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Let ðhsÞ∞s=1 be a sequence of continuous maps on a compact metric spaceW which converges uniformly to a continuous map h on
W. In this paper, some equivalence conditions or necessary conditions for the limit map h to be distributional chaotic are obtained
(where distributional chaoticity includes distributional chaotic in a sequence, distributional chaos of type 1 (DC1), distributional
chaos of type 2 (DC2), and distributional chaos of type 3 (DC3)).

1. Introduction

In this paper, a topological dynamical system (shortly, TDS)
is a pair ðW, hÞ, where h : W ⟶W is a continuous surjec-
tive map that acts on a compact metric space W with a met-
ric e. And let ℤ+ be the set of nonnegative integers.

To find conditions that assure the preservation of any
chaotic property under limit operations is an interesting
problem (see [1–11]). In [8], the author proved that if hsðs
∈ f1, 2,⋯gÞ are continuous transitive functions on a metric
space ðW, eÞ, hs converge uniformly to a function h, and
then, a few sufficient conditions for the limit function h to
be topologically transitive were presented. In [5], the authors
discussed the dynamical behaviour of the uniform limit of a
sequence of continuous maps on a compact metric space
which satisfy (topological) transitivity or other related prop-
erties and presented some conditions different from [8] for
the transitivity of a limit map. In [12], the limit behaviour
of sequences with the form hs ∘ ⋯∘h1ðaÞ, a ∈ ½0, 1� was stud-
ied; the author considered whether the simplicity (respec-
tively, chaoticity) of h implies the simplicity (respectively,
chaoticity) of h1,∞ (where h1,∞ = ðhsÞ∞s=1 is a sequence of

continuous interval maps converging uniformly to a contin-
uous map h). More recently, [4] considered nonautonomous
discrete dynamical systems h1,∞, which were given by sur-
jective continuous map sequence hs : I ⟶ I converged uni-
formly to a map h : ½0, 1�⟶ ½0, 1�. It is obtained that the
full Lebesgue measure of a distributional scrambled set of
the nonautonomous system cannot guarantee the existence
of distributional chaos of the limit map. There exists a non-
autonomous system with an arbitrarily small distributional
scrambled set which converges to a map that is distribu-
tional chaotic almost everywhere. As one knows, sensitivity
property characterizes the unpredictability of chaotic phe-
nomenon in a system and it is one of the essential conditions
of various definitions of a chaotic system. So, when is a sys-
tem sensitive? This question has gained some attention in
more recent papers (see [10, 13–16]). A TDS ðW, hÞ is sen-
sitive if for any region E of the phase space W there are two
points in E and some s ∈ f0, 1,⋯g satisfying that the sth iter-
ate of the two points under the map h is significantly sepa-
rated. The size of the set of all s ∈ℤ+ satisfying that this
significant separation or sensitivity happens can be consid-
ered a measure of how sensitive the dynamical system is.
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In particular, if this set is relatively thin with arbitrarily large
gaps between consecutive entries, then we can consider the
dynamical system as practically nonsensitive!

In [10], the authors obtained an equivalence condition
under which the uniform limit h is sensitive. In [7], we
obtain an equivalence condition for that the uniform map
h is topologically transitive (resp., syndetically transitive,
topologically weak mixing, and topological mixing). More-
over, necessary conditions for the uniform map h to be sen-
sitive or cofinitely sensitive or multisensitive were given. In
[17], we present the correct proofs of Theorems 4–8 in [7].
Moreover, for a continuous map sequence ðhsÞ∞s=1 on a com-
pact metric space W converges uniformly to a continuous
map h : W ⟶W, we present an equivalence condition
under which the uniform map h is syndetically sensitive or
cofinitely sensitive or multisensitive or ergodically sensitive,
and a sufficient condition under which the uniform map h
is totally transitive or topologically weak mixing. In [18],
we gave an equivalence condition under which the uniform
limit map is F-transitive or weakly F-sensitive or F-sen-
sitive or ðF1,F2Þ-sensitive and a necessary condition for
the uniform limit map to be weakly F-sensitive or F-sen-
sitive or ðF1,F2Þ-sensitive.

