, no. 12, article 125103, 2014.

[15] N. Metwally, “Enhancing entanglement, local and non-local
information of accelerated two qubit and two-qutrit systems
via weak-reverse measurements,” EPL, vol. 116, no. 6, article
60006, 2017.

[16] I. Sainz and G. Björk, “Entanglement invariant for the double
Jaynes–Cummings model,” Physical Review A, vol. 76, no. 4,
article 042313, 2007.

[17] S. Jamal, “Entanglement dynamics of three and four level
atomic system under Stark effect and Kerr-like medium,”
Quantum reports, vol. 1, no. 1, pp. 23–36, 2019.

[18] E. M. Khalil, S. Abdalla, and A.-S. F. Obada, “Pair entangle-
ment of two-level atoms in the presence of a nondegenerate
parametric amplifier,” Journal of Physics B: Atomic, Molecular
and Optical Physics, vol. 43, no. 9, article 095507, 2010.

[19] Q. Liao and G. He, “Maximal entanglement and switch
squeezing with atom coupled to cavity field and graphene
membrane,” Quantum Information Processing, vol. 19, no. 3,
pp. 1–15, 2020.

[20] M. F. Alotibi, E. M. Khalil, S. Abdel-Khalek, M. Y. Abd-
Rabbou, and M. Omri, “Effects of the vibrating graphene

8 Advances in Mathematical Physics



membrane and the driven classical field on an atomic system
coupled to a cavity field,” Results in Physics, vol. 31, article
105012, 2021.

[21] M. S. Abdalla, E. M. Khalil, and A.-S. F. Obada, “Exact treat-
ment of the Jaynes-Cummings model under the action of an
external classical field,” Annals of physics, vol. 326, no. 9,
pp. 2486–2498, 2011.

[22] M. Y. Abd-Rabbou, E. M. Khalil, M. M. A. Ahmed, and A. S. F.
Obada, “External classical field and damping effects on a
moving two level atom in a cavity field interaction with Kerr-
like medium,” International Journal of Theoretical Physics,
vol. 58, no. 12, pp. 4012–4024, 2019.

[23] A.-S. F. Obada, F. A. Mohammed, H. A. Hessian, and A.-B. A.
Mohamed, “Entropies and entanglement for initial mixed state
in the multi-quanta JCmodel with the Stark shift and Kerr-like
medium,” International Journal of Theoretical Physics, vol. 46,
no. 4, pp. 1027–1044, 2007.

[24] N. Metwally, “Dynamics of information in the presence of
deformation,” International Journal of Quantum Information,
vol. 9, no. 3, pp. 937–946, 2011.

[25] H.-M. Zou and M.-F. Fang, “Analytical solution and entangle-
ment swapping of a double Jaynes–Cummings model in non-
Markovian environments,” Quantum Information Processing,
vol. 14, no. 7, pp. 2673–2686, 2015.

[26] Q. Xie and M.-F. Fang, “Entanglement dynamics of atoms in
double Jaynes–Cummings models with Kerr medium,” Com-
munications in Theoretical Physics, vol. 54, no. 5, pp. 840–
844, 2010.

[27] Z.-X. Man, Y.-J. Xia, and N. B. An, “Entanglement dynamics
for the double Tavis-Cummings model,” The European Physi-
cal Journal D, vol. 53, no. 2, pp. 229–236, 2009.

[28] H. Fan, K. Matsumoto, and H. Imai, “Quantify entanglement
by concurrence hierarchy,” Journal of Physics A: Mathematical
and General, vol. 36, no. 14, pp. 4151–4158, 2003.

[29] K. William, “Entanglement of formation of an arbitrary state
of two qubits,” Physical Review Letters, vol. 80, no. 10,
pp. 2245–2248, 1998.

[30] G. Rempe, H.Walther, and N. Klein, “Observation of quantum
collapse and revival in a one-atom maser,” Physical review let-
ters, vol. 58, no. 4, pp. 353–356, 1987.

[31] S. Bose, P. L. Fuentes-Guridi, P. L. Knight, and V. Vedral,
“Subsystem purity as an enforcer of entanglement,” Physical
Review Letters, vol. 87, no. 5, article 050401, 2001.

[32] H. Azuma, “Dynamics of the Bloch vector in the thermal
Jaynes-Cummings model,” Physical Review A, vol. 77, no. 6,
article 063820, 2008.

[33] T. Yu and J. H. Eberly, “Quantum open system theory: bipar-
tite aspects,” Physical review letters, vol. 97, no. 14, article
140403, 2006.

[34] A. B. Klimov, O. V. Man'ko, V. I. Man'ko, Y. F. Smirnov, and
V. N. Tolstoy, “Tomographic representation of spin and quark
states,” Journal of Physics A: Mathematical and General,
vol. 35, no. 29, pp. 6101–6123, 2002.

[35] N. Vladimir, “Tomographic characteristics of spin states,”
Research, vol. 27, no. 2, pp. 132–166, 2006.

[36] A. Almarashi, A. Algarni, S. Abdel-Khalek, and H. K. T. Ng,
“Quantum Fisher information and tomographic entropy of a
single qubit in excited binomial and negative binomial distri-
butions,” Journal Russian Laser Research, vol. 40, no. 4,
pp. 313–320, 2019.

[37] A. Almarashi, A. Algarni, S. Abdel-Khalek, G. A. Abd-Elmou-
god, and M. Z. Raqab, “Quantum extropy and statistical prop-
erties of the radiation field for photonic binomial and even
binomial distributions,” Journal of Russian Laser Research,
vol. 41, no. 4, pp. 334–343, 2020.

[38] W. H. Louisell, Quantum Statistical Properties of Radiation,
John Wiley and Sons, Inc., New York, 1973.

[39] M.-F. Fang, P. Zhou, and S. Swain, “Entropy squeezing for a
two-level atom,” Journal of Modern Optics, vol. 47, no. 6,
pp. 1043–1053, 2000.

[40] A.-S. F. Obada, N. A. Alshehri, E. M. Khalil, S. Abdel-Khalek,
and H. F. Habeba, “Entropy squeezing and atomic Wehrl den-
sity for the interaction between SU(1,1) Lie algebra and a
three-level atom in presence of laser field,” Results in Physics,
vol. 30, article 104759, 2021.

9Advances in Mathematical Physics


	Dynamical Features of Isolated Two- and Three-Level Atoms Interacting with a Cavity Field
	1. Introduction
	2. The Physical Model
	3. Atomic Inversion
	4. Entropy Squeezing
	5. Tomographic Entropy
	6. Summary
	Data Availability
	Conflicts of Interest
	Acknowledgments

