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In this paper, we derive a Riccati-type inequality in the Heisenberg group Hn. Based on it, some oscillation criteria are established
for the weighted p-sub-Laplacian equations in Hn. Our results generalize the oscillation theorems for p-sub-Laplacian equations in
Rn to ones in Hn.

1. Introduction

In this paper, we consider the nonlinear degenerate elliptic
equation in the Heisenberg group Hn:

∇H · ∇Huj jp−2A z, tð Þ∇Hu
� �

+ c z, tð Þ uj jp−2u = 0, ð1Þ

where p > 1, ðz, tÞ ∈Ω, Ω is an outer region in Hn, ∇H
denotes the Heisenberg gradient (see (19)), and Aðz, tÞ and
cðz, tÞ are to be specified later.

In the qualitative theory of nonlinear partial differential
equations, one of the important problems is to determine
whether or not solutions of the equations are oscillatory.
For the second-order linear ordinary differential equation,

r tð Þx′ tð Þ
� �

′ + q tð Þx tð Þ = 0: ð2Þ

A classical result of the oscillation is the famous Fite-
Wintner theorem which states that if lim

t⟶∞
qðtÞ =∞, then

the solutions of (2) are oscillatory (see [1]). In [2], Kamenev
studied the oscillatory behavior of the solutions of (2) under
the assumption that lim

t⟶∞
qðtÞ <∞.

Soon after, Fite-Wintner’s theorem and Kamenev’s theo-
rem were extended to various forms of second-order differ-
ential equations. In [3], by using the Riccati-type

transformation, Noussair and Swanson extended Fite-
Wintner’s theorem to the equation:

∇· A xð Þ∇yð Þ + q xð Þf yð Þ = 0: ð3Þ

Usami [4] established Fite-Wintner-type theorem to the
quasilinear elliptic equation in divergence form:

∇· ∇uj jp−2∇u� �
+ p xð Þ uj jp−2u = 0: ð4Þ

Xu [5] and Zhuang and Wu [6] studied, respectively, the
oscillation problem for the weighted elliptic equation:

∇· ∇uj jp−2A xð Þ∇u� �
+ p xð Þ uj jp−2u = 0: ð5Þ

For more results about differential equations, one can
refer to [7–9] and references therein.

It knows that the p-Laplacian equations play a critical role
in physical phenomena. We refer the readers to Díaz [10] for
detailed references on physical background of the p-Laplacian
equations. In this paper, we derive several oscillation criteria
for the weighted p-sub-Laplacian equation in Hn. One of the
difficulties is that there does not exist a good divergence for-
mula inHn as in Rn. In this paper, we overcome this difficulty.
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Before stating our main results, we introduce some nota-
tions and notions. For positive constants a1, a2, we denote

G a1, a2ð � = z, tð Þ ∈Hn : a1 < z, tð Þj jH ≤ a2
� �

,
G a1, a2½ Þ = z, tð Þ ∈Hn : a1 ≤ z, tð Þj jH < a2

� �
,

G a1, a2½ � = z, tð Þ ∈Hn : a1 ≤ z, tð Þj jH ≤ a2
� �

,
G a1,+∞½ Þ = z, tð Þ ∈Hn : z, tð Þj jH ≥ a1

� �
,

ð6Þ

where jðz, tÞjH denotes the norm in Hn (see (22)). A
domain Ω is called the outer region in Hn if there exists a
positive constant a0 such that G½a0,+∞Þ ⊂Ω. Let us restrict
our attention to the nontrivial solution uðz, tÞ of (1), that is,
to the solution uðz, tÞ satisfying

sup u z, tð Þj j: z, tð Þ ∈Ωf g > 0: ð7Þ

A nontrivial solution of (1) is called oscillatory if it has
arbitrarily large zeros; otherwise, it is called nonoscillatory.
Equation (1) is called oscillatory if all its solutions are
oscillatory.

Now, we give a definition.

Definition 1. Let

D0 = r, sð Þ ∈ R2 : r > s ≥ a0
� �

,D = r, sð Þ ∈ R2 : r ≥ s ≥ a0
� �

:

ð8Þ

We call that F belongs to the function class Ψ, if F ∈ C
ðD, RÞ and there exist f1, f2 ∈ CðD, RÞ and ϕ ∈ C1ð½a0,+∞Þ,
R+Þ such that

ðF1ÞFðr, rÞ = 0 for r ≥ a0 and Fðr, sÞ > 0 for all ðr, sÞ ∈D0
ðF2Þ

ð∂/∂rÞðFðr, sÞÞ + ðϕ′ðrÞ/ϕðrÞÞFðr, sÞ = f1ðr, sÞðFðr, sÞÞðp−1Þ/pðF3Þ
ð∂/∂sÞðFðr, sÞÞ + ðϕ′ðsÞ/ϕðsÞÞFðr, sÞ = f2ðr, sÞðFðr, sÞÞðp−1Þ/p

In this paper, we always assume that the following con-
ditions are satisfied.

