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In this note, we characterize Sasakian manifolds endowed with ∗-η-Ricci-Yamabe solitons. Also, the existence of ∗-η-Ricci-
Yamabe solitons in a 5-dimensional Sasakian manifold has been proved through a concrete example.

1. Introduction

In 1982 (resp., 1988), Hamilton introduced the idea of Ricci
flow [1] (resp., Yamabe flow [2]). On a smooth Riemannian
(or semi-Riemannian manifold), the Yamabe flow is deter-
mined as the evolution of the Riemannian (or semi-Rie-
mannian) metric g0 at time t to g = gðtÞ using the
following equation:

∂
∂t

g tð Þ = −rg, g 0ð Þ = g0, ð1Þ

where rðtÞ refers to the scalar curvature of the metric gðtÞ. In
case n = 2, the Yamabe and Ricci flows are related as in the
following equation:

∂
∂t

g tð Þ = −2S g tð Þð Þ, ð2Þ

where S defines the Ricci tensor. Thus, for the case n > 2,
there is not such an equivalence, since the Yamabe flow pre-
serves the conformal class of metric but generally this is not
true.

The solutions of both Ricci and Yamabe flows are pre-
sented as Ricci and Yamabe solitons, respectively. On a Rie-
mannian manifold M, the Ricci and Yamabe solitons are

defined by

£Fg + 2S + 2λg = 0,

£Fg + 2 λ − rð Þg = 0,
ð3Þ

respectively, where £F is the Lie derivative operator along
vector field F (called soliton vector field) at M and λ ∈ℝ,
where ℝ is the set of real numbers. Recently in 2018, Desh-
mukh and Chen ([3, 4]) briefly studied Yamabe solitons to
find sufficient conditions at the soliton vector field so that
the metric of the Yamabe soliton is of constant scalar curva-
ture. Yamabe solitons have also been studied in ([5–8]) and
many others.

In 2019, Ricci-Yamabe flow, as a new class of geometric
flows of the type ðα, βÞ, was presented by Güler and Cras-
mareanu [9] and defined as

∂
∂t

g tð Þ = βr tð Þg tð Þ − 2αS g tð Þð Þ, g 0ð Þ = g0: ð4Þ

After Güler and Crasmareanu, Dey [10] proposed the
concept of Ricci-Yamabe solitons; according to him, the
Ricci-Yamabe soliton of the type ðα, βÞ is a Riemannian
manifold that admits

1
2
£Fg + αS + λ −

βr
2

� �
g = 0, ð5Þ
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where α, β ∈ℝ. In addition, it is noted that Ricci-Yamabe
solitons of types ðα, 0Þ and ð0, βÞ are known as α-Ricci soli-
tons and β-Yamabe solitons, respectively.

The concept of ∗-Ricci soliton was investigated by Kai-
makamis and Panagiotidou [11] in case of real hypersurfaces
at complex space forms. More specifically, it is noted that the
concept of ∗-Ricci tensor was presented firstly by Tachibana
[12] in almost Hermitian manifolds, and later by Hamada
[13] to consider different case which is the real hypersurfaces
of nonflat complex space forms. The Riemannian metric g
on the smooth manifold M is named the ∗-Ricci soliton in
case F, a smooth vector field and λ ∈ℝ obeying:

1
2
£Fg = −S∗ − g, ð6Þ

where

S∗ K , Lð Þ = g Q∗K , Lð Þ = Trace φ ∘ R K , φLð Þf g, ð7Þ

for every vector fields K , L onM, as well as Q∗ and S∗ are the
∗-Ricci operator and the ∗-Ricci tensor, respectively. In this
connection, we recommend the papers ([14–21]) for the spe-
cific contents regarding Ricci, η-Ricci, and ∗-Ricci solitons
in case of contact Riemannian geometry. In [22], the authors
studied gradient Yamabe, gradient Einstein, and quasi-
Yamabe solitons on almost co-Kähler manifolds.

