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The task of present research is to establish an enhanced version of residual power series (RPS) technique for the approximate
solutions of linear and nonlinear space-time fractional problems with Dirichlet boundary conditions by introducing new
parameter A. The parameter A allows us to establish the best numerical solutions for space-time fractional differential
equations (STFDE). Since each problem has different Dirichlet boundary conditions, the best choice of the parameter A
depends on the problem. This is the major contribution of this research. The illustrated examples also show that the best
approximate solutions of various problems are constructed for distinct values of parameter A. Moreover, the efficiency and
reliability of this technique are verified by the numerical examples.

1. Introduction

The well-established tool fractional differential equations
(FDEs) attract growing attention of scientists in a wide range
of scientific areas such as biology, physics, and engineering
since it is very effective and accurate for modelling many
processes in real life [1-11].

In FDEs, noninteger derivatives are taken into account
to include memory of the system. Fractional mathematical
models have results which are very close to the experimental
data [12]. Since FDEs are applicable and variable, the prog-
ress of them is very rapid in diverse fields of science and
engineering. Therefore, studies on solving FDEs produce
efficient and reliable techniques to construct numerical and
analytical solutions of them [13-20].

Diverse methods such as a semianalytical approach, a
modified wavelet approach, linearized novel operational
matrix-based scheme, hybrid spectral linearized scheme,
finite difference/spectral algorithm, innovative operational
matrix-based computational scheme, and a Chelyshkov
polynomial-based algorithm are utilized to construct the
solutions of FDEs [20-22].

RPS technique, which can be applied directly to the
problem, is one of the most convenient ones to establish
approximate solutions with high precision for linear and
nonlinear FDEs [21-28]. Moreover, RPS technique allows
us to construct the exact solution of the initial value prob-
lems whose solutions are polynomial.

Various mathematical models including differential
equations such as model of vibration equation of large mem-
branes, fractional Black-Scholes option pricing equations,
and time—fractional fuzzy vibration equation of large mem-
branes are analyzed by the RPS technique [27, 28].

Modified versions of the RPS technique are developed to
acquire better approximate solutions of FDEs such as the
solutions of STFDE in [29-34].

The motivation of this study is to employ a new version of
RPS technique to establish better approximate solutions of
fractional mathematical models including STFDE in Caputo
sense. In the RPS technique, determining a suitable estimation
for the initial guess approximations plays an important role.
Therefore, in this study, we try to construct best initial guess
approximation by introducing a new parameter. The novelty
of this method is that new parameter A is introduced to get
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the best approximate solution for the fractional mathematical
problems including STFDE with Dirichlet boundary condi-
tions. When we are given Dirichlet boundary conditions, we
utilize the parameter A to determine the initial rate of change
which enables us to acquire the best approximate solution by
the RPS technique.

2. Preliminaries

Now, the basic concepts of fractional calculus are presented
[1-5].

Definition 1. The Riemann-Liouville (R-L) fractional deriva-
tive operator D* of order « is described as [2, 5]

1 it f) dx, n-1l<a<n,
5l (0> a=mn
(1)

where n € Z" and a € R*.

Definition 2. The R-L fractional-order integration operator
J* is described as [2, 5]

t

ﬂﬂw=ﬁgja—n*

0

f(x)dx,

x>0,a>0. (2)

Following Podlubny [2], we may have

]Ottﬂ — F(n + 1) n+oc)
I'n+a+1
(3)
D(th — F(n + 1) n—-«o
I'n-a+1

Definition 3. The a™-order derivative of f(¢) in Caputo sense
is defined as [2, 5]

! t fn(x) dx, n-1<a<n,
“Df(1) = ;gm@L“@““
orm > 0T

Definition 4 (see [2, 5]).

(1) D*Jf(t) = £(¢)
(2) J*D*f(t) = £(t) = Tpof © (0F) (£F1K1), £> 0
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TaBLE 1: The approximate values of us; (x, t) for various values of A
ata=1and f=2.

