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Thermoelasticity is a generalization of classical theories of elasticity and thermal conductivity and describes a wide range of
phenomenon. The theory can precisely predict the propagation of thermoelastics waves in case of an isotropic medium.
However, the propagation of thermoelastic waves in the anisotropic medium is not fully understood. In this case, the theory of
elasticity employs an approximate theory of temperature stress which does not take into consideration the interactions of
temperature and deformations. In this paper, an analytical study has been carried out by using method of matricant to
investigate the propagation of longitudinal elastic and heat waves in the anisotropic medium of a monoclinic, trigonal,
hexagonal, and cubical crystal systems. In this article, a solution to the problem of the propagation of thermal waves and the
propagation of a thermal wave along z-axis has been obtained. The attenuation coefficient and phase velocity of thermal waves
for various materials are determined. Specifically, the problem of propagation of heat waves in one dimension has been solved.

1. Introduction

Thermodynamics of irreversible processes, developed in the
last century, also made it possible to solve the problems of
the irreversible deformation and gave a unified interpreta-
tion of mechanical and thermal processes [1, 2].

Similarly, Nowacki [3, 4] studied the harmonic wave prop-
agation in a thermoelastic layer. Due to the weak coupling of
the temperature and strain field, characterized by a thermal
and mechanical parameter, the approximate frequency equa-
tion is solved by the perturbation method.

The poroelasticity equations formulated by Biot formed
the basis for solving wave propagation problems in the
poroelasticity region. Biot also presented the relationship
between stress and strain in case of anisotropic poroelastic
solid. Based on the Biot equations, Sharma [5, 6] investi-

gated the reflection and transmission at the liquid and
porous solid interface; however, a porous solid is considered
anisotopic with arbitrary symmetry. Similar research has
been carried out in the following areas: problems are consid-
ered and the solution of three differential equations by intro-
ducing the elastic and thermo-elastic potentials [7], the
photothermal transport process [8], the effect of variable
thermal conductivity of pPhotothermal diffusion (PTD) [9],
an electromagnetothermoelastic coupled problem for a
homogeneous, isotropic, thermally and electrically con-
ducting half-space solid [10].

The wave propagation in the thermoelastic anisotropic
medium have been investigated by using a matricant method,
for instance wave propagation waves in liquid crystals and in
thermoelastic medium [11–17]. In the paper [18], authors
consider the propagation of Rayleigh surface waves in a
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functionally graded isotropic thermoelastic half-space. In the
work presented, the Stroh analysis of the Rayleigh waves for
a general class of anisotropic thermoelastic materials [19].

The theory has also been employed to investigate the
interaction of free harmonic waves with multilayer medium,
using a combination of the method of linear transformation
and transfer matrix [20]. The paper [21] considers the
surface of a semi-infinite magnetothermoelastic solid body
from which P and SV waves are reflected. The authors of
[22] research thermophotoelectric interactions using a new
mathematical model of thermoelasticity. This model made
it possible to research the interaction between the processes
of thermos-elastic plasma.

Most of the classical sources on electrodynamics of the
anisotropic medium, including those proposed, do not use
the matricant method. In our work, we use the analytical
matricant method, which first clarifies the structure of solu-
tions in the form of matrices based on comparing the
elements of exponential series (in our case). Further, for
some restrictions, dependencies are obtained between the
characteristics of waves and material medium. This method
was proposed by professor Tleukenov, based on the works of
Brillouin and Parodi [23].

In this paper, we have employed a new matricant method
to investigate the propagation of thermal waves in case of one
dimension. The solutions obtained are in accordance with the
known classical solution [24]. Moreover, the results also coin-
cide with poroelasticity equation. The matricant method
makes it possible to research wave processes (elastic and elec-
tromagnetic) in the isotropic and anisotropic medium.

2. The Research Method

In this paper, we have used the matricant method [25],
which allows to obtain accurate analytical solutions of differ-
ential equations describing the related processes in medium
with piezoelectric, piezomagnetic, thermoelastic, and ther-
mopiezoelectric properties.

This analytical study is based on the development of
matrix methods for analyzing the dynamics of the elastic
stratified medium.