Recently, Dey and Roy [23] presented the concept of ∗-η
-Ricci soliton in Sasakian manifolds. The Riemannian man-
ifold ðM, gÞ is named ∗-η-Ricci soliton in case

1
2
£ζg + S∗ + λg + μη ⊗ η = 0: ð8Þ

Motivated by previous studies, we introduce the notion
of ∗-η-Ricci-Yamabe soliton of type ðα, βÞ which is a Rie-
mannian manifold satisfying

1
2
£Fg + αS∗ + λ −

βr
2

� �
g + μη ⊗ η = 0, ð9Þ

for α, β, λ, μ ∈ℝ. The ∗-η-Ricci-Yamabe soliton is described
as shrinking, steady or expanding if it admits the soliton vec-
tor for which λ < 0, = 0 or >0, respectively. Particularly, if
μ = 0, then this concept of ∗-η-Ricci-Yamabe soliton ðg, F,
λ, μ, α, βÞ reduces to a concept of ∗-Ricci-Yamabe soliton ð
g, F, λ, α, βÞ.

Throughout the paper, we denote a ð2n + 1Þ-dimen-
sional Sasakian manifold by MS

2n+1, ∗-Ricci-Yamabe soliton
by ∗-RYS, and ∗-η-Ricci-Yamabe soliton by ∗-η-RYS. We
present our work as follows: Section 2 includes essential
results and some basic definitions of Sasakian manifolds.
Section 3 covers the study of ∗-η-RYS on MS

2n+1 leading to
several significant characterizations of the manifold. Section
4 deals with the study of pseudo-Ricci-symmetric and Ricci
recurrent MS

2n+1 admitting ∗-η-RYS. The ∗-η-RYS on
MS

2n+1 satisfying the curvature conditions Rðζ, XÞ · S = 0

and Qðg, SÞ = 0 have been studied in Sections 5 and 6,
respectively.

2. Preliminaries

A ð2n + 1Þ-dimensional differentiable manifold M is said to
admit an almost contact structure, sometimes called a ðφ, ζ
, ηÞ-structure, in case it admits a (1,1) type tensor field φ, a
structure vector field ζ, and a 1-form η satisfying [24]

φ2 = −I + η ⊗ ζ, η ζð Þ = 1, φζ = 0, η ∘ φ = 0: ð10Þ

The almost contact structure is called normal in case ℵ
+ dη ⊗ ζ = 0, where ℵ is the Nijenhuis tensor of φ: Consid-
ering the Riemannian metric tensor g that is defined on M
and satisfies

g φK , φLð Þ = g K , Lð Þ − η Kð Þη Lð Þ, η Kð Þ = g K , ζð Þ, ð11Þ

for any K , L ∈XðMÞ, where XðMÞ refers to the set of all
smooth vector fields ofM. The structure ðφ, ζ, η, gÞ is named
the almost contact metric structure. Next, considering Φ, the
tensor field of type ð0, 2Þ as ΦðK , LÞ = gðΦK , LÞ. In case dη
=Φ, then the structure ðφ, ζ, η, gÞ is named as normal met-
ric structure. The normal contact metric structure is named
Sasakian structure satisfying ([25–27]):

∇Kφð ÞL = g K , Lð Þζ − η Lð ÞK , ð12Þ

for any K , L ∈XðMÞ, where ∇ stands for the Levi-Civita
connection.

In case of MS
2n+1, we have

R ζ, Kð ÞL = g K , Lð Þζ − η Lð ÞK , ð13Þ

R K , Lð Þζ = η Lð ÞK − η Kð ÞL, ð14Þ

S K , ζð Þ = 2nη Kð Þ⇐Qζ = 2nζ, ð15Þ

∇Kζ = −φK , ð16Þ

∇Kηð ÞL = −g φK , Lð Þ, ð17Þ
for any K , L ∈XðMÞ; R and Q refers to the curvature ten-

sor and the Ricci operator.

Definition 1. A Sasakian manifold is called an η-Einstein in
case the non-vanishing Ricci tensor S is expressed as

S K , Lð Þ = ag K , Lð Þ + bη Kð Þη Lð Þ, ð18Þ

where a, b ∈ C∞ðMÞ. In particular, if b = 0, then M is named
as an Einstein manifold.

Definition 2. The vector field V is named as an affine confor-
mal vector field in case it satisfies [28]

£V∇ð Þ K , Lð Þ = L ρð ÞK + K ρð ÞL − g K , Lð Þgradρ, ð19Þ
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where ρ ∈ C∞ðMÞ. In case ρ ∈ℝ, then V is called an affine
vector field.