ðC1Þ The coefficient matrix Aðz, tÞ = ðaijðz, tÞÞ2n×2n is a
real symmetric positive definite matrix function (i.e., it is
the ellipticity condition in R2n) with aij ∈ C2

locðΩ, RÞ, the
smallest (necessarily positive) eigenvalue of Aðz, tÞ is
denoted by λminðz, tÞ, and there exists a function ρðrÞ ∈
CðR+, R+Þ such that

ρ rð Þ ≤ min
z,tð Þj jH=r

λmin z, tð Þ
A z, tð Þj jp/ p−1ð Þ , r > a0, ð9Þ

where jAðz, tÞj = ð∑2n
i,j=1 a

2
ijðz, tÞÞ

1/2
.

ðC2Þcðz, tÞ ∈ C2
locðΩ, RÞ.

For convenience, denote

θ rð Þ = ϕ rð Þ
ð
SH o,rð Þ

c z, tð ÞdH, ð10Þ

where SHðo, rÞ denotes the sphere in Hn with the center o
= ð0, 0Þ and the radius r and dH denotes the 2n-dimen-
sional Hausdorff measure in R2n+1 (see [11]):

g rð Þ = 1
ρ rð Þ ℘α℘r2n+1ϕ rð Þ� �1/ p−1ð Þ, ð11Þ

where ℘ = 2n + 2 is the homogeneous dimension of Hn and
℘α℘ (α℘ is a constant) denotes the area of unit sphere SHðo,
1Þ in Hn.

One of the main results is the following.

Theorem 2. Assume that for any T ≥ a0, there exist T ≤ a <
c < b and F ∈Ψ such that

1
F c, að Þ

ðc
a
F s, að Þθ sð Þds + 1

F b, cð Þ
ðb
c
F b, sð Þθ sð Þds

> 1
pp

1
F c, að Þ

ðc
a

4s2 + 1
� �p/2

gp−1 sð Þ f1 s, að Þj jpds

+ 1
pp

1
F b, cð Þ

ðb
c
4s2 + 1
� �p/2

gp−1 sð Þ f2 b, sð Þj jpds:

ð12Þ

Then, (1) is oscillatory.

Denote

R rð Þ =
ðr
a0

1
4s2 + 1ð Þp/2 p−1ð Þg sð Þ

ds, for r ≥ a0, ð13Þ

and take

F r, sð Þ = R rð Þ − R sð Þð Þλ, for r ≥ s ≥ a0,
ϕ rð Þ = 1,

ð14Þ

in (10), where λ >max ð1, p − 1Þ is a constant. The following
is a Kamenev-type oscillation criterion.

Theorem 3. Assume RðrÞ⟶∞ðr⟶∞Þ. If for each l ≥ a0,
there exist λ >max ð1, p − 1Þ such that

limsup
r⟶∞

1

Rλ−p+1 rð Þ

ðr
l
R sð Þ − R lð Þð Þλθ sð Þds > λp

pp λ − p + 1ð Þ ,

ð15Þ

limsup
r⟶∞

1

Rλ−p+1 rð Þ

ðr
l
R rð Þ − R sð Þð Þλθ sð Þds > λp

pp λ − p + 1ð Þ :

ð16Þ
Then, (1) is oscillatory.

The paper is organized as follows. In Section 2, we collect
some well-known results for the Heisenberg group and
introduce two lemmas. Section 3 is devoted to the proofs
of the Riccati-type inequality. The proofs of Theorems 2
and 3 are given in Section 4.
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2. Preliminaries

The Heisenberg group Hn is R2n+1 (or Cn × R) endowed with
the group law ∘ defined by

�ξ ∘ ξ = x + �x, y + �y, t +�t + 2〠
n

i=1
xi�yi − yi�xið Þ

 !
, ð17Þ

where ξ = ðx1, x2,⋯,xn, y1, y2,⋯,yn, tÞ≔ ðx, y, tÞ≔ ðz, tÞ ∈
R2n × R, �ξ = ð�z,�tÞ. The group Hn plays the important roles
as Rn in conformal geometry, geometry of several complexes,
and harmonic analysis (e.g., see Folland and Stein in [12]).