In this paper, on a compact metric space W, for a con-
tinuous map sequence ðhnÞ∞n=1 which converges uniformly
to a continuous map h, we obtain equivalence conditions
under which the uniform map h is distributional chaotic or
distributional chaotic in a sequence or DC1 or DC2 or
DC3 and necessary conditions for the uniform map h to be
distributional chaotic or distributional chaotic in a sequence
or DC1 or DC2 or DC3.

In Section 2, some concepts are recalled. Distributional
chaotic properties are obtained and proved in Section 3.

2. Preliminaries

For any dynamical systems ðW1, e1Þ and ðW2, e2Þ, define
e∞ðe1, e2Þ = sup

a∈W
eðe1ðaÞ, e2ðaÞÞ, where W is a perfect metric

space (see [8]).
Let fqjg∞j=1 be a sequence of integers such that qj > 0 and

qj+1 > qj for any j ∈ f1, 2,⋯g. For a continuous map h : W
⟶W of a metric space W with metric e, any a, b ∈W
and any t > 0, let

ϕab t, h, qj
n o� �

= liminf
m⟶∞

1
m
〠
m

j=1
χ 0,t½ Þ e hqj að Þ, e hqj bð Þð Þðð ,

ϕ∗ab t, h, qj
n o� �

= limsup
m⟶∞

1
m
〠
m

j=1
χ 0,t½ Þ e hqj að Þ, e hqj bð Þð Þðð ,

ð1Þ

where χAðyÞ is 1 if y ∈ A and 0 otherwise. Let E ⊂W and a
, b ∈ E with a ≠ b. The set E is said to be a distributional cha-
otic set in a sequence, and a, b are said to be a pair of points
displaying distributional chaos in a sequence if

(1) ϕabðp, h, fqjg∞j=1Þ = 0, for some p > 0

(2) ϕ∗abðt, h, fqjg∞j=1Þ = 1, for any t > 0

A continuous map h : W ⟶W is said to be distribu-
tional chaotic in a sequence if it has a distributional chaotic
set in a sequence which is uncountable. In particular, a contin-
uous map h : W ⟶W is said to be distributional chaotic if it
is distributional chaotic in the sequence of positive integers.

Let ϕabðt, hÞ = ϕabðt, h, f1, 2,⋯gÞ and ϕ∗abðt, hÞ = ϕ∗xyðt, h
, f1, 2,⋯gÞ for any t ≥ 0. For a continuous map h on a metric
space W, if there is an uncountable set E ⊂W, for any a, b ∈ E
with a ≠ b, ϕ∗abðt, hÞ ≡ 1 for every t > 0 and ϕabðt0, hÞ = 0 for
some t0 > 0, or ϕ∗abðt, hÞ ≡ 1 for every t > 0 and ϕxyðt0, hÞ <
ϕ∗abðt0, hÞ for some t0 > 0, or ϕabðt, hÞ < ϕ∗abðt, hÞ for every t
> 0, then we say that h is DC1, DC2, or DC3, respectively
(see [19]).

3. Main Results

In all theorems in this section, ðW, eÞ is a metric space. ðhnÞ
be a sequence of continuous maps which converges uni-
formly to h on W. And it is always assumed that lim

n⟶∞
e∞ð

hnn, hnÞ = 0.

Theorem 1. Let fqjg∞j=1 be a strictly infinitely increasing

sequence of positive integers. Then, E is a distributional cha-
otic set in the sequence fqjg∞j=1 for h if and only if the follow-

ing conditions are satisfied:

(1) For any given a, b ∈ E with a ≠ b, ϕabðp, ðhnnÞ, fqjg∞j=1Þ
= 0 for some p > 0, where

ϕab t, hnnð Þ, qj
n o∞

j=1

� �
= liminf

n⟶∞

1
n
♯ 1, 2,⋯,nf g ∩ m ∈ℕ : e hqmqm að Þ, hqmqm bð Þ

� �
< t

n o� �
,

ð2Þ

for any t > 0.