The method deals with reducing the initial equations of
motion by separation of variable method (representation of
the solution in the form of plane waves) to the equivalent
system of first order ordinary differential equations with
variable coefficients and the constructing the matricant
structure, i.e., normalized matrix of fundamental solutions.

The advantage of matricant method is that it allows for-
mulating the wave propagation for wider class of medium.
Moreover, another advantage of the method is that the expres-
sions so obtained have a very compact form. This proves to be
convenient both for analytical and for numerical calculations.

This method has been tested and the results obtained
are in consistent with previously known results in various
publications.

The main advantage of the matricant method is the
uniform description of wave propagation in various effects
for instance, thermoelastic, magnetoelastic, piezoelectric,
and piezomagnetic effects [26–28].

3. Basic Equation and Formulation of Problem

The study of the propagation of thermoelastic waves in
anisotropic medium is based on the simultaneous solution
of equations of motion in elastic medium [3, 4]:

∂σΧΧ

∂Χ
+ ∂σΧY

∂Y
+ ∂σΧΖ

∂Ζ
= ρ

∂2UΧ

∂t2
, ð1Þ

∂σΧY

∂Χ
+ ∂σYY

∂Y
+ ∂σYΖ

∂Ζ
= ρ

∂2UY

∂t2
, ð2Þ

∂σΧΖ

∂Χ
+ ∂σYΖ
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∂2UΖ

∂t2
: ð3Þ

The equations of heat conductivity proposed by Fourier
in case of anisotropic medium is as follows:

λij
∂θ
∂xj

= −qi, ð4Þ

and the heat inflow equation without the influence of
heat source is given by

∂qi
∂ xi

= −iωβijεij − iω
cε
T0

θ, ð5Þ

where σij represents the components of stress tensor, ρ is
the density of medium, λij is the components of the heat
conductivity tensor, qi are the components of the heat flow
vector, ω is the angular frequency, βij are the thermomecha-
nical parameters of medium, εij are the components of the
tensor of small Cauchy deformation, сε is the heat capacity
under constant deformation, and θ = T − T0 is the tempera-
ture augments compared with natural state temperature Т0
(T0 is the temperature of the natural state without deforma-
tions). For the case when the deformation is small, jθ/Т0jhh1.

The equations between stress and strain can be described
by Duhamel–Neumann relationships as

σij = cijklεkl − βijθ, ð6Þ

where cijkl is the elastic constants, α = ij, β = kl and βij is
the thermomechanical parameters of the medium.

Here, equations (1)–(6) show that the relationship
between temperature and stress generated in a mechanical
process as a function of the heat field and deformation in a
medium, whereas they are independent variables.
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For the monoclinic system, the matrix of elastic
constants cijkl can be written as

cαβ =

с11 с12 с13 0 0 с16

с12 с22 с23 0 0 с26

с13 с23 с33 0 0 с36

0 0 0 с44 с45 0
0 0 0 с54 с55 0
с16 с26 с36 0 0 с66

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð7Þ

The thermomechanical parameters of the body are βij,
and they depend on both mechanical and heat properties
of the body and for an anisotropic medium of a monoclinic
system they are given as follows:

βij =
β11 β12 β13

β12 β22 0
β13 0 β33

0
BB@

1
CCA: ð8Þ

By using separation of variables method, equations
(1)–(6) can be reduced to a system of ordinary differential
equations, where the heterogeneity of medium is assumed
to be along Z axis, i.e., axis ZkА2 where A2 is the second
order symmetry axis

dW
!

dz
= BW

!
, ð9Þ

where vector W
!

has the form

W
!

x, y, z, tð Þ = uz zð Þ, σzz , ux zð Þ, σxz , uy zð Þ, σyz , θ, qz
� �t
exp iω t − i mx − i nyð Þ:

ð10Þ

Here,W
!

is a column vector, which includes the boundary
conditions of the problem; uzðzÞ, uxðzÞ, and uyðzÞ represent
the projection of displacement vector on the corresponding
coordinates, and m = kx, n = ky, and l = kz, shows the x, y,
and z components of a wave vector k, respectively.