The left invariant vector fields on Hn are of the form

Xj =
∂
∂xj

+ 2yj
∂
∂t

, Y j =
∂
∂yj

− 2xj
∂
∂t

, j = 1, 2,⋯, n, T = ∂
∂t

:

ð18Þ

The family fX1,⋯, Xn, Y1,⋯, Yng satisfies Hörman-
der’s rank condition (see [13]). The Heisenberg gradient of
a smooth function u is defined by

∇Hu = X1u,⋯, Xnu, Y1u,⋯, Ynuð Þ: ð19Þ

The divergence of a smooth vector value function F
= ðF1,⋯, F2nÞ on Hn is defined by

∇H · F = X1F1+⋯+XnFn + Y1Fn+1+⋯+YnF2n: ð20Þ

For F = ðF1,⋯, F2n+1Þ, the usual divergence div F on
R2n+1 is

div F = ∂F1
∂x1

+⋯+ ∂Fn

∂xn
+ ∂Fn+1

∂y1
+⋯+ ∂F2n

∂yn
+ ∂F2n+1

∂t
: ð21Þ

The norm jξjH for ξ ∈Hn is

ξj jH = x2 + y2
� �2 + t2
� �1/4

: ð22Þ

With the norm, the distance between two points ξ and
η in Hn is defined by

dH ξ, ηð Þ = η−1 ∘ ξ
�� ��

H
, ð23Þ

where η−1 denotes the inverse of η with respect to ∘, that
is, η−1 = −η.

The sphere of radius r > 0 centered at the origin o = ð0,
0Þ of Hn is the set:

SH o, rð Þ = ξ ∈Hn : dH ξ, oð Þ = rf g, ð24Þ

and the open ball of radius r > 0 centered at o is the set:

BH o, rð Þ = ξ ∈Hn : dH ξ, oð Þ < rf g: ð25Þ

From [11], we know that the area of SHðo, rÞ is

SH o, rð Þj j = ℘α℘r2n+1, ð26Þ

where α℘ is the volume of BHðo, 1Þ [14]. For simplicity, we
will denote BHðo, rÞ and SHðo, rÞ by Br and Sr , respectively.

Now, we first introduce two well-known lemmas.

Lemma 4 (refer to [15]). If α and β are nonnegative con-
stants and q > 1, then

αq − qαβq−1 + q − 1ð Þβq ≥ 0: ð27Þ

Lemma 5 (the divergence formula in Hn [12]). Let Ω0 be a
bounded domain in Hn with C1 boundary ∂Ω0 and ν denote
the unit outward normal to ∂Ω0. For any C

1ðΩ0Þ vector field
V = ðV1,⋯, V2nÞ, we have

ð
Ω0

∇H · Vdzdt =
ð
∂Ω0

MV · νdH, ð28Þ

where

M =
In 0

0 In

2y −2x

0
BB@

1
CCA

2n+1ð Þ×2n

: ð29Þ

In is the identity matrix of Rn.

The following lemma plays a critical role in proving the
Riccati-type inequality. The proof is similar to Theorem 2.3
in [14], and we omit it.

Lemma 6. For any C1ðBrÞ vector field V = ðV1,⋯, V2nÞ and
p > 1, we have

MV · νk k2L1 Srð Þ ≤ ℘α℘r2n+1
� �2/p

4r2 + 1
� �

Vk k2Lp/ p−1ð Þ Srð Þ: ð30Þ

3. A Riccati-Type Inequality

In this section, we establish a Riccati-type inequality and
then prove two lemmas.

Lemma 7 (type inequality). Suppose that uðz, tÞ is the non-
trivial solution of (1) with uðz, tÞ > 0 for ðz, tÞ ∈G½c, bÞ. Let

v = v z, tð Þ = log u z, tð Þj j, ð31Þ

W z, tð Þ = ∇Hvj jp−2A z, tð Þ∇Hv, z, tð Þ ∈G c, b½ Þ, ð32Þ

Z rð Þ = ϕ rð Þ
ð
SH o,rð Þ

MW z, tð Þ · νdH, z, tð Þ ∈G c, b½ Þ: ð33Þ
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Then,

Z ′ rð Þ ≤ ϕ′ rð Þ
ϕ rð Þ Z rð Þ − θ rð Þ − p − 1

g rð Þ Z rð Þj jp/ p−1ð Þ 4r2 + 1
� �p/2 1−pð Þ

:

ð34Þ

Proof. It easily knows that

Xiv =
∂v
∂xi

+ 2yi
∂v
∂t

= 1
u
∂u
∂xi

+ 2yi
1
u
∂u
∂t

= 1
u
Xiu, ð35Þ

and similarly,

Yiv =
1
u
Yiu: ð36Þ

Hence,

∇Hv =
1
u
∇Hu: ð37Þ

Combining (1) and (32), we have

∇H ·W z, tð Þ = ∇H · ∇Hvj jp−2A z, tð Þ∇Hv
� �

= ∇H · 1
up−1

∇Huj jp−2A z, tð Þ∇Hu
	 


= 1
up−1

∇H · ∇Huj jp−2A z, tð Þ∇Hu
� �

+ ∇Huj jp−2A z, tð Þ∇Hu∇H
1

up−1

	 


= 1
up−1

−c z, tð Þ uj jp−2u� �
− p − 1ð Þ 1

up
∇Huð ÞT ∇Huj jp−2A z, tð Þ∇Hu

= −c z, tð Þ − p − 1ð Þ ∇Hvj jp−2 ∇Hvð ÞTA z, tð Þ∇Hv,

ð38Þ

that is,

∇H ·W z, tð Þ + c z, tð Þ + p − 1ð Þ ∇Hvj jp−2 ∇Hvð ÞTA z, tð Þ∇Hv = 0:
ð39Þ

By integrating (39) over SHðo, rÞðr ≥ cÞ, it follows

ð
SH o,rð Þ

∇H ·W z, tð ÞdH +
ð
SH o,rð Þ

c z, tð ÞdH

+ p − 1ð Þ
ð
SH o,rð Þ

∇Hvj jp−2 ∇Hvð ÞTA z, tð Þ∇HvdH = 0:

ð40Þ

Using (28) and (10), it implies

Z ′ rð Þ = ϕ′ rð Þ
ð
SH o,rð Þ

MW z, tð Þ · νdH

+ ϕ rð Þ
ð
∂SH o,rð Þ

MW z, tð Þ · νdσ

= ϕ′ rð Þ
ϕ rð Þ Z rð Þ + ϕ rð Þ

ð
SH o,rð Þ

∇H ·W z, tð ÞdH

= ϕ′ rð Þ
ϕ rð Þ Z rð Þ − θ rð Þ − p − 1ð Þϕ rð Þ

�
ð
SH o,rð Þ

∇Hvj jp−2 ∇Hvð ÞTA z, tð Þ∇HvdH:

ð41Þ

For Wðz, tÞ in (32), we have

W z, tð Þj j = ∇Hvj jp−2A z, tð Þ∇Hv
�� �� ≤ ∇Hvj jp−1 A z, tð Þj j: ð42Þ

It yields

∇Hvj j ≥ W z, tð Þj j
A z, tð Þj j

	 
1/ p−1ð Þ
: ð43Þ

In view of ðC1Þ, we have

∇Hvj jp−2 ∇Hvð ÞTA z, tð Þ∇Hv ≥ ∇Hvj jp−2λmin z, tð Þ ∇Hvj j2
= λmin z, tð Þ ∇Hvj jp

≥ λmin z, tð Þ W z, tð Þj j
A z, tð Þj j

	 
p/ p−1ð Þ

≥ ρ z, tð Þj jH
� �

W z, tð Þj jp/ p−1ð Þ:

ð44Þ

By (30) and (33), we have

Z rð Þ
ϕ rð Þ
����

���� =
ð
SH o,rð Þ

MW z, tð Þ · νdH
�����

�����
≤ ℘α℘r2n+1
� �1/p 4r2 + 1

� �1/2 ð
SH o,rð Þ

Wj jp/ p−1ð ÞdH

 ! p−1ð Þ/p
:

ð45Þ

By combining (41), (44), (45), and (11), it yields

Z ′ rð Þ ≤ ϕ′ rð Þ
ϕ rð Þ Z rð Þ − θ rð Þ − p − 1ð Þϕ rð Þρ rð Þ

� Z rð Þ
ϕ rð Þ
����

����
p/ p−1ð Þ

℘α℘r2n+1
� �1/ 1−pð Þ 4r2 + 1

� �p/2 1−pð Þ

= ϕ′ rð Þ
ϕ rð Þ Z rð Þ − θ rð Þ − p − 1

g rð Þ Z rð Þj jp/ p−1ð Þ 4r2 + 1
� �p/2 1−pð Þ

:

ð46Þ

The proof is complete.
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Using Lemma 7, we have the following.

