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In this research, the ðΨ,ΦÞ-expansion scheme has been implemented for the exact solutions of the fractional Clannish Random
Walker’s parabolic (FCRWP) equation and the nonlinear fractional Cahn-Allen (NFCA) equation. Some new solutions of the
FCRWP equation and the NFCA equation have been obtained by using this method. The diverse variety of exact outcomes
such as intersection between rough wave and kinky soliton wave profiles, intersection between lump wave and kinky soliton
wave profiles, soliton wave profiles, kink wave profiles, intersection between lump wave and periodic wave profiles,
intersection between rough wave and periodic wave profiles, periodic wave profiles, and kink wave profiles are taken.
Comparing our developed answers and that got in previously written research papers presents the novelty of our
investigation. The above techniques could also be employed to get exact solutions for other fractional nonlinear models in
physics, applied mathematics, and engineering.

1. Introduction

Nonlinear fractional mathematical models (NLFMMs) are
broadly implemented to express lots of significant phenom-
ena and nonlinear dynamic applications in applied mathe-
matics, mathematical physics, engineering, signal
processing, electromagnetics, communications, acoustics,
genetic algorithms, viscoelasticity, robotics, electrochemis-
try, transport systems, material science, finance, image pro-
cessing, stochastic dynamical systems, biology, plasma
physics, chemistry, nonlinear control theory, and so many.
In accordance with determining the exact answers of
NLFMMs, countless influential and well-organized schemes
have been presented and industrialized, such as the variation
of ðG′/GÞ-expansion scheme [1], modified ðG′/GÞ-expan-
sion technique [2–5], the first integral technique [6], gener-

alized Kudryashov technique [7], fractional subequation
scheme [8, 9], improved fractional sub-equation scheme
[10], generalized exponential rational task scheme [11],
novel extended direct algebraic method [12], Sine-Gordon
expansion technique [13], subequation scheme [14],
Kudryashov technique [15], Jacobi elliptic task scheme
[16], exp-task scheme [17], the Jacobi elliptic ansatz method
[18], natural transform method [19], fractional iteration
algorithm [20, 21], the unified method [22], the hyperbolic
and exponential ansatz method [23], ð1/G′Þ-expansion
scheme [24], modified decomposition method [25], the
quintic B-spline approaches [26], an efficient semi-
analytical algorithm [27], the Jacobi elliptic function expan-
sion (JEFE) method [28], the Lie symmetry technique [29],
Hirota’s simple method [30, 31], the modified extended tanh
expansion method [32], exponential finite difference method
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[33], and many more. Currently, Shehata and Amra [34] dis-
covered a profoundly significant enlargement of the ðG’/GÞ
-extension process, called the variation of ðG’/GÞ-expan-
sion process to secure exact solutions of fractional nonlinear
models. We instrument the variation of ðG’/GÞ-expansion
way for making exact answers to the fractional nonlinear
models in the existing effort to express the suitable and sim-
plicity of the process. Therefore, we can effortlessly exchange
the fractional nonlinear models into NPDE or NODE via
appropriate conversion, with the purpose of everybody
acquainted with fractional calculus lacking any trouble.
The chief advantage of the process implemented in this
study over the other scheme is that it contributes additional
novel exact answers, including added independent parame-
ters, and we make a few novel results as well. The exact
answers have vast significance in uncovering the fundamen-
tal device of the physical events. Apart from the dynamic rel-
evance, the exact answers of fractional nonlinear models
support the numerical solvers to compare their results’ accu-
racy and help them in the stability analysis. In our current
effort, we instrument ðΨ,ΦÞ-expansion scheme for con-

structing exact answers of FCRWP and NFCA equations.
We can therefore easily convert FCRWP and NFCA equa-
tions into nonlinear PDE or ODE via appropriate conver-
sion, with the purpose of everybody acquainted with
fractional calculus lacking any trouble.

In the current object, the first subdivision offers the
choice of the research as an introduction. The second subdi-
vision covers a few analyze of the ðΨ,ΦÞ-expansion method.
In the third subdivision, we will acquire answers of the
FCRWP and NFCA equations by using the proposed tech-
nique. In the fourth subdivision, we will give some numeri-
cal simulation of the results obtained. In the last
subdivision, we implement the conclusion.