The coefficients matrix is given as

B = B cijkl zð Þ, βij zð Þ, θ, ω,m, n, l
h i

, ð11Þ

it shows the functional dependence of matrix B, for
example as f = f ðx, y, z, tÞ.

Here, the elements of coefficients matrix B as given in
Equation (11) contain the information of wave propagation
in the medium. In this paper, we have analyzed the coeffi-
cients of matrix B to determine the polarization of the waves
and the relationship among them diverges under the influ-
ence of the thermomechanical effect.

Earlier in work [12], a system of differential equations
(9) describing the propagation of coupled elastic and ther-
mal waves in anisotropic medium of rhombic, tetragonal,
and hexagonal syngony was formulated.

In the monoclinic system, there is a specific direction or
a designated plane, or both. Since the direction determines
the plane perpendicular to it so direction is chosen along
vertical axis. It is usually denoted by c, z, or x3; the remain-
ing two coordinate axes can freely be positioned in the
horizontal plane. All three axes can be of arbitrary length.
An anisotropic monoclinic medium is characterized by a
second-order symmetry axis. If the zkA2 inhomogeneity
depends on z, then the structure of the matrix B in (9) will
have the following form:

B =

0 b12 b13 0 b15 0 b17 0
b21 0 0 b24 0 b26 0 0
b24 0 0 b34 0 b36 0 0
0 b13 b43 0 b45 0 b47 0
b26 0 0 b36 0 b56 0 0
0 b15 b45 0 b65 0 b67 b77

0 0 0 0 0 0 b77 b78

0 −iω b17 −iω b47 0 −iω b67 0 b87 b77

2
666666666666666664

3
777777777777777775

,

ð12Þ

where bij represents the components of coefficient matrix
in case of monoclinic syngony and are given as follows:

b12 =
1
c33

; b13 =
c13
c33

im ; b15 =
с36
с33

im + c23
c33

in ; b17 =
β33
c33

,

b21 = −ω2ρ ; b24 = im ; b26 = in ; b34 =
c44

c44c55 − c245
; b36 =

c45
c44c55 − c245

,

b43 =
c11c33 − c213

c33
m2 + c33c66 − c236

c33
n2 + 2 c16c33 − c13c36ð Þ

c33
mn − ω2ρ,

b45 =
с16с33 − с13с36

с33
m2 + c26c33 − c23c36

c33
n2 + c12c33 + c33c66 − c13c23 + c236

c33
mn,

b47 =
c13
c33

β33 − β11

� �
im + c36

c33
β33in ; b56 =

1
c44

,

b65 = c66 −
c223
c33

� �
n2 + c33c66 − с236

с33
m2 + 2 с26с33 − с23с36ð Þ

с33
тn,

b67 =
c36
c33

β33im + c23
c33

β33 − β12 − β22

� �
in ; b77 =

λ13
λ33

im + λ23
λ33

in,

b78 = −
1
λ33

; b87 = −iωcε:

ð13Þ

In this paper, the propagation of thermal waves in an
anisotropic medium of monoclinic, trigonal, hexagonal, and
cubic crystal system have been considered in the presence of
even order symmetry axis.
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4. Solution of the Problem

The equations of motion as given by (1) for the case of
longitudinal elastic wave propagating along one of spatial
coordinates in an anisotropic layer can be written as

∂σz
∂z

= ρ
∂2Uz

∂t2
, ð14Þ

where σz = c33ð∂Uz/∂zÞ is the z-component of the stress
tensor σij, ρ is the medium density, Uz is the z-component
of the displacement vector of medium, and с33 is the isother-
mal elastic moduls.

By using separation of variables method, we get in case
of harmonic waves:

Uz ; σz½ � = Ui zð Þ, σij zð Þ� �
eiωt : ð15Þ

The system of equations (1)–(6) is reduced to a system of
differential equations of second order, describing the propa-
gation of harmonic waves (9).