(2) For any given a, b ∈ E with a ≠ b, ϕ∗abðt, ðhnnÞ, fqjg∞j=1Þ
= 1 for any t > 0, where

ϕ∗ab t, f nnð Þ, qj
n o∞

j=1

� �
= limsup

n⟶∞

1
n
♯ 1, 2,⋯,nf g ∩ m ∈ℕ : e hqmqm að Þ, hqmqm bð Þ

� �
< t

n o� �
,

ð3Þ

for any t > 0, where ♯ð·Þ is the cardinal number of a set.

Proof (necessity). Assume that D is a distributional chaotic
set in the sequence fqjg∞j=1 for h.
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On the one hand, for any given a, b ∈D : a ≠ b, ϕ∗abðð1/3Þ
t, h, fqjg∞j=1Þ = 1 for any t > 0. By the assumption that

lim
n⟶∞

e∞ hnn, hnð Þ = 0, ð4Þ

for any given t > 0, there is a positive integer nt such that

e∞ hmm, hmð Þ < 1
3 t, ð5Þ

for any m ≥ nt. Then, we have

e hmm að Þ, hmm bð Þð Þ ≤ e hmm að Þ, hm að Þð Þ + e hm að Þ, hm bð Þð Þ
+ e hmm bð Þ, hm bð Þð Þ < 1

3 t +
1
3 t +

1
3 t < t,

ð6Þ

for anym ≥ nt. This shows that ϕ
∗
abðt, ðhnnÞ, fqjg∞j=1Þ = 1 for any

t > 0. Hence, condition (1) holds.
On the other hand, for any given a, b ∈D : a ≠ b, ϕab

ð3p, h, fqjg∞j=1Þ = 0 for some p > 0. This implies that

limsup
n⟶∞

1
n
♯ j : e hqj að Þ, hqj bð Þð Þ ≥ 3p, 1 ≤ j ≤ nf gð Þ = 1: ð7Þ

By (4), for the above p > 0, there is an integer np > 0
such that

e hnn að Þ, hnn bð Þð Þ − e hn að Þ, hn bð Þð Þj j ≤ e hnn að Þ, hn að Þð Þ
+ e hnn bð Þ, hn bð Þð Þ < p + p = 2p,

ð8Þ

for any a, b ∈W and any integer n ≥ np. Therefore,

e hn að Þ, hn bð Þð Þ < e hnn að Þ, hnn bð Þð Þ + 2p, ð9Þ

for any integer n ≥ np. That is,

e hnn að Þ, hnn bð Þð Þ > e hn að Þ, hn bð Þð Þ − 2p > p, ð10Þ

for any integer n ≥ np. This implies that

limsup
n⟶∞

1
n
♯ j : e h

qj
qj að Þ, hqjqj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
= 1:

ð11Þ

That is, ϕabðp, ðhnnÞ, fqjg∞j=1Þ = 0 for the above p > 0.
So, condition (2) is true.

(Sufficiency) suppose that conditions (1) and (2) are
true. From the above argument, we know that

e hm að Þ, hm bð Þð Þ ≤ e hmm að Þ, hm að Þð Þ + e hmm að Þ, hmm bð Þð Þ
+ e hmm bð Þ, hm bð Þð Þ < 1

3 t +
1
3 t +

1
3 t < t,

ð12Þ

for any m ≥ nt , any a, b ∈D : a ≠ b, and any t > 0.
Since ϕ∗abðð1/3Þt, ðhnnÞ, fqjg∞j=1Þ = 1 for any t > 0 and for

any a, b ∈D : a ≠ b, ϕ∗abðt, h, fqjg∞j=1Þ = 1 for any t > 0 and

any a, b ∈D : a ≠ b. By hypothesis, for any given a, b ∈D : a
≠ b, ϕabð3p, ðhnnÞ, fqjg∞j=1Þ = 0 for some p > 0. This means that

limsup
n⟶∞

1
n
♯ j : e h

qj
qj að Þ, hqjqj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
= 1:

ð13Þ

By (8),

e hnn að Þ, hnn bð Þð Þ < e hn að Þ, hn bð Þð Þ + 2p, ð14Þ

for any integer n ≥ np. That is,

e hn að Þ, hn bð Þð Þ > e hnn að Þ, hnn bð Þð Þ − 2p > p, ð15Þ

for any integer n ≥ np. This implies that

limsup
n⟶∞

1
n
♯ j : e hqj að Þ, hqj bð Þð Þ ≥ 3p, 1 ≤ j ≤ nf gð Þ = 1, ð16Þ

whichmeans that ϕabðp, h, fqjg∞j=1Þ = 0 for the above p > 0. So,
D is a distributional chaotic set in the sequence fqjg∞j=1 for h.