Lemma 8. Suppose that uðz, tÞ is the nontrivial solution of (1)
with uðz, tÞ > 0 for ðz, tÞ ∈ G½c, bÞ and F ∈Ψ. Let Wðz, tÞ and
ZðrÞ be the same as Lemma 7; then,

1
F b, cð Þ

ðb
c
F b, sð Þθ sð Þds ≤ Z cð Þ + 1

ppF b, cð Þ

�
ðb
c
4s2 + 1
� �p/2

gp−1 sð Þ f2 b, sð Þj jpds:

ð47Þ

Proof. Changing r to s in (34), multiplying (34) by Fðr, sÞ,
and integrating from c to r, we have in view of ðF1Þ and
ðF3Þ that

ðr
c
F r, sð Þθ sð Þds ≤ −

ðr
c
Z ′ sð ÞF r, sð Þds +

ðr
c

ϕ′ sð Þ
ϕ sð Þ F r, sð ÞZ sð Þds

− p − 1ð Þ
ðr
c

F r, sð Þ
g sð Þ Z sð Þj jp/ p−1ð Þ 4s2 + 1

� �p/2 1−pð Þds

≤ F r, cð ÞZ cð Þ +
ðr
c
f2 r, sð Þj j F r, sð Þj j p−1ð Þ/p Z sð Þj jds

− p − 1ð Þ
ðr
c

F r, sð Þ
g sð Þ Z sð Þj jp/ p−1ð Þ 4s2 + 1

� �p/2 1−pð Þds:

ð48Þ

Take

α = p − 1ð ÞF r, sð Þj j p−1ð Þ/p Z sð Þj j
4r2 + 1ð Þ1/2g p−1ð Þ/p sð Þ

,

β = p − 1ð Þ p−1ð Þ/p 4r2 + 1
� � p−1ð Þ/2g p−1ð Þ2/p sð Þ f2 r, sð Þj jp−1

pp−1
,

 q = p
p − 1 :

ð49Þ

Then, by (27), we get

f2 r, sð Þj j F r, sð Þj j p−1ð Þ/p Z sð Þj j − p − 1ð Þ F r, sð Þ
4s2 + 1ð Þp/2 p−1ð Þg sð Þ

Z sð Þj jp/ p−1ð Þ

≤
4s2 + 1
� �p/2gp−1 sð Þ f2 r, sð Þj jp

pp
:

ð50Þ

By combining (48), it shows

ðr
c
F r, sð Þθ sð Þds ≤ F r, cð ÞZ cð Þ

+ 1
pp

ðr
c
4s2 + 1
� �p/2

gp−1 sð Þ f2 r, sð Þj jpds:

ð51Þ

By letting r⟶ b− and dividing both sides by Fðb, cÞ,
it follows (47).

Lemma 9. Suppose that uðz, tÞ is the nontrivial solution of (1)
with uðz, tÞ > 0 for ðz, tÞ ∈G½a, cÞ and F ∈Ψ. LetWðz, tÞ and
ZðrÞ be similarly with Lemma 7 for ðz, tÞ ∈G½a, cÞ; then,

1
F c, að Þ

ðc
a
F s, að Þθ sð Þds ≤ −Z cð Þ + 1

ppF c, að Þ
�
ðc
a

4s2 + 1
� �p/2

gp−1 sð Þ f1 s, að Þj jpds:

ð52Þ

Its proof is similar to that of Lemma 8, so we omit it here.

4. Proofs of the Main Results

The following lemma is useful for proving Theorem 2.

Lemma 10. If there exist c ∈ ða, bÞ and F ∈Ψ such that (12)
holds, then every nontrivial solution uðz, tÞ of (1) has at least
one zero in G½a, b�.

Proof. Suppose that the statement is incorrect; without loss
generality, we may assume that there exists a solution uðz,
tÞ of (1) such that

u z, tð Þ > 0 for z, tð Þ ∈G a, b½ �: ð53Þ

From Lemmas 8 and 9, it implies that (47) and (52) hold.
Using them, we have

1
F c, að Þ

ðc
a
F s, að Þθ sð Þds + 1

F b, cð Þ
ðb
c
F b, sð Þθ sð Þds

≤
1
pp

1
F c, að Þ

ðc
a

4s2 + 1
� �p/2

gp−1 sð Þ f1 s, að Þj jpds

+ 1
pp

1
F b, cð Þ

ðb
c

4s2 + 1
� �p/2

gp−1 sð Þ f2 b, sð Þj jpds,

ð54Þ

which contradicts to (12). Thus, the claim is true.