The result is system of first order differential equation (9):

dUz

dz
= 1
c33

σz

dσz

dz
= −ω2ρUz

9>>=
>>;⟹

d
dz

Uz

σz

 !
=

0 b12

b21 0

 !
U

σ

 !
:

ð16Þ

Condition for the existence of nontrivial solutions is the
vanishing of the following determinant [19]:

det B − λEj j = 0, ð17Þ

where B represents coefficient matrix whose elements con-
tain the parameters of the medium, in which an elastic longi-
tudinal wave propagates. The elements of this matrix are
contained in (16) and have the following form:

b12 =
1
c33

; b21 = −ω2ρ, ð18Þ

this results in obtaining the characteristic equation (17):

λ2 = ±iω
ffiffiffiffiffiffi
ρ

c33

r
: ð19Þ

The last relation leads to the conclusion that the wave
spectrum is equal to:

k1,2 = ±iω
ffiffiffiffiffiffi
ρ

c33

r
: ð20Þ

This problem can be solved as follows:

ϕ = Aeλ1z + Beλ2z ⟹ ϕ = Aeiω
ffiffiffiffiffiffiffiffiffiffi
ρ/c33ð Þ

p
z + Be−iω

ffiffiffiffiffiffiffiffiffiffi
ρ/c33ð Þ

p
z: ð21Þ

Let us take the abovementioned as an example to consider
the heat wave propagation in an anisotropic medium of the
monoclinic syngony.

Let us assume that harmonic thermal expansion waves
with the angular frequency ω occur in an unlimited thermo-
elastic medium.

The one-dimension equation of heat conductivity is
as follows:

сε
∂θ
∂t

= λ33
∂2θ
∂z2

, ð22Þ

This can be written in matrix form as follows:

d
dz

θ

qz

 !
=

0 b78

b87 0

 !
θ

qz

 !
, ð23Þ

where сε shows heat capacity at constant strain, θ = T −
T0 temperature increase compared to the temperature Т0 of
the natural state, λ33 is heat conductivity tensor, and qz rep-
resents components of heat vector [2].

The coefficients of the matrix in (23) have the form:

b78 = −
1
λ33

; b87 = −iωcε: ð24Þ

In this case, the characteristic equation (17) can be
represented as follows:

δ2 − iω
cε
λ33

= 0, ð25Þ

hence, it follows that

δ1,2 = ±
ffiffiffiffiffi
iω
a

r
, ð26Þ

where a = λ/cpρ is coefficient of heat conductivity, λ rep-
resents coefficient of thermal conductivity, cp is specific heat
capacity, and ρ shows density of the substance.

The roots of (26) can be represented as follows:

δ1 =
ffiffiffiffi
ω

a

r
ei π/4ð Þ ; δ2 =

ffiffiffiffi
ω

a

r
ei π/4ð Þ+π,⟹ δ1

=
ffiffiffiffi
ω

a

r
1ffiffiffi
2

p + iffiffiffi
2

p
� �

=
ffiffiffiffiffi
ω

2a

r
1 + ið Þ,

ð27Þ

δ2 = −
ffiffiffiffiffi
ω

2a

r
1 + ið Þ: ð28Þ
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Subtraction (27) from (28), results in

δ2 − δ1 = −
ffiffiffiffiffi
ω

2a

r
1 + ið Þ, ð29Þ

then

δ1 = −δ2 ⟹ δ2 = −δ1: ð30Þ

The solution of the heat wave propagating in case of one
dimension is as follows:

Tт = B − δ2E
δ1 − δ2

eδ1z + B − δ1E
δ2 − δ1

eδ2z: ð31Þ

In papers [12, 13], the general form a matricant structure
is similar to the (31) and the exact solution of the system of
differential equations (9), which describes the propagation of
thermoelastic waves in anisotropic medium was formulated.
The system of differential equations is as described (23). The
formulation of exact solution is given by (31).

Numerator on the right side of (31), by using (29) and
(30), becomes

B − δ1E
2δ2

=

1
2

1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω/að Þp

1 + ið Þ
iω cε

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω/að Þp 1

2

0
BBB@

1
CCCA: ð32Þ

Coefficients of matrix B can be represented as follows:

B =

1
2

1 − i

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω/að Þp

ω cε
4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω/að Þp 1

2

0
BBB@

1
CCCA +

0 −
1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω/að Þp

ω cε
4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω/að Þp 0

0
BBB@

1
CCCA:

ð33Þ

Consequently, the coefficient matrix B is separated into
the real and the imaginary parts:

B = Re B + Im B, ð34Þ

this corresponds to heat wave propagation in a solid
medium.

