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The unsteady electroosmotic flow (EOF) for one kind of linear viscoelastic fluid, which is Jeffrey type fluid, is investigated under
the common impact of vertical magnetic field, external electric field, and pressure at high Zeta potential in a circular
microchannel. The numerical solutions of the potential and velocity distributions are obtained by solving the nonlinear
Poisson-Boltzmann equation, the constitutive equation of the Jeffrey fluid, and the Cauchy momentum equation applying the
Chebyshev spectral method and the finite difference method. By contrast, the Chebyshev spectral method has higher accuracy
and less computation. The flow characteristics of Jeffrey fluid at high Zeta potential are analyzed with the numerical solution
obtained by the Chebyshev spectral method. The results show that the velocity of Jeffrey fluid increases with the increase of the
wall Zeta potential and electric width. The oscillation amplitude of velocity distribution increases with the increase of
relaxation time but decreases with the increase of retardation time. When the Hartmann number is smaller, the increase of
relaxation time leads to the increase of velocity; when the Hartmann number is larger, the increase of relaxation time leads to
the decrease of velocity. No matter what the Hartmann number is, the velocity always decreases with the increase of the
retardation time. The velocity tends to be stable gradually with the increase of time.

1. Introduction

The research on micro-electromechanical systems (MEMS),
which began in the 1980s and 1990s, is recently an investiga-
tive hotspot in the world [1]. Although there are multifari-
ous microfluidic driving and controlling technologies based
on different theories, the micropumps based on electroos-
motic mechanism are still the dominant micropump in
MEMS. They are widely used not only in MEMS but also
in drug delivery of medical treatment and aerospace technol-
ogy. Therefore, scholars around the world have done a lot of
researches on the electroosmotic flow of micro-nanofluids in
micropipes with diverse geometric shapes [2–6]. However,
under the action of external electric field, Joule heat will be
generated inevitably with the increase of voltage. In recent
years, in order to cut down the Joule heat effect efficaciously,
people have studied the transport process of micro-
nanofluids by applying a transverse magnetic field, hoping

to elevate the flow velocity of micro-nanofluids through
the effect of electromagnetic hydrodynamics [7–9]. For
example, the effect of MHD and electroosmosis on the radi-
ative tangent hyperbolic nanofluid flow through a porous
medium is investigated by Ramesh et al. [10]. Yang et al.
[11] considered theoretically the heat transfer traits of
incomprehensible magnetohydrodynamic electroosmotic
flow in a two-dimensional rectangular microchannel,
acquired the analytical solution of dimensionless velocity,
and deduced the dimensionless temperature and the Nusselt
number. Sridhar and Ramesh [12] analyzed the couple stress
nanofluid (blood–graphene/diamond) flow in an asymmet-
ric channel with the effect of viscous dissipation, electromag-
netohydrodynamics (EMHD), Joule heating, velocity slip
and convective boundary conditions, and so forth.