A=-1  A=0 A=1 A=2 A=5
0.3 0.21893 0.01731 0.10942 0.20153 0.29364 0.56997

0.3 0.6 0.16218 0.01214 0.08038 0.14862 0.21686 0.42157
0.9 0.12015 0.00611 0.05667 0.10722 0.15777 0.30942

X t Exact

0.3 0.41830 0.03307 0.20906 0.38505 0.56104 1.08902
0.6 0.6 0.30988 0.02320 0.15358 0.28396 0.41434 0.80548
0.9 0.22957 0.01168 0.10827 0.20486 0.30144 0.59120

0.3 0.58030 0.04587 0.29003 0.53418 0.77833 1.51080
0.9 0.6 0.42990 0.03219 0.21306 0.39394 0.57481 1.11743
0.9 0.31848 0.01621 0.15020 0.28420 0.41819 0.82017

Definition 5. (k,I)-truncated series wuy(x,t) of the RPS
method is given as

-1

ko1
uklxt = Z + sznm(x)

n=0 ! n=1 m=0

gnoctm

-, n-1<as<s<nt>0,
I'(1+na+m)

m

i1 [
Z b"n(, +/\Z Z(gnnx(t> *gmm(t))m>

n—-1<p<nx>0.
(5)

3. RPS Technique for Fractional Mathematical
Models with Dirichlet Boundary Conditions

We provide an efficient and reliable method for the solution
of STFDE with Dirichlet boundary conditions. Let us take
the following initial-boundary value problem into consider-
ation:

Dfu=DPu+ F(u), (6)

u(x,0) = fy(x), 7)
u(0,1) = gy 1)
u(1,1) = g, (1)

The (k, 0)-truncated series u,(x, t) is established by tak-
ing Equations (6) and (7) into account as follows:

110(

, t>0,0<a<].

©)

The use of Equations (1) and (3) leads to the kl-trun-
cated series uy(x, t) as follows:

k
Ugo (%, 1) = foo (% z

= I'(1+ na)

k1
(%, 1) = goo (1) + A(goy (1) = Goo (1)) x + A Z Z_ (G (1) = G (1))

xnﬁ+m

F(1+n[3+m)’

x>0,1<B<2.

(10)
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TaBLE 2: The approximate values of us, (x, t) with the parameter A = 1.22 and various orders « and f3.
X ¢ Exact a=1 a=1 a=1 a=0.9 a=0.9 a=0.9
B=2 B=19 =18 B=2 B=19 B=138
0.3 0.21893 0.22179 0.22642 0.23048 0.21694 0.22205 0.22659
0.3 0.6 0.16218 0.16363 0.17129 0.17831 0.16014 0.16806 0.17524
0.9 0.12015 0.11834 0.12841 0.13752 0.11581 0.12663 0.13603
0.3 0.41830 0.42377 0.42683 0.42944 0.41489 0.41853 0.42175
0.6 0.6 0.30988 0.31264 0.31944 0.32588 0.30551 0.31252 0.31909
0.9 0.22957 0.22611 0.23596 0.24531 0.22045 0.23117 0.24104
0.3 0.58030 0.58789 0.58576 0.58351 0.57654 0.57492 0.57319
0.9 0.6 0.42990 0.43373 0.43516 0.43667 0.42266 0.42409 0.42558
0.9 0.31848 0.31368 0.31807 0.32267 0.30382 0.30869 0.31383
An approximation for (6)-(8) is achieved by employing
the new RPS technique as follows: 04
0.35 1 F
1) = 3 ( Lo+ 90(0) + M)~ 905+ ) m 031 ’
> 2 00 00 01 00 =] n0 I'v(l + Tl(X)
5 . 0.25 - -
n (o) xn + @
+ zgno 1+Vlﬁ) Z(gnl(t)_gno(t))w>' \?i 0.2 r
(11) = 0.15 - s
0.1 - -
Notice that we introduce a new parameter A in this 0.05 - |
approximate solutions to get a better approximation of the '
problems (6)-(8). Hence, the (k, I)-truncated series of u;;(x 0 . . . . . , , , ,

,t) of u(x, t) is achieved as follows:

he

ug(x, t) = % (foo(x>+goo(t) + Mg (1) = Goo ()X + ano

B
* zg"o I(1+np)

I'(1+na)

ko1 np+m
+)‘Z (Gm (1) = Gumr ))W)

(12)

Equation (13) leads to the approximate solution uy,(x, t)
to become

(foo (%) + Goo (1) + Ago1 (1) = oo (1))x)-  (13)

Uugo (%, t) =

NIP—‘

The RPS technique leads to the following definition of
the kI residual function Re sy(x, t) as

Re sy(x, ) = Dfuyy — Dy — F(uy). (14)

In order to establish the coefficients gij(t), ,j=1,2,3,

-, k, plunge Equation (12) into Equation (14), and solve
the following equation

DVPDL Re s4(0, 1) = 0. (15)