2. Overview of the Technique

In this part of the study, detailed information on fractional
calculus theory can be found at [35–37]. Here, we briefly
analyzed the modified Lehman-Liouville derivative
(MRLD) from the current fractional calculus recom-
mended through Jumarie [38, 39] and provided a research
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Figure 1: The graphical representation of the solution ƛ1ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape, (c)
real contour plot, and (d) imaginary contour plot.
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method. Let S : ½0, 1�⟶R be a continuous function and
β ∈ ð0, 1Þ. Jumarie has improved the fractional derivative
of the order β and S could be clearly defined through
[40] as

Dβ
ƛS ƛð Þ =

1
Γ −βð Þ

ðƛ
0
ƛ − χð Þ−β−1 S χð Þ − S 0ð Þ½ �dχ, 0 > β,

1
Γ 1 − βð Þ

d
dx

ðƛ
0
ƛ − χð Þ−β S χð Þ − S 0ð Þ½ �dχ, 0 < β < 1,

S nð Þ ƛð Þ
� � β−nð Þ

, n ≤ β ≤ n + 1, n ≥ 1:

8>>>>>>>><
>>>>>>>>:

ð1Þ

We consider

P ƛ, ƛx, ƛxx, ƛt , ƛtt , ƛxt:,⋯ ::ð Þ = 0, ð2Þ

where P is a polynomial in ƛ as well as its derivatives.
First, use the travelling variable:

ƛ = ƛ x, tð Þ = ƛ χð Þ, χ = p3 x − Vtð Þ, ð3Þ

where p3 and V are a constant to be determined later. Using
(3) into (2), We get the following ordinary differential equa-
tion:

R ƛ, p3ƛ′, p23ƛ″,−p3Vƛ′, p23V2ƛ″,−p23V2ƛ″,⋯::
� �

= 0: ð4Þ

Second, considering the solving form:

ƛ χð Þ = 〠
M

i=0
SiΨ

i + 〠
M

i=1
TiΨ

i−1Φ, ð5Þ

where Ψ = ðΘ′/ΘÞ, Φ = ðΩ′/ΩÞ, and Θ =ΘðχÞ, Ω =ΩðχÞ
represent as

Θ′ χð Þ = −Θ χð ÞΩ χð Þ, Ω′ χð Þ = 1 −Ω χð Þ2, ð6Þ

The above equations provide as follows:

Θ χð Þ = ± sec h χð Þ, Ω χð Þ = tanh χð Þ, ð7Þ

Θ χð Þ = ± csc h χð Þ, Ω χð Þ = coth χð Þ: ð8Þ
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Figure 2: The graphical representation of the solution ƛ3ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape, (c)
real contour plot, and (d) imaginary contour plot.

3Advances in Mathematical Physics



Third, a polynomial in Ψ or Φ accomplished plugging
equation (5) into equation (4). Defining the constant values
of the corresponding power of Ψor Φ yields a system of
equations, which might be defined to make Si and Ti. After
getting Si and Ti in (5), the answers of the studied model
complete the intention of the answers of the proposed
model.

3. Mathematical Analysis

This section presents solutions of twoNLFMMs via the ðΨ,ΦÞ
-expansion technique.

3.1. Constructing the Solutions of the FCRWP Equation. We
are considering the FCRWP equation [41].

∂βƛ
∂tβ

−
∂ƛ
∂x

+ 2ƛ ∂ƛ
∂x

+ ∂2ƛ
∂x2

= 0, t > 0, 0 < β, ð9Þ

With ƛðx, 0Þ = SðxÞ: By getting the variable ðx, tÞ = ƛðχÞ
, χ = x −Vtβ/Γðβ + 1Þ in equation (9), then, we have

−Vƛ′ − ƛ′ + 2ƛƛ′ − ƛ′′ = 0: ð10Þ

The pole of equation (10) is set N = 1: Then, we find
from equation (4)

ƛ χð Þ = S0Ψ
0 + S1Ψ

1 + T1Ψ
0Φ = S0 +

T1
Ω

− S1 + T1ð Þ:
ð11Þ

Assembling the coefficient of and solving the resulting
system, then, we find

Cluster I:

V =V , S0 = 0, S1 = S1, T1 = 0: ð12Þ

Substituting the above values in equation (11), we get

ƛ1 x, tð Þ = −S1 tanh x −
Vtβ

Γ β + 1ð Þ
� �

: ð13Þ
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Figure 3: The graphical representation of the solution ƛ6ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape,
(c) real contour plot, and (d) imaginary contour plot.
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ƛ2 x, tð Þ = −S1 coth x −
Vtβ

Γ β + 1ð Þ
� �

: ð14Þ

Cluster II:

V = 2S0 − 1, S0 = S0, S1 = 1, T1 = 0: ð15Þ

Similarly, we get

ƛ3 x, tð Þ = S0 − tanh x −
Vtβ

Γ β + 1ð Þ
� �

: ð16Þ

ƛ4 x, tð Þ = S0 − coth x −
Vtβ

Γ β + 1ð Þ
� �

: ð17Þ

Cluster III:

V = 3, S0 = 2, S1 = 2, T1 = −1: ð18Þ

Similarly, we get

ƛ5 x, tð Þ = 2 − 1
tanh x − Vtβ/Γ β + 1ð Þ� � − tanh x −

Vtβ

Γ β + 1ð Þ
� �

:

ð19Þ

ƛ6 x, tð Þ = 2 − 1
coth x − Vtβ/Γ β + 1ð Þ� � − coth x −

Vtβ

Γ β + 1ð Þ
� �

:

ð20Þ
Cluster IV:

V = 1, S0 = 1, S1 = 1, T1 = −1: ð21Þ

Similarly, we get

ƛ7 x, tð Þ = 1 − 1
tanh x − Vtβ/Γ β + 1ð Þ� � : ð22Þ
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Figure 4: The graphical representation of the solution ƛ8ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape, (c)
real contour plot, and (d) imaginary contour plot.
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ƛ8 x, tð Þ = 1 − 1
coth x −Vtβ/Γ β + 1ð Þ� � : ð23Þ

3.2. Constructing the Solutions of the NFCA Equation. We
are considering the NFCA equation [42].

Dβ
t Φ −Φxx +Φ3 −Φ = 0, t > 0, 0 < β ≤ 1: ð24Þ

We introduce

Φ x, tð Þ =Φ ηð Þ, η = kx −
Vtβ

Γ β + 1ð Þ , ð25Þ

where k and V are arbitrary constants. Implementing equa-
tions (25) and (24), then, we get

−VΦ′ − k2Φ″ +Φ3 −Φ = 0: ð26Þ

We find from equation (4). Then, we have

Φ ηð Þ = S0Ψ
0 + S1Ψ

1 + T1Ψ
0Φ = S0 +

T1
Ω

− S1 + T1ð ÞΩ:

ð27Þ

Collecting the coefficient of Ψ and Φ and solving the
resulting system, then, we find

Cluster I:

V = 3
4 , k = ± 1

2
ffiffiffi
2

p , S0 =
1
2 , S1 =

1
2 , T1 = 0: ð28Þ

Substituting the above values in equation (27), we get

Φ1 x, tð Þ = 1
2 1 − tanh kx −

Vtβ

Γ β + 1ð Þ
	 
� �

: ð29Þ

Φ2 x, tð Þ = 1
2 1 − coth kx −

Vtβ

Γ β + 1ð Þ
	 
� �

: ð30Þ
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Figure 5: The graphical representation of the solution Φ1ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape, (c)
real contour plot, and (d) imaginary contour plot.
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Cluster II:

V = 3
4 , k =

1
2 ±

ffiffiffiffiffiffi
−1
2

r !
, S0 =

1
2 , S1 = −

1
2 , T1 = 0: ð31Þ

Similarly, we get

Φ3 x, tð Þ = 1
2 1 + tanh kx −

Vtβ

Γ β + 1ð Þ
	 
� �

: ð32Þ

Φ4 x, tð Þ = 1
2 1 + coth kx −

Vtβ

Γ β + 1ð Þ
	 
� �

: ð33Þ

Cluster III:

V = 3
4 , k =

1
2 ±

ffiffiffiffiffiffi
−1
2

r !
, S0 = −

1
2 , S1 =

1
2 , T1 = 0: ð34Þ

Similarly, we get

Φ5 x, tð Þ = −
1
2 1 + tanh kx −

Vtβ

Γ β + 1ð Þ
	 
� �

: ð35Þ

Φ6 x, tð Þ = −
1
2 1 + coth kx −

Vtβ

Γ β + 1ð Þ
	 
� �

: ð36Þ

Cluster IV:

V = 3
4 , k =

1
2 ±

ffiffiffiffiffiffi
−1
2

r !
, S0 = −

1
2 , S1 = −

1
2 , T1 = 0: ð37Þ

Similarly, we get

Φ7 x, tð Þ = −
1
2 1 − tanh kx −

Vtβ

Γ β + 1ð Þ
	 
� �

: ð38Þ

Φ8 x, tð Þ = −
1
2 1 − coth kx −

Vtβ

Γ β + 1ð Þ
	 
� �

: ð39Þ
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Figure 6: The graphical representation of the solution Φ3ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape, (c)
real contour plot, and (d) imaginary contour plot.
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Cluster V:

V = 3
4 , k =

1
2 ±

ffiffiffi
1
2

r !
, S0 = −

1
2 , S1 = −

1
2 , T1 =

1
2 : ð40Þ

Similarly, we get

Φ9 x, tð Þ = −
1
2 1 − 1

tanh kx −Vtβ/Γ β + 1ð Þ� �
( )

: ð41Þ

Φ10 x, tð Þ = −
1
2 1 − 1

coth kx −Vtβ/Γ β + 1ð Þ� �
( )

: ð42Þ

Cluster VI:

V = 3
4 , k =

1
2 ±

ffiffiffi
1
2

r !
, S0 =

1
2 , S1 =

1
2 , T1 = −

1
2 : ð43Þ

Similarly, we get

Φ11 x, tð Þ = 1
2 1 − 1

tanh kx − Vtβ/Γ β + 1ð Þ� �
( )

: ð44Þ

Φ12 x, tð Þ = 1
2 1 − 1

coth kx −Vtβ/Γ β + 1ð Þ� �
( )

: ð45Þ

Cluster VII:

V = 3
8 , k =

1
4 ±

ffiffiffi
1
2

r !
, S0 = −

1
2 , S1 = −

1
2 , T1 =

1
4 : ð46Þ

Similarly, we get:

Φ13 x, tð Þ = −
1
2 + 1

4 tanh kx −Vtβ/Γ β + 1ð Þ� � + tanh kx −
Vtβ

Γ β + 1ð Þ
� �

:

ð47Þ
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Figure 7: The graphical representation of the solution Φ4ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape, (c)
real contour plot, and (d) imaginary contour plot.
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Φ14 x, tð Þ = −
1
2 + 1

4 coth kx −Vtβ/Γ β + 1ð Þ� � + coth kx −
Vtβ

Γ β + 1ð Þ
� �

:

ð48Þ

Cluster VIII:

V = 3
8 , k =

1
4 ±

ffiffiffi
1
2

r !
, S0 =

1
2 , S1 =

1
2 , T1 = −

1
4 : ð49Þ

Similarly, we get:

Φ15 x, tð Þ = 1
2 −

1
4 tanh kx − Vtβ/Γ β + 1ð Þ� � −

1
4 tanh kx −

Vtβ

Γ β + 1ð Þ
� �

:

ð50Þ

Φ16 x, tð Þ = 1
2 −

1
4 coth kx − Vtβ/Γ β + 1ð Þ� � −

1
4 coth kx −

Vtβ

Γ β + 1ð Þ
� �

:

ð51Þ

4. Numerical Simulations

Shehata and Amra [34] have offered a process named the var-
iation of ðG’/GÞ-extension approach to look for the studied
equation’s exact structures and achieve many results shown
in Section 3. Comparison between other methods, the studied
approach is provided a more exact answer rather than the
other approach. On the additional support, the auxiliary
model employed in the integral method is different, and so
the exact structures obtained are also other. Likewise, for any
fractional nonlinear models, it could be determined that the
studied approach is extremely more straightforward than the
other schemes. In this paper, the integrable method applies
to the studied fractional nonlinear models for the first time.
We confirm that any other authors did not use the technique
on the studied fractional nonlinear models. This part also will
present numerous types of soliton of the created answers for
various values of the constant coefficients. The kinds of the
solitons are kink type soliton profiles, singular kink type soli-
ton profiles, periodic wave soliton profiles, and so many. Also,
we provide the contour graph of the attained answers which is
constructed commencing binary variable tasks. One variable
exemplifies on the horizontal axis and a second variable
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Figure 8: The graphical representation of the solution Φ5ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape, (c)
real contour plot, and (d) imaginary contour plot.
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exemplifies on the vertical axis. The functional value exem-
plifies the color gradient and isolines. Contour graphs are
technique to expression a 3D surface on a 2D plane. This kind
of graph is broadly implemented in applied mathematics,
mathematical physics, and engineering, where the contour
lines normally demonstration elevation.

4.1. Graphical Representations of the Solution to the FCRWP
Equation. In the current section, we have offered numerous
mathematical simulations through the proposed procedure.
To explain the dynamic performances of the answers acquired
in Section 3.1. Figures 1–4 illustrate the graphical depictions of
some selected computational results of the problem received
utilizing the studied method. They are pictured below.