Thus, the entire proof is completed.

Theorem 2. E is a distributional chaotic set for h if and only
if the following conditions are true:

(1) For any a, b ∈ E : a ≠ b, ϕabðp, ðhnnÞÞ = 0 for some p
> 0, where

ϕab t, hnnð Þð Þ = liminf
n⟶∞

1
n
♯ 1, 2,⋯,nf g ∩ m ∈ℕ : e hmm að Þ, hmm bð Þð Þ < tf gð Þ,

ð17Þ

for any t > 0.

(2) For any a, b ∈ E : a ≠ b, ϕ∗abðt, ðhnnÞÞ = 1 for any t > 0,
where
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ϕ∗ab t, hnnð Þð Þ = limsup
n⟶∞

1
n
♯ 1, 2,⋯,nf g ∩ m ∈ℕ : e hmm að Þ, hmm bð Þð Þ < tf gð Þ,

ð18Þ

for any t > 0.

Proof. Let fqjg∞j=1 = f1, 2,⋯g, and then, by Theorem 1, the

conclusion holds.

Theorem 3. h is DC1 if and only if there are two points a, b
∈W : a ≠ b such that the following conditions are satisfied:

(1) ϕabðp, ðhnnÞÞ = 0 for some p > 0

(2) ϕ∗abðt, ðhnnÞÞ = 1 for any t > 0

Proof. By Theorem 2, the conclusion is obvious. So it is
omitted.

Theorem 4. h is DC2 if and only if there are two points a, b
∈W : a ≠ b such that the following conditions are satisfied:

(1) ϕabðp, ðhnnÞÞ < 1 for all p > 0 in an interval

(2) ϕ∗abðt, ðhnnÞÞ = 1 for any t > 0

Proof (necessity). Assume that h is DC2. By the similar proof
as Theorem 1, condition (2) holds.

Let D is a distributional chaotic set of DC2 of h. Then,
for any two points a and b in D, ϕabð3p, hÞ < 1 for some
interval ðc, dÞ ⊂ ½0, 1� and any p ∈ ðc, dÞ, which means that

limsup
n⟶∞

1
n
♯ j : e hj að Þ, hj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
> 0, ð19Þ

for any p ∈ ðc, dÞ. By (4), for the above p ∈ ðc, dÞ, there is an
integer np > 0 such that (8) holds for any a, b ∈W and any
integer n ≥ np. Therefore,

e hnn að Þ, hnn bð Þð Þ > e f n að Þ, hn bð Þð Þ − 2p > p, ð20Þ

for any integer n ≥ np. This implies that

limsup
n⟶∞

1
n
♯ j : e hjj að Þ, hjj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
> 0: ð21Þ

That is, ϕabðp, ðhnnÞÞ < 1 for any p ∈ ðc, dÞ. Hence, condi-
tion (1) holds.

(Sufficiency) assume that conditions (1) and (2) hold. By
the above discussion, we get that (12) holds for any m ≥ nt
and any t > 0.

Since ϕ∗abðð1/3Þt, ðhnnÞÞ = 1 for any t > 0 and for the above
a and b, then ϕ∗abðt, hÞ = 1 for any t > 0 and for these two
points a and b. By hypothesis, we obtain that for the above
two points a and b, ϕabð3p, ðhnnÞÞ < 1 for some interval ðc, dÞ

⊂ ½0, 1� and any p ∈ ðc, dÞ. This means that

limsup
n⟶∞

1
n
♯ j : e hjj að Þ, hjj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
> 0, ð22Þ

for any p ∈ ðc, dÞ. By (8),

e hn að Þ, hn bð Þð Þ > e hnn að Þ, hnn yð Þð Þ − 2p > p, ð23Þ

for any integer n ≥ np. This implies that

limsup
n⟶∞

1
n
♯ j : e hj að Þ, hj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
> 0: ð24Þ

That is, ϕabðp, hÞ < 1 for any p ∈ ðc, dÞ. By the definition, h
is DC2.