To acquire g,,(t), taking k = 1 and [ = 0 in Equation (14)

0 01 02 03 04 05 06 07 08 09 1
x

— «=09, =19
— «=08,p-18

—— Exact
— a=1, =2

Ficure 1: The graphics of approximate solution uy, (x, t) at t =0.8
for A =1.22 and various orders « and f.

leads to

Re s19(x, t) = f1y(x) + Df goo (t) + A(Df g, (t) — D,

- fooo(x) - fol()(x) m

900 (1))x
F(uyg),

(16)

—Gio(t) —

where

o

(%, t) = (foo(x) + oo (1) + Mo (1) = oo (1))x + f1o(X) 77— I(1+a)
B

+g1o(t)w)~
(17)

Employing Equation (15) allows us to have

1

910() = f10(0) + Df goo (1) = fooo(o) - fom(o) m = F(uy(0, 1)).

(18)
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TaBLE 3: The approximate values of u,, (x, t) for various values of A at « =1 and =2.

x t Exact A=-1 A=0 A=1 A=2 A=5
0.3 -0.53847 -0.03648 -0.26301 -0.48954 -0.71608 -1.39567
0.3 0.6 -0.98116 -0.01907 -0.43146 -0.84385 -1.25624 -2.49342
0.9 -1.78779 0.09664 -0.65310 -1.40284 -2.15258 -4.40181
0.3 -1.02885 -0.06983 -0.50253 -0.93524 -1.36794 -2.66605
0.6 0.6 -1.87468 -0.03878 -0.82438 -1.60998 -2.39558 -4.75238
0.9 -3.41589 0.17085 -1.24786 -2.66657 -4.08528 -8.34142
0.3 -1.42731 -0.09709 -0.69716 -1.29723 -1.89730 -3.69751
0.9 0.6 -2.60074 -0.05891 -1.14366 -2.22840 -3.31315 -6.56740
0.9 -4.73885 0.20655 -1.73115 -3.66885 -5.60655 -11.41964
TasLE 4: The approximate values of u,, (x, t) with the parameter A = 1.47 for various orders « and .
X " Exact a=1 a=1 a=1 a=0.9 a=0.9 a=09
B=2 B=19 B=18 B=2 B=19 =18
0.3 -0.53847 -0.59601 -0.60551 -0.61355 -0.62399 -0.63650 -0.64718
0.3 0.6 -0.98116 -1.03768 -1.06509 -1.08905 -1.08716 -1.12080 -1.15039
0.9 -1.78779 -1.75522 -1.80729 -1.85298 -1.81910 -1.87986 -1.93342
0.3 -1.02885 -1.13861 -1.14310 -1.14629 -1.18552 -1.19207 -1.19710
0.6 0.6 -1.87468 -1.97921 -1.99778 -2.01391 -2.06547 -2.08925 -2.11030
0.9 -3.41589 -3.33337 -3.36702 -3.39611 -3.44429 -3.48526 -3.52129
0.3 -1.42731 -1.57926 -1.56996 -1.56013 -1.62855 -1.61841 -1.60792
0.9 0.6 -2.60074 -2.73824 -2.72758 -2.71682 -2.83788 -2.82787 -2.81811
0.9 -4.73885 -4.57957 -4.55689 -4.53486 -4.70650 -4.68487 -4.66435
where
1 1 1 1 1 1 1 1 1 1
0+ F 1 4
Uy (%, 1) = 3 Joo (%) + Goo(£) + A(Go1 () = oo (1)) % + f19(%) m
a -1 4 r 20 ; P , 2B
C’é ] | +fzo(x)m+g1o()m+gzo( )m)
= (20)
-3 4 L
-4 3 . . .
Taking Equation (15) into account leads to
-5 . . . . . . . : :

0 01 02 03 04 05 06 07 08 09 1
x

«=0.9, f=1.9
—— a=038, f=1.8

—— Exact
— a=1,3=2

Ficure 2: The graphics of approximate solution u,, (x, t) at t =0.8
and A = 1.47 for various orders « and S.

Similarly, we take k=2 and /=0 in Equation (14) to
establish the coefficient g, (1),

Re 5,0 (x, 1) = D upg — Df”zo = F(uy)» (19)

9(t) = folo(o) + fozo(o) F(ltii“) +Dfg,y - Dfofoo(O)
- DDu(0) i PP
= DEF(uy(0, 1)).
(21)

As in the previous steps, taking k=1 and [ =1 in Equa-
tion (14) leads to

Re s (x, t) = Dfuy, - Df”u - F(uyy), (22)
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TaBLE 5: The approximate values of u,, (x, t) for various values of A
ata=1and f=2.