Figure 1 demonstrates the dynamic performance of
ƛ1ðx, tÞ using α = 0:5. In particular, Figure 1 demonstrates
the 3D shape and contour shape of ƛ1ðx, tÞ. This shape
represents intersection between rough wave and kinky sol-
iton wave profiles. The solution attributes of ƛ3ðx, tÞ are
displayed in Figure 2 using α = 0:9. This shape represents

intersection between lump wave and kinky soliton wave
profiles. In Figure 3, we demonstrate the dynamic perfor-
mance of ƛ6ðx, tÞ using α = 0:01. In particular, Figure 3 shows
the three-dimensional shape and contour shape of the solution
ƛ6ðx, tÞ. This shape represents soliton wave profiles. Figure 4
demonstrates the dynamic performances of ƛ8ðx, tÞ by taking
α = 0:001. In particular, Figure 4 shows the three-dimensional
shape and contour shape of the solution ƛ8ðx, tÞ. This shape
represents kink wave profiles. The implemented mathematical
simulations acknowledge that the answers are of periodic wave
shapes and the rational, hyperbolic, trigonometric categoriza-
tions. Furthermore, through wisely observing at the construc-
tion of the acquired answers, it could be comprehended that
the connecting fractional derivatives parameter of β performs
in the formulation of all the answers.

4.2. Graphical Representations of the Solution to the NFCA
Equation. In the current section, we have implemented
numerous mathematical simulations through the proposed
process. To explain the dynamic performances of the
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Figure 9: The graphical representation of the solutionΦ10ðx, tÞ: (a) real three-dimensional shape, (b) complex three-dimensional shape, (c)
real contour plot, and (d) imaginary contour plot.
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answers acquired in Section 3.2. Figures 5–9 illustrate the
graphical depictions of some selected computational results
of the problem received utilizing the studied method. They
are pictured below.

Figure 5 demonstrates the dynamic performance of
Φ1ðx, tÞ using α = 0:3. In particular, Figure 5 demonstrates
the 3D figure and contour figure of Φ1ðx, tÞ. This shape
represents intersection between lump wave and kinky sol-
iton wave profiles. The solution attributes of Φ3ðx, tÞ are
displayed in Figure 6 using α = 0:1. Figure 6 demonstrates
the 3D figure and contour figure of Φ3ðx, tÞ. This shape
represents intersection between rough wave and periodic
wave profiles. In Figure 7, we demonstrate the dynamic
performance of Φ4ðx, tÞ using α = 0:1. In particular,
Figure 7 demonstrates the three-dimensional shape and
contour shape of the solution Φ4ðx, tÞ. This shape repre-
sents intersection between lump wave and periodic wave
profiles. Figure 8 demonstrates the dynamic performances
of Φ5ðx, tÞ by taking α = 0:005. In particular, Figure 8
shows the three-dimensional shape and contour shape of
the solution Φ5ðx, tÞ. This shape represents periodic wave
profiles. Finally, we demonstrate singular kink wave pro-
files of the solution Φ10ðx, tÞ by taking α = 0:1 which is
displayed in Figure 9. The implemented mathematical sim-
ulations acknowledge that the answers are of periodic
wave shapes and the rational, hyperbolic, trigonometric
categorizations. Furthermore, through wisely observing at
the construction of the acquired answers, it could be com-
prehended that the connecting fractional derivative param-
eter of β performs in the formulation of all the answers.

5. Conclusion

In the current research, we successfully implement the
studied technique to demonstration that this scheme is
well-organized and virtually fine well-matched to imple-
ment in getting answers for FCRWP equation and the
NFCA equation. The various of dynamical behaviors such
as intersection between rough wave and kinky soliton
wave profiles, intersection between lump wave and kinky
soliton wave profiles, soliton wave profiles, kink wave pro-
files, intersection between lump wave and periodic wave
profiles, intersection between rough wave and periodic
wave profiles, periodic wave profiles, and kink wave pro-
files are taken in the present study which present in
well-defined regions of mathematical physics. These solu-
tions will be useful for further studies in mathematical
physics which are shown in Figures 1–9.

In Figure 1, we represent intersection between rough wave
and kinky soliton wave profiles. Figure 2 represents intersec-
tion between lump wave and kinky soliton wave profiles.
Figure 3 shows soliton wave profiles. Figure 4 shows kink wave
profiles. Figure 5 demonstrates intersection between lump
wave and kinky soliton wave profiles. Figure 6 demonstrates
intersection between rough wave and periodic wave profiles.
In Figure 7, we demonstrate intersection between lump wave
and periodic wave profiles. Figure 8 demonstrates periodic
wave profiles. Finally, we demonstrate singular kink wave pro-
files which are displayed in Figure 9. Themost powerful aspect

of this method is that it can be applied to other fractional non-
linear models. Also, it has observed that the results obtained in
this study have been presented for the first time. It is impor-
tant to note that the solutions obtained can be applied to non-
linear models, plasma physics, optical physics, ion-acoustics
physics, optical engineering, soliton theory, nonlinear dynam-
ics, and other areas.
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