Thus, the entire proof is ended.

Theorem 5. If h is DC3, then there are a, b ∈W : a ≠ b and
some interval ðc, dÞ ⊂ ½0, 1� such that for any p ∈ ðð1/3Þc, ð1/
3ÞdÞ,

ϕab p, hnnð Þð Þ ≤ ϕab 3p, hð Þ < ϕ∗ab 3p, hð Þ ≤ ϕ∗ab 9p, hnnð Þð Þ: ð25Þ

Proof. Suppose that h is DC3. By the definition, there is a,
b ∈W : a ≠ b such that ϕabðt, hÞ < ϕ∗abðt, hÞ for some interval
ðc, dÞ ⊂ ½0, 1� and any t ∈ ðc, dÞ. By the assumption that

lim
n⟶∞

e∞ hnn, hnð Þ = 0, ð26Þ

there is some positive integer nt such that

e∞ hmm, hmð Þ < t, ð27Þ

for any m ≥ nt . Then, we have

e hmm að Þ, hmm bð Þð Þ ≤ e hmm að Þ, hm að Þð Þ + e hm að Þ, hm bð Þð Þ
+ e hmm bð Þ, hm bð Þð Þ < t + t + t = 3t,

ð28Þ

for any m ≥ nt . This implies that ϕ∗abð3t, ðhnnÞÞ ≥ ϕ∗abðt, hÞ.
Clearly, for the above two points a and b and any p > 0,

1 − ϕab 3p, hð Þ = limsup
n⟶∞

1
n
♯ j : e hj að Þ, hj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
:

ð29Þ

By (4), for the above p > 0, there is an integer np > 0 such
that (8) holds for any a, b ∈W and any integer n ≥ np. There-
fore,

e hnn að Þ, hnn bð Þð Þ > e hn að Þ, hn bð Þð Þ − 2p > p, ð30Þ
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for any integer n ≥ np. This implies that

1 − ϕab p, hnnð Þð Þ = limsup
n⟶∞

1
n
♯ j : e hjj að Þ, hjj yð Þ

� �
≥ p, 1 ≤ j ≤ n

n o� �

≥ 1 − ϕab 3p, hð Þ:
ð31Þ

That is, ϕabðp, ðhnnÞÞ ≤ ϕabð3p, hÞ for any p > 0. Conse-
quently, for any p ∈ ðð1/3Þa, ð1/3ÞbÞ,

ϕab p, hnnð Þð Þ ≤ ϕxy 3p, hð Þ < ϕ∗ab 3p, hð Þ ≤ ϕ∗ab 9p, hnnð Þð Þ: ð32Þ

Thus, the proof is ended.

Now, we will give some necessary conditions for that the
limit map is DC1, DC2, or DC3. First, the following lemma
which comes from [2] is needed.

Lemma 6. For any ε > 0 and any integer l > 0, there is an
integer n0 > 0 (possibly depending on l) satisfying that for
any integer n > n0, eðhlnðaÞ, hlðaÞÞ < ε for any a ∈W.

Theorem 7. Let fqjg∞j=1 be a strictly infinitely increasing

sequence of positive integers. If the integer n0 in Lemma 6 is
independent of l and h is distributional chaotic in a sequence
fqjg∞j=1, then there is an uncountable distributional chaotic

set E ⊂W in the sequence fqjg∞j=1 for h such that the following
conclusions are true:

(1) For any a, b ∈ E : a ≠ b and any t > 0, there is an inte-
ger Nt such that ϕ∗abðt, hn, fqjgÞ = 1 for any integer
n >Nt

(2) For any a, b ∈ E : a ≠ b, there are some p > 0 and
some integer np such that ϕabðp, hn, fqjgÞ = 0 for
any integer n > np

Proof. Suppose that h is distributional chaotic in a sequence
fqjg∞j=1.