A=-1 A=0 A=1 A=2 A=5
0.1 0.25000 -0.00069 0.12385 0.24736 0.36982 0.73096
0.1 0.2 0.33333 -0.01045 0.15568 0.31996 0.48238 0.95855
0.3 0.50000 -0.05424 0.19548 0.44103 0.68242 1.38158

0.4 1.00000 -0.26021 0.24325 0.73005 1.20018 2.51057

X t  Exact

0.1 0.50000 0.00045 0.24683 0.48487 0.71458 1.35370
02 0.2 0.66667 -0.01960 0.30944 0.62366 0.92307 1.73240
0.3 1.00000 -0.10992 0.38784 0.85226 1.28336 2.37663

0.4 2.00000 -0.54568 0.48203 1.37640 2.13744 3.62055

0.1 0.75000 0.00527 0.36804 0.70268 1.00920 1.75999
0.3 0.2 1.00000 -0.02614 0.45936 0.89486 1.28036 2.13685
0.3 1.50000 -0.16847 0.57396 1.20389 1.72132 2.59862

0.4 3.00000 -0.88166 0.71184 1.85534 2.54885 1.92936

0.1 1.00000 0.01561 0.48661 0.89095 1.22861
0.2 1.33333 -0.02877 0.60352 1.11729 1.51255 1.98720
0.3 2.00000 -0.23134 0.75072 1.46612 191484 1.66103
0.4 4.00000 -1.29343 0.92821 2.08319 2.17149 -3.96359

1.84161

0.4

where

uyy (%, 1) = (foo(x) + oo (1) + MGor () = Goo(t ))x+f10(x)

(1 +a)
xﬂ xﬂﬂ

0 5y MO0~ 900 1 )

(23)

Using Equation (15) when k=1 and /=1, we get

1 (Duf0(0) - D,D

=310(t) + Digo1 — Diggo + ffoo(o)
- D, 0.9) ).

P p——

I'(l+a)

gu ()

(24)

To determine g,,(t), substituting k=2 and /=1 into
Equation (14), then

Re s, (x, 1) = Dy — Df”ZI - F(uy), (25)
where
1 t*
Uy (x, 1) = 3 ( 00(%) * Goo(£) + Mgy (£) = Goo())x +flo(x)m
2a xﬁ xzﬁ
+fzo(x)m +g10(t) T(+p) + Gy (t) T(1+2p)
xﬁﬂ x25+l
#M9u(0) 0000 1 g7 + M0 (0= 90 1337 )

(26)

u (x,0.4)

0 T T T T T T T T T
0 01 02 03 04 05 06 07 08 09 1
x

— a=09,p=19
— a=08, =18

— Exact
— a=1,=2

Ficure 3: The graphics of approximate solution u,, (x, t) at t =0.8
and A =1.16 for various orders « and f3.

Using Equation (15) when k=2 and I =1, we get

o o 1
92 (8) = gy (t) + Di gy, — Df gy + 1 (DEDxflO(O) _DED’JZO(O) I'(l1+a)

t«x tZ(x
- DED D, (0 ) T(+a ’DfDfofzo(O)m

= DD, DLy (0)
= DED, F(1 (0.1)) ),
(27)
and so on.
Now, the next step is to obtain the coefficients f,(x), i

=1,2,3, -+, k, by Equation (9).
The equation

DI Re s4(x,0) =0 (28)

allows us to establish the required coefficients f;(x), 4, j=1
,2,3, -+, k. Taking into k=1 in Equation (14) leads to

Re 519(x, 1) = Dy — Df“lo = F(uy)s (29)
where
th
Uyo (%, ) = foo(X) + f10(X) m’ (30)

which allows us to determine the coefficients f|,(x) as fol-
lows:

Fro(®) = Dfoo(x) + F(uyo (. 0)). (31)

In a similar form, f,,(x) is acquired by substituting k = 2
into Equation (14) then
Re 559 (%, 1) = Diftiyg

- Df“zo = F(uy), (32)
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TaBLE 6: The approximate values of u,, (x, ) with the parameter A = 1.16 for various orders « and .