In most practical applications, the microbial fluid equip-
ment is mainly dealing with biological fluid, for example,
polymer solution, body fluid, and blood. These fluids are
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composed of large and long-chain molecules, which exhibit
distinct non-Newtonian fluid characteristics, such as vari-
able viscosity, memory effect, and normal stress effect. Jef-
frey fluid model is a simple linear viscoelastic model
among non-Newtonian models that can be used to simulate
these biological fluids, interpret experimental data on linear
viscoelasticity, and investigate the molecular structure of the
polymer via linear viscoelastic measurements(such as the
complex viscosity). The constitutive equation of Jeffrey fluid
model is established on the basis of Maxwell fluid constitu-
tive equation, which is a simple linear viscoelastic model in
non-Newtonian model, and the second-grade fluid is a non-
linear viscoelastic model. The second-order fluid model is
based on the Jeffrey fluid model, adding some additional
nonlinear terms to better measure the relationship between
stress tensor and strain rate tensor. The linear viscoelastic
models can describe the complex viscosity and the transmis-
sion of small-amplitude shearing waves. It can also be shown
that the linear models can describe elastic recoil, although
the results are restricted to flows with small displacement
gradients. An important reason for studying Jeffrey fluid
model is that some background in linear viscoelasticity helps
us in the study of nonlinear viscoelasticity, where flows with
large displacement gradients are discussed. This model was
suggested by H. Jeffreys, The Earth, Cambridge University
Press, 1st edition (1924) and 2nd edition (1929), p. 265, to
describe the propagation of waves in the earth’s mantle
[13]. Because of its wide application in biology, industry,
and other fields, the study of Jeffrey fluid has aroused great
interest of many scholars. For instance, Ramesh [14] investi-
gated and discussed the Poiseuille flow of an incompressible
magnetohydrodynamic Jeffrey fluid between parallel plates
through homogeneous porous medium using slip boundary
conditions under the effect of heat transfer. Sridhar and
Ramesh [15] dealt with the magnetohydrodynamic and elec-
troosmotic radiative peristaltic Jeffrey nanofluid flow with
the effect of slip and convective boundary conditions in the
nonsymmetric vertical channel. Yang and Jian discussed
the electromagnetic flow of Jeffrey fluid in a parallel micro-
channel [16]. Yasmeen et al. [17] talked over peristalsis in
axisymmetric tube for Jeffrey fluid in a strong magnetic field,
and the important characteristics of peristaltic flow, velocity,
and pressure rise are calculated and analyzed; in the pres-
ence of an applied magnetic field, a vertical cylindrical natu-
ral convection magnetohydrodynamic flow is introduced by
Kumar et al. [18]. Aleem et al. [19] explored the free convec-
tive and unsteady flow of Jeffrey fluid between the two hot
vertical parallel plates in porous media and gave the accurate
solutions of velocity and temperature with the Laplace trans-
form method. Gao and Jian [20] analyzed the electroosmotic
flow (EOF) of Jeffrey fluid in a circular microchannel under
vertical magnetic field and got the accurate solutions of the
velocity and volumetric flow rate based on the separation
transformation method, and so on.

The researches mentioned above are mostly about the
flow and heat transfer characteristics for the Jeffrey fluid in
microtubes under low Zeta potential (that is, the Zeta poten-
tial is less than 25mV). However, in practical application,
the wall Zeta potential of most interfaces is higher than

25mV. Therefore, it is also of great significance to consider
the high Zeta potential case (that is, the Zeta potential is
higher than 25mV) in microchannels to provide theoretical
reference for performance prediction of electroosmotic
pump. For example, the electrical potential distribution
and velocity distribution were given for two-dimensional
electroosmotic flow of power law model in circular and ellip-
tical microchannels at high Zeta potential [21]; the electro-
osmotic flow for power law fluids through a curved
rectangular microchannel was studied numerically at high
Zeta potentials [22]; the rotating electroosmotic flow for
Maxwell fluid at high Zeta potential was investigated in a
parallel plate microchannel, and the velocity distribution
was given by the finite difference method, and the effect of
the wall Zeta potential and other related physical parameters
on the velocity distribution was analyzed [23]; the electroos-
motic flow for non-Newtonian fluid was explored at high
Zeta potential through porous polymer membrane, and the
variation of the overall flow rate with disparate physical
parameters was evaluated [24], and so on.

In summary, although the flow characteristics for some
types of microfluids are given in micropipes at high Zeta
potential, there are few results of the unsteady electroos-
motic flow for Jeffrey fluid acted by the vertical magnetic
field at high Zeta potential in micropipes. Therefore, the
electroosmotic flow for Jeffrey fluid at high Zeta potential
will be further studied in a circular microchannel under
the impact of vertical magnetic field in this paper.

2. Mathematical Model and Formulation of
the Problem

In this paper, the unsteady EOF for incompressible Jeffrey
fluid acted by the vertical magnetic field is considered in a
cylindrical microchannel at high Zeta potential. Mathemati-
cal model of the issues is presented in Figure 1. The channel
with length L has a circular cross section with radius R, and
the wall surfaces are negatively charged. Setting up the cylin-
drical coordinate system ðr, θ, xÞ as displayed in Figure 1 and
assuming that the fluid is acted by the applied electric field
E = ðEx, Ey, 0Þ and the uniform magnetic field in the vertical
direction B = ð0, 0, BzÞ, it flows along the axial direction
under the coaction of the electric field force generated by
the external electric field and the Lorentz force generated
by the external magnetic field and pressure gradient, and
the velocity is u = ð�u, 0, 0Þ. The density, viscosity, and con-
ductivity of the fluid are ρ, μ, and σe, respectively.