(1) By the definition, there is an uncountable distribu-
tional chaotic set D ⊂W in the sequence fqjg∞j=1 for
h such that for any given a, b ∈D : a ≠ b, ϕ∗abðð1/3Þt
, h, fqjg∞j=1Þ = 1 for any t > 0. By hypothesis and

Lemma 6, for any given t > 0, there is Nt , which is
independent of l, such that for any n >Nt ,

e hln að Þ, hl að Þ
� �

< 1
3 t, ð33Þ

for any integer l ≥ 1 and any a ∈W. Therefore,

e hjn að Þ, hjn bð Þ
� �

≤ e hj að Þ, hj bð Þ
� �

+ e hj
n að Þ, hj að Þ

� �

+ e hjn bð Þ, hj bð Þ
� �

< 3 · 13 t = t,
ð34Þ

for any integer n >Nt , any integer j > 0, and any a, b ∈D.
Consequently, ϕ∗abðð1/3Þt, h, fqjg∞j=1Þ = 1 implies that ϕ∗abðt,
hn, fqjg∞j=1Þ = 1 for any n >Nt and any t > 0.

(2) Since h is distributional chaotic in a sequence fqjg∞j=1
, then for any given a, b ∈W : a ≠ b, ϕabð3p, h,
fqjg∞j=1Þ = 0 for some p > 0. This means that

limsup
n⟶∞

1
n
♯ j : e hqj að Þ, hqj bð Þð Þ ≥ 3p, 1 ≤ j ≤ nf gð Þ = 1: ð35Þ

By hypothesis and the above argument, for the above p
> 0, there is an integer np > 0 such that

e hj
n að Þ, hjn bð Þ

� �
− e hj að Þ, hj bð Þ

� ����
��� ≤ e hnn að Þ, hn að Þð Þ + e hnn bð Þ, hn bð Þð Þ < p + p = 2p,

ð36Þ

for any a, b ∈W, any integer n ≥ np, and any integer j > 0.
Therefore,

e hj að Þ, hj bð Þ
� �

< e hj
n að Þ, hjn bð Þ

� �
+ 2p, ð37Þ

for any integer n ≥ np and any integer j > 0. That is,

e hjn að Þ, hjn bð Þ
� �

> e hj að Þ, hj bð Þ
� �

− 2p > p, ð38Þ

for any integer n ≥ np. This implies that

limsup
m⟶∞

1
m
♯ j : e h

qj
n að Þ, hqjn bð Þ

� �
≥ 3p, 1 ≤ j ≤m

n o� �
= 1,

ð39Þ

for any integer n ≥ np. That is, ϕabðp, hn, fqjg∞j=1Þ = 0 for the

above p > 0 and any integer n ≥ np.
Thus, the proof is finished.

Theorem 8. If the integer n0 in Lemma 6 is independent of l
and h is DC1, then there is a distributional chaotic set E ⊂W
for h which is uncountable such that the following hold:

(1) For any a, b ∈ E : a ≠ b and any t > 0, there is an inte-
ger Nt such that ϕ∗abðt, hnÞ = 1 for any integer n >Nt

(2) For any a, b ∈ E : a ≠ b, there are some p > 0 and
some integer np such that ϕabðp, hnÞ = 0 for any inte-
ger n > np
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Proof. Since DC1 is the special case of distributional chaotic
in a sequence, then it is obvious.

Theorem 9. If the integer n0 in Lemma 6 is independent of l
and h is DC2, then there are two points a, b ∈W with a ≠ b
such that the following are true:

(1) For any t > 0, there is an integer Nt such that ϕ∗ab
ðt, hnÞ = 1 for any integer n >Nt

(2) There are some interval ðc, dÞ ⊂ ½0, 1� such that for
any p > 0, there is some integer np such that ϕab
ðp, hnÞ < 1 for any integer n > np

Proof. Suppose that h is DC2.