For the general case, considering the above relations, the
solution of equation (31) can be represented as follows:

Tт = Re Be−
ffiffiffiffiffiffiffiffiffiffi
ω/2að Þ

p
zCos

ffiffiffiffiffi
ω

2a

r
z + Im Be−

ffiffiffiffiffiffiffiffiffiffi
ω/2að Þ

p
zSin

ffiffiffiffiffi
ω

2a

r
z:

ð35Þ

The solution of the heat wave propagation problem in
the one-dimensional case coincides with the classic solution,
which is as follows [20]:

f = e−
ffiffiffiffiffiffiffiffiffiffi
ω/2að Þ

p
zei ωt−

ffiffiffiffiffiffiffiffiffiffi
ω/2að Þ

p
zð Þ: ð36Þ

For physical reasons, from the two roots δ1, δ2, it is
necessary to retain the root, which includes the negative
real part.

Consequently, the solution for the heat wave is obtained
as follows:

θ = θ0e
−
ffiffiffiffiffiffiffiffiffiffi
ω/2að Þ

p
zСosω t −

zffiffiffiffiffiffiffiffi
2aω

p
� �

, ð37Þ

where ν =
ffiffiffiffiffiffiffiffi
2aω

p
is the phase velocity and it depends on

frequency of the heat wave.
Expression (21) is a purely elastic plane harmonic wave

propagating along z-axis. This wave has neither damping
nor dispersion. Expression (37) corresponds to a purely
thermal plane harmonic wave, which has an attenuation
characterized by the coefficient q =

ffiffiffiffiffiffiffiffiffiffi
ω/2a

p
, and variance

due to the fact that the phase velocity is a function of
frequency:ν =

ffiffiffiffiffiffiffiffi
2aω

p
.

The attenuation coefficient and the phase velocity of the
heat wave have the form q =

ffiffiffiffiffiffiffiffiffiffi
ω/2a

p
and ν =

ffiffiffiffiffiffiffiffi
2aω

p
, respec-

tively. The coefficient of thermal conductivity is expressed
by the ratio a = λ/cpρ.Consider the following substances
and their parameters as given in Table 1 [24].

It can be seen from the Figure 1 that q and v depend on
ω in the same way, because q ∼

ffiffiffiffi
ω

p
and v ∼

ffiffiffiffi
ω

p
. It can also

be seen that the increase in q and v, depending on the
increase in ω, increase according to a parabolic law.

Table 1

Substance λ, coefficient of thermal conductivity (W/(m∗K)) cp, specific heat capacity (J/(kg∗K)) ρ, density (kg/m3)

Quartz 11.3 750 2650

Calcite 4.98 800 2710

Bismuth 6.65 123.5 9750

Graphite 89 840 2150

Aluminum 208 897 2700

Copper 410 385 8950
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Figure 1: Continued.
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5. Conclusion

In this paper, the propagation of elastic longitudinal and
thermal waves in anisotropic medium of monoclinic, trigo-
nal, hexagonal, and cubic crystal systems is considered on
the basis of the matrix method. In particular, the problem
of heat wave propagation in the one-dimensional case is
solved, the solution of which coincides with the known
classical solution.

Moreover, by using the matricant method the solutions
of equations of wave propagation in elastic medium are
obtained. From these solutions, it is possible to determine
the attenuation coefficient and phase velocity of the thermal
waves. Finally, the results obtained by the matricant method
are in consistent with the models of poroelastic equations
obtained by using another analytical solution [5, 6]. It is
expected that the results obtained will be helpful for better
understanding the thermoelastic wave propagation in
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Figure 1: The dependence of the attenuation coefficient and the phase velocity of the heat wave on the angular frequency in different
mediums. (a) Quartz. (b) Calcite. (c) Bismuth. (d) Graphite. (e) Aluminum. (f) Copper.
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various mediums. In this paper, we got the dependence of
the attenuation coefficient and the phase velocity of the heat
wave on the angular frequency in different mediums. We
analyzed these dependencies.
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