X " Exact a=1 a=1 a=1 a=0.9 a=0.9 a=0.9
B=2 p=1.9 pf=138 p=2 =19 B=138
0.1 0.25000 0.26702 0.26618 0.26499 0.27667 0.27579 0.27454
01 0.2 0.33333 0.34607 0.34468 0.34272 0.36510 0.36365 0.36160
0.3 0.50000 0.47993 0.47735 0.47371 0.50879 0.50614 0.50241
0.4 1.00000 0.80639 0.79890 0.78833 0.84529 0.83781 0.82726
0.1 0.50000 0.52218 0.51696 0.51010 0.54089 0.53541 0.52822
02 0.2 0.66667 0.67256 0.66395 0.65263 0.70971 0.70069 0.68884
0.3 1.00000 0.92348 0.90747 0.88643 0.98027 0.96386 0.94229
0.4 2.00000 1.50712 1.46065 1.39956 1.58512 1.53873 1.47776
0.1 0.75000 0.75361 0.73882 0.72018 0.78022 0.76470 0.74514
03 0.2 1.00000 0.95990 0.93549 0.90473 1.01331 0.98774 0.95554
0.3 1.50000 1.29424 1.24887 1.19170 1.37713 1.33062 1.27201
0.4 3.00000 1.99655 1.86481 1.69883 2.11404 1.98255 1.81688
0.1 1.00000 0.94945 0.91897 0.88172 0.98220 0.95022 091114
04 0.2 1.33333 1.18850 1.13820 1.07672 1.25540 1.20273 1.13835
0.3 2.00000 1.55583 1.46234 1.34806 1.66207 1.56622 1.44907
0.4 4.00000 2.16900 1.89754 1.56576 2.32658 2.05563 1.72447
where where  Fj,(x) = (D["™/(I(j+iac+ 1)) (j + ia+ 1))u(x, t,)
" e and Gy,ig() = (DK I+ B + D)L+ B+ 1) )u(xp, ).
U (% £) = foo (%) + fro(* ) I(1+a) +fro(x )m
Moreover, for 3 values ¢; and ¢, such that 0<e, <t and 0
(33) <&, <x, the error term has the term as follows:

Hence, we have the coefficient f,;(x) in the following
form:

Fro(x) = Dgfm (x) + Df F(uy(x,0)), (34)

and so on. By substituting the coefficients f;(x),,j=1,2,3
-, k, into Equations (18), (21), (24), and (27) lead to the
coefficients g;;(t), 4, j=1,2,3, - k.
As a verification of the new RPS technique, we observe
that we obtain as a classical exact solution of the problems
(6)-(8) with integer order as f — 2 and a — 1.

4. Convergence Analysis

Theorem 6. Let u(x,t), DFu(x, t) € C[R;, )] x [R, ty + Ry,
and D u(x, t) € Clxy, R,) X [xy + R, R,], where k=0,1,2,
p;+1,j=0,1,2,--,n—1,and 1=0,1,2,---,p,+1,i=0,
1,2, +-,m— 1. Moreover, D'u(x,t) can be differentiated n
— 1 times with respect to 't' on (t,,t,+R,) and Diﬁu(x, f)

can be differentiated m — 1 times with respect to 'x' on (x,,
Xy + R;). Then,

L

)2)

n 1p; /\m
u(x, t) == Z Z F]ﬂa )(t—ty) jriar | 5 G]+lﬁ )]+z/3
] 0 i=0 j=0 i=0
(35)

1 n-1 Df*‘(}’l“)“ ou+1)
E < = et . tj+ +1)a
IEy (< >”<2{sup Z<r<j+<pl+1>a+1)”(x e >

tef0.1]| j=0
m-1 < piterhp

+ inf su
/\e[1,z]xe[0§]

Z\ TG+ (p, + D+ D)

(36)

Proof. The proof of this theorem follows from the proof 4.3
[27]. O
5. Numerical Examples

In this section, we provide illustrative examples to prove
how effective and reliable the RPS technique proposed in
this study is.