2.1. Potential Distribution. The electrolyte solution interacts
with the channel wall to form double electrical layer (EDL).
In terms of the theory of electrostatics, the distribution of
electric potential �ψ can be depicted by the Poisson equation
as follows [7]:

∇2�ψ = −
ρe
ε
, ð1Þ

where ε is the dielectric permittivity of the electrolyte
solution.
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The ion concentration per unit volume of electrolyte
solution obeying Boltzmann distribution is defined as [7]

nv = nv0 exp −
zve�ψ
kbT

� �
, ð2Þ

where zv is the ion valence, nv0 is the ion concentration of
the electrolyte solution, e is the amount of charge carried
by the electron, T is the absolute temperature, and kb is
the Boltzmann constant.

The net electrical charge density ρe is shown by the fol-
lowing form:

ρe =〠nvzve = e〠zvnv0 exp −
zve�ψ
kbT

� �
: ð3Þ

For z+ : z− = 1 : 1 solution, Equation (3) can be reduced
as

ρe = −2zvn0e sinh −
zve�ψ
kbT

� �
: ð4Þ

For small values of electrical potential �ψ of the EDL
(ψ≪ 25mV), the Debye-Hückel linearization approxima-
tion can be applied, which means physically that the electri-
cal potential is small compared with the thermal energy of
the charged species. The analytical solution of electrical
potential can be obtained. However, most application
requires or provides high Zeta potential (�ψ ≥ 25mV), and
D-H linear approximation methods are no longer suitable.

By substituting Equation (4) into Equation (1), the
Poisson-Boltzmann equation for potential distribution �ψ
can be written as

∇2�ψ =
2zvn0e

ε
sinh

zve�ψ
kbT

� �
: ð5Þ

The boundary conditions are as follows

�ψ �rð Þj�r=R = �ψ0,

d�ψ �rð Þ
d�r

����
�r=0

= 0,
ð6Þ

where �ψ0 is the wall Zeta potential.

Introducing nondimensional variables as follows,

r =
�r
R
,

ψ, ψ0ð Þ = zve
kbT

�ψ, �ψ0ð Þ,

K = κR,

ð7Þ

where κ = ð2n0z2ve2/εkbTÞ1/2 is the Debye-Hückel parameter;
1/κ, called the Debye length, represents the thickness of
EDL; and K is electrokinetic width of the EDL denoting
the ratio of radius R of microchannel to Debye length 1/κ.

Inserting Equation (7) into Equations (5) and (6), the
dimensionless Poisson-Boltzmann equation and boundary
conditions for the potential distribution have the following
forms:

∂2ψ
∂r2

+
1
r
∂ψ
∂r

= K2 sinh ψ, ð8Þ

ψ rð Þjr=1 = ψ0,

dψ rð Þ
dr

����
r=0

= 0:
ð9Þ

2.2. Velocity Distribution. The fluid velocity is dominated by
following continuity equation and Cauchy momentum
equation:

∇ ⋅ u = 0, ð10Þ

ρ ∂u/∂�t + u ⋅ ∇ð Þ ⋅ u½ � = −∇p−∇ ⋅ �τ + f , ð11Þ
where u is fluid velocity, p is pressure, �t is time, �τ is stress
tensor, and f is volume force which is equal to the sum of
electric field force ρeðxÞE, and the Lorentz force J × B is as
follows:

f = ρe xð ÞE + J × B, ð12Þ

where electric current density J satisfies Ohm’s law.

J = σe E + u × Bð Þ: ð13Þ

The constitutive equation of Jeffrey fluid model is estab-
lished on the basis of Maxwell fluid constitutive equation.

B

Ey
y

x

Ex

R

r

Figure 1: Sketch for EOF of Jeffrey fluid in a circular microchannel under vertical magnetic field.
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The partial derivative of deformation velocity tensor with
respect to time is introduced, and the time parameter �λ2 is
also introduced. The constitutive equation of Jeffrey fluid
[13] can be expressed as

1 + �λ1
∂
∂�t

� �
�τ = −η0 1 + �λ2

∂
∂�t

� �
γ, ð14Þ

where η0 is the zero shear rate viscosity, �λ1 is the relaxation
time, �λ2 is the retardation time, and γ = ∂ui/∂xj + ∂uj/∂xi is
the deformation rate tensor. Newton fluid and Maxwell fluid
are typical special cases of Jeffrey fluid model. When
�λ1 = 0, �λ2 = 0, Jeffrey fluid model is simplified as Newto-
nian fluid model. When �λ1 ≠ 0, �λ2 = 0, Jeffrey fluid is a
typical Maxwell fluid model.