(1) The proof is similar to Theorem 7. So it is omitted

(2) By the definition, for any given a, b ∈D : a ≠ b,
ϕabð3p, hÞ < 1 for some interval ðc, dÞ ⊂ ½0, 1� and
any p ∈ ðc, dÞ. This means that for any p ∈ ðc, dÞ,

limsup
n⟶∞

1
n
♯ j : e hj að Þ, hj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
> 0: ð40Þ

By hypothesis and the above argument, for any given p ∈
ðc, dÞ, there is an integer np > 0 such that (36) holds for any a
, b ∈W, any integer n ≥ np, and any integer j > 0. Therefore,

e hjn að Þ, hjn bð Þ
� �

> e hj að Þ, hj bð Þ
� �

− 2p > p, ð41Þ

for any integer n ≥ np and any integer j > 0. This implies that

limsup
m⟶∞

1
m
♯ j : e hjn að Þ, hjn bð Þ

� �
≥ 3p, 1 ≤ j ≤m

n o� �
> 0,

ð42Þ

for any integer n ≥ np. That is, ϕabðp, hnÞ < 1 for any p ∈ ðc, dÞ
and any integer n ≥ np.

Thus, the proof is complete.

Theorem 10. If the integer n0 in Lemma 6 is independent of l
and h is DC3, then there are a, b ∈W : a ≠ b and some
interval ðc, dÞ ⊂ ½0, 1�, for any p ∈ ðð1/3Þc, ð1/3ÞdÞ, there is
an integer Np > 0 such that

ϕab p, hnð Þ ≤ ϕab 3p, hð Þ < ϕ∗ab 3p, hð Þ ≤ ϕ∗ab 9p, hnð Þ, ð43Þ

for any n >Np.

Proof. Suppose that h is DC3. Then, by the definition, there
are two points a, b ∈W : a ≠ b such that ϕabðð1/3Þt, hÞ <
ϕ∗abðð1/3Þt, hÞ for some interval ðc, dÞ ⊂ ½0, 1� and any t ∈
ðc, dÞ. By hypothesis and Lemma 6, for any given t > 0,
there is Nt , which is independent of l, such that for
any n >Nt ,

e hln að Þ, hl að Þ
� �

< 1
3 t, ð44Þ

for any integer l ≥ 1 and any a ∈W. So,

e hjn að Þ, hjn bð Þ
� �

≤ e hj að Þ, hj bð Þ
� �

+ e hjn að Þ, hj að Þ
� �

+ e hj
n bð Þ, hj bð Þ

� �
< 3 · 13 t = t,

ð45Þ

for any integer n >Nt , any integer j > 0, and any a, b ∈D.
This implies that

ϕ∗ab t, hnð Þ ≥ ϕ∗ab
1
3 t, h

� �
, ð46Þ

for any n >Nt and any t ∈ ðc, dÞ. By the definition, for
any p > 0 and the above two points a and b,

1 − ϕab 3p, hð Þ = limsup
n⟶∞

1
n
♯ j : e hj að Þ, hj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �
:

ð47Þ

By hypothesis and the above argument, for the above p > 0
, there is an integer np > 0 such that (36) holds for any a, b ∈W
, any integer n ≥ np, and any integer j > 0. Therefore,

e hjn að Þ, hjn bð Þ
� �

> e hj að Þ, hj bð Þ
� �

− 2p > p, ð48Þ

for any integer n ≥ np and any integer j > 0. This implies that

1 − ϕab p, hnð Þ = limsup
m⟶∞

1
m
♯ j : e hjn að Þ, hjn bð Þ

� �
≥ p, 1 ≤ j ≤m

n o� �

≥ limsup
n⟶∞

1
n
♯ j : e hj að Þ, hj bð Þ

� �
≥ 3p, 1 ≤ j ≤ n

n o� �

= 1 − ϕab 3p, hð Þ,
ð49Þ

for any integer n ≥ np and any p > 0. That is, ϕabðp, hnÞ ≤ ϕab
ð3p, hÞ for the above p > 0 and any integer n ≥ np.

Thus, the proof is ended.

Remark 11. There are some other future studies; for exam-
ple, the following conclusion is true or not.

Under the notations and the assumptions of Theorem
10, there exists an integer N > 0 such that hn is DC3 for
any n ≥N .
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