Example 1. Consider the STFDE with initial-boundary con-
ditions

Diu= Dfu,
u(x,0) = sin (x),
u(0,t)=0,

u(1,t) =exp (~t) sin (1),

(37)
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for which

u(x, t) = exp (—t) sin (x) (38)

represents the exact solution for a =1 and f3=2. Based on
the RPS technique and above problem, we have the follow-
ing coefficients:

Joo(x) = sin (x),
Foo(t) =0,
Gou (1) =exp (1) sin (1),

1 [ T2 xk+2-p [eS) k2 sk+2-p
Fol)= 5 (Z M R Z(’)k m)

k=0 k=0
910(t) =0,
) 0 " tk+1—o¢
gn(t):sm(1)<];)(—1)k m),
i k+4 2B o8} ket xk+4—2,8
Ful) (Z * T(k+5-2p) ;(_l)k F(k+5—2[3))’
90 (t) =0,
. (e8] . tk+2—2a
gz1(t)zsm(1)<];)(_l)k M)’
. +6 3 0 ke6 xk+6—3ﬁ
Sal®) (Z : k+7 3B) ;)(_l)k F(k+7—3/3))’
93 (1) =0,
] 0 s tk+3—3:x
g3 (t) =sin (1)<1;)(_1)k m)

(39)
In Table 1, the approximate solutions are given for vari-
ous values of A with « =1 and =2. Table 2 provides the
values of exact solution and an approximate solution us, (x
,t) for the parameter A = 1.22 and various orders of « and
B. Based on Table 1, we conclude that approximate solutions
have a higher accuracy as adding more components. More-
over, Figure 1 supports our conclusion.

Example 2. Take the initial-boundary value problem includ-
ing STFDE with source function into consideration

D*u=DFu+3u,

0) = s
u(x,0) = cos (x+ 5)’ (40)

s
u(0,t) =0, u(1,t) =exp (2t) cos (1 + 5)’
for which
s

u(x, t) = exp (2t) cos (x + E) (41)

denotes the exact solution for « =1 and f3 =2. Based on the

RPS technique and above problem, the following coefhicients
are obtained:

Soo(x) = cos (x + g),
Goo(t) =0,

Go1 (t) = exp (2t) cos (1 + g),

1 k+2—ﬁ 00 xk+2—[5’
f10 - - Z k+2— _ Zik+27
2i I'k+3-p) fard I'k+3-p)
T
+ 3 cos <x + 5),
91o(£) =0,

tk+1 o

g,,(t) =3 cos (1 + g) exp (2t) + cos < ) 22"“ Fk+2-a)’

k+4 2 o8} 5 xk+4—2,8
fao() (zk NCESET)) 2[3) Z(‘”k m)

k=0
6 [ & k2 k+2 -B
+zi<;)(_’)k F(k+3 B ,;)k T(k+3- ﬁ))

b4 T
+ 3 cos (x+ —) +9 cos (x+ —),
2 2

Ga(t) =
ol tk+1—a
Gy () =9 cos (1 + ) exp (2t) — 6 cos (1 + 2) %2 Tk+2-a)
& o2 h+2-2a
eos (H 5),;2 [(k+3-2a)
(42)

In Table 3, the approximate solution is given for various
values of A with @ =1 and 3 =2. Table 4 provides the values
of exact solution and the approximation u,, (x, t) with the
parameter A =1.47 and various orders « and (3. Based on
Table 3, we conclude that the approximate solution has a
higher accuracy as adding more components. Moreover,
Figure 2 confirms our conclusion.

Example 3. Consider the initial-boundary value problem
including fractional Burger equation

Du=DPu+uu,
u(x,0) = 2x, (43)

u(0,t)=0,u(l,t)=

1-2t



for which

2x
1-2t

u(x, t) = (44)

represents the exact solution for integer order derivatives.
Based on the RPS technique and above problem, the follow-
ing coefficients are established:

Joo(%) =2x,

9oo(t) =0,
G (1) = 1—L2t’
fuolx) =45, #5)
910() =0,
fro(x) =16x
90(t) =0.

In Table 5, the approximate solution is given for various
values of A with « =1 and § = 2. Table 6 provides the values
of exact solution and the approximation u,,(x, t) with the
parameter A=1.16 and various orders « and f. Based on
Table 5, we conclude that the approximate solution has a
higher accuracy as adding more components. Moreover,
our conclusion is supported by Figure 3.

6. Conclusion

In this study, the enhanced version of RPS technique is pro-
posed to establish better approximate solutions of linear and
nonlinear space-time fractional problems with Dirichlet
boundary conditions by introducing new parameter A. The
illustrated examples present that the best approximate solu-
tions are achieved for specific values of the parameter A.
Moreover, the value of parameter A which leads to the best
approximate solution depends on the fractional mathemati-
cal problem. The numerical examples also prove that this
new effective and reliable technique is easy to implement.
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