Lemma 3. The ∗ -Ricci tensor of MS
2n+1 is given by [14]

S∗ K , Lð Þ = S K , Lð Þ − 2n − 1ð Þg K , Lð Þ − η Kð Þη Lð Þ, ð20Þ

for any K , L ∈XðMÞ:

3. ∗-η-Ricci-Yamabe Solitons on Sasakian
Manifolds

First, we prove the following:

Theorem 4. An MS
2n+1 admitting ∗ - η -RYS ðg, ζ, λ, μ, α, βÞ

is an η -Einstein manifold of the constant scalar curvature.
Moreover, the scalars λ, μ related to each other by λ + μ = β
r/2.

Proof. Let the metric of anMS
2n+1 be ∗-η-RYS ðg, ζ, λ, μ, α, βÞ

, then Equation (9) turns to

g ∇Kζ, Lð Þ + g K , ∇Lζð Þ + 2αS∗ K , Lð Þ + 2λ − βrð Þg K , Lð Þ + 2μη Kð Þη Lð Þ = 0,

ð21Þ

for all vector fields K as well L on M. Using (16), Equation
(21) leads to

S∗ K , Lð Þ = −
1
α

λ −
βr
2

� �
g K , Lð Þ − μ

α
η Kð Þη Lð Þ, α ≠ 0: ð22Þ

Using (20), (22) takes the form

S K , Lð Þ = σ1g K , Lð Þ + σ2η Kð Þη Lð Þ, ð23Þ

where σ1 = 2n − 1 − ð1/αÞðλ − ðβr/2ÞÞ and σ2 = 1 − ðμ/αÞ.
By putting L = ζ at (23) as well the use of (10) and (11),

we have

S K , ζð Þ = σ1 + σ2ð Þη Kð Þ, ð24Þ

where σ1 + σ2 = 2n − ð1/αÞðλ + μ − ðβr/2ÞÞ.
In view of (15), from (24), it follows that

λ + μ =
βr
2
, where α ≠ 0: ð25Þ

On contracting (23), we find r = σ1ð2n + 1Þ + σ2, which
by using the values of σ1, σ2 and (25) leads to

r = 2n 2n +
μ

α

� �
, ð26Þ

where μ and αð≠ 0Þ are constants. Thus, (23) together with
(25) and (26) leads to the statement of Theorem 4.

Particularly, taking μ = 0 in (23) as well in (25) resulted
in SðK , LÞ = ð2n − 1ÞgðK , LÞ + ηðKÞηðLÞ and λ = 2n2β,
respectively, being r = 4n2. Thus, we have the following.

Corollary 5. An MS
2n+1 admitting ∗ -RYS ðg, ζ, λ, α, βÞ is an

η -Einstein manifold, and the soliton is shrinking, steady or
expanding according to β < 0, = 0 or >0, respectively.

Next, we prove the following.

Theorem 6. If an MS
2n+1 admits ∗-η-RYS ðg, F, λ, μ, α, βÞ

such that the vector field F represents an affine conformal vec-
tor field. Then, MS

2n+1 is an η-Einstein manifold, and F is an
affine vector field.

Proof. The use of (20) in (9) gives

£Fgð Þ L,Uð Þ = −2αS L,Uð Þ + 2α 2n − 1ð Þ − 2λ − βrð Þ½ �g L,Uð Þ
+ 2 α − μð Þη Lð Þη Uð Þ:

ð27Þ

Referencing Yano [29], the expression

£F∇Kg − ∇K£Fg − ∇ F,K½ �g
� �

L,Uð Þ
= −g £F∇ð Þ K , Lð Þ,Uð Þ − g £F∇ð Þ K ,Uð Þ, Lð Þ,

ð28Þ

is well-known for all K , L,U atM. As g is parallel respecting
to ∇, the previous equation turns to

∇K£Fgð Þ L,Uð Þ = g £F∇ð Þ K ,Uð Þ, Lð Þ + g £F∇ð Þ K , Lð Þ,Uð Þ,
ð29Þ

as a result of (19), it leads to

∇K£Fgð Þ L,Uð Þ = 2K ρð Þg L,Uð Þ: ð30Þ

Taking the covariant derivative of (27) respecting to K
and using (17), we have

∇K£Fgð Þ L,Uð Þ = −2α ∇KSð Þ L,Uð Þ + βK rð Þg L,Uð Þ
− 2 α − μð Þ g φK , Lð Þη Uð Þ + g φK ,Uð Þη Lð Þð Þ:

ð31Þ

Putting L =U = ζ in (31) and using (10), (11), (15), and
(30), we get

2K ρð Þ = βK rð Þ: ð32Þ

From (30)–(32), we find

α ∇KSð Þ L,Uð Þ + α − μð Þ g φK , Lð Þη Uð Þ + g φK ,Uð Þη Lð Þð Þ = 0,
ð33Þ
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which by replacing U = ζ gives

∇KSð Þ L, ζð Þ = μ

α
− 1

� �
g φK , Lð Þ, α ≠ 0: ð34Þ

Now, the covariant differentiation of (15) yields

∇KSð Þ L, ζð Þ = S L, φKð Þ − 2ng φK , Lð Þ: ð35Þ

From (34) and (35), it follows that

S L, φKð Þ = 2n − 1 +
μ

α

� �
g φK , Lð Þ: ð36Þ

By replacing K by φK in (36) and using (10), we get

S K , Lð Þ = 2n − 1 +
μ

α

� �
g K , Lð Þ − μ

α
− 1

� �
η Kð Þη Lð Þ, α ≠ 0:

ð37Þ

The contraction of (37) gives r = 2nð2n + μ/αÞ: There-
fore, from (32), it follows that KðρÞ = 0. This implies that ρ
∈ℝ; therefore, F is an affine vector field. This completes
the proof.

Furthermore, we prove the following.

Lemma 7. An MS
2n+1 satisfies the following equations:

∇LQð Þζ =QφL − 2nφL, ð38Þ

∇ζQ
� �

L = 2QφL, ð39Þ
where Q refers to the Ricci operator.

Proof. Differentiating Qζ = 2nζ along L and using (16), we
get (38). Next, differentiating (14) along W and using (16),
we find

∇WRð Þ K , Lð Þζ = R K , Lð ÞφW − g φW, Lð ÞK + g φW, Kð ÞL:
ð40Þ

Taking a frame field and then contracting (40), we get

〠
2n+1

i=1
g ∇ei

R
� �

ei, Lð Þζ,U� �
= −S L, φUð Þ + 2ng φL,Uð Þ: ð41Þ

From Bianchi’s second identity, we can easily obtain that

〠
2n+1

i=1
g ∇ei

R
� �

ei, Lð Þζ,U� �
= ∇USð Þ ζ, Lð Þ − ∇ζS

� �
U , Lð Þ:

ð42Þ

By equating (41) and (42), then using (38), Equation (39)
follows.

Now, we prove the next theorem:

Theorem 8. If an MS
2n+1 admits ∗ - η -RYS ðg, F, λ, μ, α, βÞ

such that the vector field F represents the gradient Dr of r
defined by (9), then either F is a pointwise collinear with
the structure vector field ζ or β = −2.

Proof. Suppose an MS
2n+1 admits ∗-η-RYS ðg, F, λ, μ, α, βÞ

such that the vector field F represents the gradient Dr of r,
i.e., F =Dr. Then, from (9), we find

∇KDr = −αQK − λ −
βr
2

− α 2n − 1ð Þ
� �

K + α − μð Þη Kð Þζ,

ð43Þ

for any K on M.
The covariant differentiation of (43) respecting to L and

the use of (16) and (17) leads to

∇L∇KDr = −α ∇LQð ÞK +Q ∇LKð Þð Þ − λ −
βr
2

− α 2n − 1ð Þ
� �

∇LK

+
β

2
L rð ÞK + α − μð Þ −g φK , Lð Þζ + η ∇LKð Þζ − η Kð ÞφLð Þ:

ð44Þ

Interchanging K and L in (44), we have

∇K∇LDr = −α ∇KQð ÞL +Q ∇KLð Þð Þ − λ −
βr
2

− α 2n − 1ð Þ
� �

∇KL

+
β

2
K rð ÞL + α − μð Þ −g φL, Kð Þζ + η ∇KLð Þζ − η Lð ÞφKð Þ:

ð45Þ

In view of (43), we also have

∇ K ,L½ �Dr = −αQ ∇KLð Þ + αQ ∇LKð Þ − λ −
βr
2

− α 2n − 1ð Þ
� �

∇KL

+ λ −
βr
2

− α 2n − 1ð Þ
� �

∇LK + α − μð Þ η ∇KLð Þζ − η ∇LKð Þζð Þ:

ð46Þ

From (44)–(46), we get

R K , Lð ÞDr = α ∇LQð ÞK − ∇KQð ÞLð Þ + β

2
K rð ÞL − L rð ÞKð Þ

+ α − μð Þ 2g K , φLð Þζ + η Kð ÞφL − η Lð ÞφKð Þ:
ð47Þ

By replacing K by ζ in (47) and using (10), (13), (38),
and (39), we get

L rð Þζ − ζ rð ÞL = −α QφL + 2nφLð Þ + β

2
ζ rð ÞL − L rð Þζð Þ + α − μð ÞφL:

ð48Þ

The inner product of (48) with ζ leads to

1 +
β

2

� �
L rð Þ − ξ rð Þη Lð Þð Þ = 0: ð49Þ
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Therefore, we have either β = −2 or F =Dr = ξðrÞξ, that
is, F is pointwise collinear with ζ. The proof is completed.

4. Pseudo-Ricci-Symmetric and Ricci-Recurrent
Sasakian Manifolds Admitting ∗-η-Ricci-
Yamabe Solitons

Definition 9. The non-flatMS
2n+1 is named pseudo-Ricci-

symmetric and is represented by ðPRSÞ2n+1, in case the Ricci
tensor Sð≠ 0Þ of the manifold satisfies the condition [30]

∇USð Þ K , Lð Þ = 2A Uð ÞS K , Lð Þ + A Kð ÞS U , Lð Þ + A Lð ÞS U , Kð Þ,
ð50Þ

where the non-zero 1-form A is given by gðU , ζÞ = AðUÞ, ∀
vector fields U ; ζ being the vector field that corresponds to
the associated 1-form A. In particular, if A = 0, then MS

2n+1
is called Ricci-symmetric.

The covariant derivative of (23) leads to

∇USð Þ K , Lð Þ = σ2 g U , φKð Þη Lð Þ + g U , φLð Þη Kð Þ½ �: ð51Þ

Now, using (23) and (51), (50) becomes

σ2 g U , φKð Þη Lð Þ + g U , φLð Þη Kð Þ½ �
= 2A Uð Þ σ1g K , Lð Þ + σ2η Kð Þη Lð Þ½ �

+ A Kð Þ σ1g U , Lð Þ + σ2η Uð Þη Lð Þ½ �
+ A Lð Þ σ1g U , Kð Þ + σ2η Uð Þη Kð Þ½ �:

ð52Þ

Choosing U = L = ζ, (52) reduces to AðKÞ = −3AðζÞηðKÞ
which by putting K = ζ gives AðζÞ = 0. This implies that Að
KÞ = 0. Thus, we have the following.

Theorem 10. A pseudo-Ricci-symmetric MS
2n+1 admitting ∗ -

η -RYS ðg, ζ, λ, μ, α, βÞ is Ricci-symmetric.

Definition 11 [31]. An MS
2n+1 is named as Ricci-recurrent in

case there exists a 1-form ωð≠ 0Þ holds:

∇KSð Þ L,Uð Þ = ω Kð ÞS L,Uð Þ: ð53Þ

for all K , L and U on M and 1-form ω:

By the use of (51) in (53), we find

σ2 g K , φLð Þη Uð Þ + g K , φUð Þη Lð Þ½ � = ω Kð ÞS L,Uð Þ, ð54Þ

which by putting U = ζ then using (10) and (15) reduces to

σ2g K , φLð Þ = 2nω Kð Þη Lð Þ: ð55Þ

By taking ω = η, (55) takes the form

σ2g K , φLð Þ = 2nη Kð Þη Lð Þ: ð56Þ

Now, replacing K by φK in (56) and using (10), we find

σ2g φK , φLð Þ = 0: ð57Þ

Since gðφK , φLÞ ≠ 0, therefore, we obtain σ2 = 0. This
leads to μ = α: Hence, by the use of (25), we have λ = −α +
βr/2: Therefore, we give the next theorem.

Theorem 12. If a Ricci-recurrent MS
2n+1 admits ∗ - η -RYS

ðg, ζ, λ, μ, α, βÞ, then λ = −α + βr/2 as well μ = α.