By eliminating stress tensor τ from Equations (10)–(14),
the governing equation and initial-boundary value condi-
tions of the velocity distribution can be reduced as [20]

1 + �λ1
∂
∂�t

� �
ρ
∂�u
∂�t

+
dp
dx

− ρe xð ÞEx + σeB
2�u − σeEyBz

� �

= η0 1 + �λ2
∂
∂�t

� �
∂2�u
∂�r2

+
1
�r
∂�u
∂�r

 !
,

ð15Þ

�uj�t=0 = 0,

∂�u
∂�t

����
�t=0

= 0,
ð16Þ

�uj�r=R = 0,

∂�u
∂�r

����
�r=0

= 0:
ð17Þ

The dimensionless parameters such as the following are
introduced to simplify the governing equations:

u =
�u
vHS

,

t, λ1, λ2ð Þ =
�t, �λ1, �λ2
� �
ρR2/η0

,
ð18Þ

Ha = BzR
ffiffiffiffiffi
σe

η0

r
,

β =
EyR

vHS

ffiffiffiffiffi
σe
η0

r
,

ð19Þ

vHS = −
εkbTExψ0
z0eη0

, ð20Þ

where Ha is Hartmann number which is the parameter to
measure the ratio of magnetic and viscous forces, β is the
nondimensional parameter representing the strength of the
lateral direction electric field, and vHS represents the
Helmholtz-Smoluchowski electroosmotic velocity.

By substituting Equations (18)–(20) into Equations
(15)–(17), the nondimensional equation and initial-
boundary value conditions of the velocity distribution were
obtained finally.

1 + λ1
∂
∂t

� �
∂u
∂t

−Ω − K2 sinh ψ +Ha2u −Haβ
� �

= 1 + λ2
∂
∂t

� �
∂2u
∂r2

+
1
r
∂u
∂r

 !
,

ð21Þ

ujt=0 = 0,

∂u
∂t

����
t=0

= 0, s,
ð22Þ

ujr=1 = 0,

∂u
∂r

����
r=0

= 0,
ð23Þ

where dp/dx = −Δp/L, Ω = vp/vHS is the ratio of axial pres-
sure gradient velocity to electroosmosis driving velocity,
and vp is the flow velocity driven by axial pressure, which
can be expressed as vp = ΔpR2/η0L.

3. Numerical Methods

In this paper, equations for the potential distribution and
velocity distribution are solved by the Chebyshev spectral
method and the finite difference method. The finite differ-
ence method is a local method; that is, the derivative of each
position (∂u/∂x, ∂2u/∂x2 ⋯⋯) is calculated from several
adjacent points, and the matrices used in the calculation
process are sparse matrices containing many zeros, so its
accuracy is not high [25]. The Chebyshev spectral method
is a global algorithm, which uses all known points to calcu-
late the derivative of a certain point, greatly improving the
accuracy [25]. Through the image comparison of the two
methods mentioned above, we can see the advantages of
the Chebyshev spectral method more clearly.

3.1. Numerical Methods for Potential Distribution

3.1.1. The Chebyshev Spectral Method. We first choose the
following Chebyshev points which are defined in the interval
ð−1, 1� [26]:

xp = − cos
2p + 1ð Þπ
2N + 1

� �
, p = 0,⋯,N: ð24Þ

We convert them into radial coordinates r, which are
defined in the interval ð0, 1�, by the relation.

rp =
1 + xp
2

: ð25Þ

Set that ψ = ½ψðr0Þ, ψðr1Þ,⋯,ψðrNÞ� is the undetermined
vector at the Chebyshev points, and we construct a Cheby-
shev polynomial PðrÞ of order N or less, which satisfies the
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relationships PðrpÞ = ψðrpÞ, p = 0, 1,⋯,N . By taking the
derivative of the Chebyshev polynomial P and evaluating it
at the grid point, we can transform nonlinear Poisson-
Boltzmann equation into linear algebraic equations and
finally obtain the numerical solution of the dimensionless
potential distribution from Equations (8) and (9) by New-
ton’s method.