Now, we give the following.

Proof of Theorem 1. Take the sequence

Tif g ⊂ a0,+∞½ Þwith lim
i⟶∞

Ti =∞: ð55Þ

By assumptions, we see that for each i ∈N , there exist
ai, bi, ci ∈ R such that Ti ≤ ai < ci < bi and (12) holds. In view
to Lemma 10, we conclude that every nontrivial solution u
ðz, tÞ of (1) has at least one zero ðz, tÞ in G½ai, bi�. By noting
jðz, tÞjH ≥ ai ≥ Ti, i ∈N , it follows that every solution has
arbitrarily large zeros. Hence, (1) is oscillatory.

As an immediate consequence of Theorem 2, the follow-
ing result is true.
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Corollary 11. If (12) in Theorem 2 is replaced by

limsup
r⟶∞

ðr
l

F s, lð Þθ sð Þ − 4s2 + 1
� �p/2gp−1 sð Þ f1 s, lð Þj jp

pp

 !
ds > 0,

ð56Þ

limsup
r⟶∞

ðr
l

F r, sð Þθ sð Þ − 4s2 + 1
� �p/2gp−1 sð Þ f2 r, sð Þj jp

pp

 !
ds > 0,

ð57Þ

for each sufficient large l ≥ a0; then, (1) is oscillatory.

Proof. For any T ≥ a0, let l = T . We choose a = l in (56); then,
there exists c > a such that

ðc
a

F s, að Þθ sð Þ − 4s2 + 1
� �p/2gp−1 sð Þ f1 s, að Þj jp

pp

 !
ds > 0:

ð58Þ

By letting c = l in (57), there exists b > c such that

ðb
c

F b, sð Þθ sð Þ − 4s2 + 1
� �p/2gp−1 sð Þ f2 b, sð Þj jp

pp

 !
ds > 0:

ð59Þ

By combining (58) and (59), it yields (12). The conclu-
sion is proven from Theorem 2.

Proof of Theorem 2. From Definition 1 and the definitions of
Fðr, sÞ and RðrÞ, we get

f1 r, sð Þ = λ R rð Þ − R sð Þð Þ λ−pð Þ/p 1
4r2 + 1ð Þp/2 p−1ð Þg rð Þ

,

f2 r, sð Þ = −λ R rð Þ − R sð Þð Þ λ−pð Þ/p 1
4s2 + 1ð Þp/2 p−1ð Þg sð Þ

:

ð60Þ

Thus, it follows

ðr
l
4s2 + 1
� �p/2

gp−1 sð Þ f1 s, lð Þj jpds

=
ðr
l
λp R sð Þ − R lð Þð Þλ−p 1

4s2 + 1ð Þp/2 p−1ð Þg sð Þ
ds

= λp

λ − p + 1 R rð Þ − R lð Þð Þλ−p+1,

ðr
l
4s2 + 1
� �p/2

gp−1 sð Þ f2 r, sð Þj jpds

=
ðr
l
λp R rð Þ − R sð Þð Þλ−p 1

4s2 + 1ð Þp/2 p−1ð Þg sð Þ
ds

= λp

λ − p + 1 R rð Þ − R lð Þð Þλ−p+1:

ð61Þ

Noting lim
r⟶∞

RðrÞ =∞, we see

lim
r⟶∞

1
ppRλ−p+1 rð Þ

ðr
l
4s2 + 1
� �p/2

gp−1 sð Þ f1 s, lð Þj jpds = λp

pp λ − p + 1ð Þ ,

ð62Þ

lim
r⟶∞

1
ppRλ−p+1 rð Þ

ðr
l
4s2 + 1
� �p/2

gp−1 sð Þ f2 r, sð Þj jpds = λp

pp λ − p + 1ð Þ :

ð63Þ
By combining (63) and (15), it yields

limsup
r⟶∞

1
Rλ−p+1 rð Þ

ðr
l

R sð Þ − R lð Þð Þλθ sð Þ − 1
pp

4s2 + 1
� �p/2

gp−1 sð Þ f1 s, lð Þj jp
� �

ds

= limsup
r⟶∞

1
Rλ−p+1 rð Þ

ðr
l
R sð Þ − R lð Þð Þλθ sð Þds − λp

pp λ − p + 1ð Þ > 0,

ð64Þ

which implies (56). Similarly, (57) holds by combining (63)
and (16). From Corollary 11, (1) is oscillatory.
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