Hence, by using these values of λ and μ in (23), we
obtain

S K , Lð Þ = 2ng K , Lð Þ: ð58Þ

Thus, we state:

Corollary 13. A Ricci-recurrentMS
2n+1 admitting a ∗ - η -RYS

ðg, ζ, λ, μ, α, βÞ defines an Einstein manifold.

5. Sasakian Manifolds Admitting ∗-η-Ricci-
Yamabe Solitons Satisfying Rðζ, XÞ · S = 0

Considering an MS
2n+1 admitting ∗-η-RYS ðg, ζ, λ, μ, α, βÞ

which satisfies Rðζ, XÞ · S = 0, this implies that

S R ζ, Kð ÞL,Uð Þ + S L, R ζ, Kð ÞUð Þ = 0, ð59Þ

for all K , L,U onM: In view of (23) and the symmetries of R
, (59) takes the form

σ2 g K , Lð Þη Uð Þ + g K ,Uð Þη Lð Þ − 2η Kð Þη Lð Þη Uð Þð Þ = 0,
ð60Þ

which by taking U = ζ then using (10) and (11) turns to

σ2g φK , φLð Þ = 0: ð61Þ

From (61), it follows that σ2 = 0, which leads to μ = α;
hence, (25) gives λ = βr/2 − α: This helps us to state:

Theorem 14. For an MS
2n+1 admitting ∗ - η -RYS ðg, ζ, λ, μ

, α, βÞ that satisfies Rðζ, XÞ · S = 0, we have λ = −α + βr/2
and μ = α.

Now by using λ = −α + βr/2 and μ = α, (23) takes the
form

S K , Lð Þ = 2ng K , Lð Þ: ð62Þ

Thus, we have:

Corollary 15. In case an MS
2n+1 satisfies Rðζ, XÞ · S = 0 and

admits ∗ - η -RYS ðg, ζ, λ, μ, α, βÞ, then it defines an Einstein
manifold.
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6. Sasakian Manifolds Admitting ∗-η-Ricci-
Yamabe Solitons Satisfying Qðg, SÞ = 0

Let an MS
2n+1 admitting ∗-η-RYS ðg, ζ, λ, μ, α, βÞ satisfies

Q g, Sð Þ K , L,U ,Wð Þ = 0, ð63Þ

where

Q g, Sð Þ K , L,U ,Wð Þ = K∧gL
� �

· S
� �

U ,Wð Þ: ð64Þ

This can be expressed as

Q g, Sð Þ K , L,U ,Wð Þ = g L,Uð ÞS K ,Wð Þ − g K ,Uð ÞS L,Wð Þ
+ g L,Wð ÞS K ,Uð Þ − g K ,Wð ÞS L,Uð Þ,

ð65Þ

where ðK∧gLÞU = gðL,UÞK − gðK ,UÞL being used.
From (63), (65), and (23), we get

σ2 g L,Uð Þη Kð Þη Wð Þ − g K ,Uð Þη Lð Þη Wð Þð
+ g L,Wð Þη Kð Þη Uð Þ − g K ,Wð Þη Lð Þη Uð ÞÞ = 0:

ð66Þ

From the preceeding equation, it follows that σ2 = 0.
This implies that μ = α. Hence, from (25), we get λ = −α +
βr/2: Thus, we have

Theorem 16. If an MS
2n+1 admits ∗ - η -RYS ðg, ζ, λ, μ, α, βÞ

and the manifold satisfies Qðg, SÞ = 0, then λ = −α + βr/2 and
μ = α.

Now, by using these values of λ as well μ, (23) yields

S K , Lð Þ = 2ng K , Lð Þ: ð67Þ

Thus, we give the next corollary:

Corollary 17. In case an MS
2n+1 admitting ∗ - η -RYS ðg, ζ,

λ, μ, α, βÞ satisfies Qðg, SÞ = 0, then it is an Einstein
manifold.

Example 1. Let a manifold M = fðu, v,w, s, tÞ ∈ℝ5g of
dimension 5, where ðu, v,w, s, tÞ refer to the usual coordi-
nates at ℝ5. Suppose ρ1,ρ2, ρ3, ρ4, and ρ5 are the vector
fields at M defined as

ρ1 =
∂
∂u

, ρ2 =
∂
∂w

− 2u
∂
∂t

� �
, ρ3 =

∂
∂v

, ρ4 =
∂
∂s

− 2v
∂
∂t

� �
, ρ5 =

∂
∂t

= ζ,

ð68Þ

and these are linearly independent at each point of M.