3.1.2. The Finite Difference Method. Let Δr = 1/N , r = iΔr,
and i = 1,⋯, ðN − 1Þ; we obtain the discretization form of
Equations (8) and (9) by the finite difference method:

1
Δr2

ψ i+1ð Þ − 2ψ ið Þ + ψ i−1ð Þ
h i

+
1

2iΔr2
ψ i+1ð Þ − ψ i−1ð Þ
h i

− K2 sinh ψ ið Þ = 0,

ð26Þ

ψ 1ð Þ = ψ 0ð Þ,

ψ Nð Þ = ψ0,
ð27Þ

where ψðiÞ = ψðriÞ.
The numerical solution of the dimensionless potential

distribution ψ is obtained from Equations (26) and (27) by
Newton’s method.

3.1.3. Comparison of Consequences. At low Zeta potential,
the results obtained by using the Chebyshev spectral method
and the finite difference method are compared with the
approximate analytical solution obtained by the D-H linear
approximation, respectively, as shown in Figure 2(a). The
results show that both numerical methods are feasible, and
when the number of points (8 points in Figure 2(a)) is small,
the accuracy of the finite difference method is poorer, while

accuracy of the Chebyshev spectral method is higher. At
high Zeta potential, the results by the Chebyshev spectral
method only with 30 points are well coincident with the
results by the finite difference method with 100 points, as
shown in Figure 2(b). Therefore, the Chebyshev spectral
method has higher accuracy and less computation than the
finite difference method.

3.2. Numerical Methods for Velocity Distribution

3.2.1. The Chebyshev Spectral Method. Introducing the func-
tion vðr, tÞ = ∂uðr, tÞ/∂t, reducing ∂2/∂t2 in Equation (21) to
∂/∂t, we get

∂u
∂t

= v,

∂v
∂t

=
1
λ1

λ2
∂2v
∂r2

+
1
r
∂v
∂r

 !
+
∂2u
∂r2

+
1
r
∂u
∂r

−Ha2u − 1 + λ1Ha2
� �

v +Ω + βHa + K2 sinh ψð Þ
" #

,

ujt=0 = 0,

vjt=0 = 0,

ujr=1 = 0,

∂u
∂r

����
r=0

= 0,

vjr=1 = 0,

∂v
∂r

����
r=0

= 0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð28Þ

We use the derivative matrix of Chebyshev spectral to
compute the derivative in the r direction and use fourth-
fifth-order Runge-Kutta algorithm (ode45) to calculate ∂/∂t
in Equation (28).

3.2.2. The Finite Difference Method. Let Δr = 1/N , Δt = T/M,
r = jΔr, t = kΔt, j = 1,⋯, ðN − 1Þ, and k = 1,⋯, ðM − 1Þ, by
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Figure 2: Comparison of Chebyshev spectral method for nonlinear P-B equation with finite difference numerical solution and D-H linear
approximate analytical solution ðK = 10Þ.
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using the finite difference scheme for Equations (21)–(23);
we give the discretization forms of the dimensionless veloc-
ity distribution:

λ2
4jΔtΔr

−
λ2

2ΔtΔr2

� �
uk+1j−1 +

λ1
Δt2

+
1 + λ1Ha2

2Δt
+

λ2
ΔtΔr2

� �
uk+1j

−
λ2

4jΔtΔr
+

λ2
2ΔtΔr2

� �
uk+1j+1 =

1
Δr2

−
1

2jΔr2

� �
ukj−1

+
2λ1
Δt2

−
2
Δr2

� �
ukj +

1
Δr2

+
1

2jΔr2

� �
ukj+1 +

λ2
4jΔtΔr

−
λ2

2ΔtΔr2

� �
uk−1j−1

+ −
λ1
Δt2

+
1 + λ1Ha2

2Δt
+

λ2
ΔtΔr2

� �
uk−1j −

λ2
4jΔtΔr

+
λ2

2ΔtΔr2

� �
uk−1j+1

+Ω + βHa + K2 sinh ψj,

ð29Þ

u0j = u1j = 0, ð30Þ

ukN = 0,

uk0 = uk1,
ð31Þ

where ukj = uðrj, tkÞ.
The numerical solution of the dimensionless velocity

distribution u is obtained from Equations (29)–(31) by New-
ton’s method.