Suppose g is the Riemannian metric defined as

g ρi, ρj

� �
= 0, 1 ≤ i ≠ j ≤ 5,

g ρi, ρj

� �
= 1, 1 ≤ i = j ≤ 5:

ð69Þ

Considering η, a 1-form on M determined as ηðKÞ = gð
K , ρ5Þ = gðK , ζÞ of all K ∈ χðMÞ. Let φ be a ð1, 1Þ tensor field
on M defined by

φρ1 = −ρ2, φρ2 = ρ1, φρ3 = −ρ4, φρ4 = ρ3, φρ5 = 0: ð70Þ

The linearity of φ and g leads to

η ζð Þ = 1, φ2K = −K + η Kð Þζ, η φKð Þ = 0,

g K , ζð Þ = η Kð Þ, g φK , φLð Þ = g K , Lð Þ − η Kð Þη Lð Þ,
ð71Þ

for all K , L ∈ χðMÞ. Therefore ½ρ1, ρ2� = 2ρ5, ½ρ3, ρ4� = −2ρ5
and ½ρi, ρj� = 0 for others i and j. By using well-known Kos-
zul’s formula, we can easily calculate

∇ρ1
ρ1 = 0, ∇ρ1

ρ2 = −ρ5, ∇ρ1
ρ3 = 0, ∇ρ1

ρ4 = 0, ∇ρ1
ρ5 = ρ2,

∇ρ2
ρ1 = ρ5, ∇ρ2

ρ2 = 0, ∇ρ2
ρ3 = 0, ∇ρ2

ρ4 = 0, ∇ρ2
ρ5 = −ρ1,

∇ρ3
ρ1 = 0, ∇ρ3

ρ2 = 0, ∇ρ3
ρ3 = 0, ∇ρ3

ρ4 = −ρ5, ∇ρ3
ρ5 = ρ4,

∇ρ4
ρ1 = 0, ∇ρ4

ρ2 = 0, ∇ρ4
ρ3 = ρ5, ∇ρ4

ρ4 = 0, ∇ρ4
ρ5 = −ρ3,

∇ρ5
ρ1 = ρ2, ∇ρ5

ρ2 = −ρ1, ∇ρ5
ρ3 = ρ4, ∇ρ5

ρ4 = −ρ3, ∇ρ5
ρ5 = 0:

ð72Þ

It can be easily verified that the manifold satisfies

∇Kζ = −φK and ∇Kφð ÞL = g K , Lð Þζ − η Lð ÞK for ζ = ρ5:

ð73Þ

It is clear that this manifold M is a Sasakian manifold.
It is easy to have the following non-vanishing compo-

nents:

R ρ1, ρ2ð Þρ1 = 3ρ2, R ρ1, ρ5ð Þρ1 = −ρ5, R ρ1, ρ2ð Þρ2
= −3ρ1, R ρ2, ρ5ð Þρ2 = −ρ5,

R ρ3, ρ4ð Þρ3 = 3ρ4, R ρ3, ρ5ð Þρ3 = −ρ5, R ρ3, ρ4ð Þρ4
= −3ρ3, R ρ4, ρ5ð Þρ4 = −ρ5,

R ρ1, ρ5ð Þρ5 = ρ1, R ρ2, ρ5ð Þρ5 = ρ4, R ρ3, ρ5ð Þρ5
= ρ3, R ρ4, ρ5ð Þρ5 = ρ4:

ð74Þ

Utilizing the previous results we calculate the following:

S ρ1, ρ1ð Þ = S ρ2, ρ2ð Þ = S ρ3, ρ3ð Þ = S ρ4, ρ4ð Þ = −2, S ρ5, ρ5ð Þ = 4:
ð75Þ

Using (23), we have Sðρ5, ρ5Þ = 4 − 1/αðλ + μ − βr/2Þ. By
equating both the values of Sðρ5, ρ5Þ, we obtain
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λ + μ =
βr
2
, α ≠ 0: ð76Þ

Hence, λ as well μ insures Equation (25), and so, g is the
∗-η-RYS on the given 5-dimensional Sasakian manifold.
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