3.2.3. Comparison of Consequences. At low Zeta potential,
the results acquired by using Chebyshev spectral method
and the finite difference method are compared with the
velocity distribution acquired by the D-H linear approxima-
tion (see Figure 3(a)). By comparison, both numerical
methods are viable, but we can see that taking a small num-

ber of points (6 points in Figure 3(a)), the Chebyshev spec-
tral method has higher accuracy than the finite difference
method. At high Zeta potential(Figure 3(b)), it also can be
noted that when enough points (100 points in Figure 3(b))
are taken for the finite difference method, the velocity curve
solved by the finite difference method can be relatively con-
sistent with that solved by the Chebyshev spectral method
only with 20 points in Figure 3(b), so compared with the
finite difference method, the results obtained by the Cheby-
shev spectral method has higher accuracy and less computa-
tion. Therefore, it is feasible to extend Chebyshev spectral
method to solve the fluid velocity distribution.

4. Results and Discussion

The main intention of this study is to investigate the
unsteady electroosmotic flow for the Jeffrey fluid at high
Zeta potential under the action of vertical magnetic field in
a circular microchannel. Consequently, the impression of
different parameters on the velocity distribution u will be
discussed in this section. Computations have been carried
out for a given set of parameter values [20]: the characteristic
scale of the circular micropump is R = 100 μm, the density of
the fluid is ρ = 1:06 × 103 kg ×m−3, the viscous shear rate is
η0 = 3 × 10−3 kg × m−1s−1, the conductivity is σe = 2:2 × 10−4
− 106S/m [27], and the lower value 2:2 × 10−4 S/m of the
conductivity is the deionized water, while the upper value
106 S/m of the conductivity corresponds to the liquid metal
such as mercury. If the vertical magnetic field B = 0:018 −
0:44 T [28], the range of Ha can be obtained as 0:0001 ≤
Ha ≤ 5. If the intensity of the alternating electric field is 0
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Figure 3: Comparison of dimensionless velocity distribution solved by Chebyshev spectral method with those solved by D-H linear
approximation and finite difference method ðK = 10, Ha = 1, λ1 = 0:7, λ2 = 0:08, β = 1,Ω = 1, t = 1Þ.
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Figure 4: Continued.
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≤ Ey ≤ 1V/m and vHS = 100μm/s, then 0 ≤ β ≤ 6 × 104. The
parameter value of the relaxation time λ1 is wide [13, 29]
and can be changed from 10−4s ≤ λ1 ≤ 103 s. In addition,
because the retardation time λ2 is normally smaller than
the relaxation time λ1, the retardation time λ2 and the relax-
ation time λ1 satisfy λ2 < λ1.

Figure 4 depicts the variation of velocity u at different
relaxation times λ1 and retardation time λ2. It is visible from
Figure 4 that the amplitude of velocity enhances with
increase of relaxation time λ1. This is because the greater
the relaxation time is, the greater the elastic effect of the Jeff-
ery fluid is, resulting in the increase in velocity (see

Figures 4(a)–4(c)). It is also noted that the increase in the
retardation time λ2 leads to decrease of fluid velocity u,
and the longer the retardation time, the more obvious the
retardation effect. That is because longer retardation time
will cause greater flow resistance (see Figures 4(d)–4(f)).
Moreover, the velocity tends to be stable with the increase
of time. Figures 4(g) and 4(h) illustrate the effects of differ-
ent relaxation time λ1 and retardation time λ2 on the veloc-
ity distribution u at the center of the microchannel. Here,
Figure 4(g) is the velocity diagram at r = 0 in Figures 4(a)–
4(c), and Figure 4(h) is the velocity diagram at r = 0 in
Figures 4(d)–4(f). It can be seen obviously from
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Figure 4: A dimensionless velocity distribution in a circular microchannel (λ1 = 0:7, λ2 = 0:08, β = 1,Ω = 1, K = 10, ψ0 = 5, Ha = 1).
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Figures 4(g) and 4(h) that the velocity increases with
increasing the relaxation time λ1, whereas it decreases with
increasing the retardation time λ2.

Figure 5 delineates the changing trend of velocity with
Hartmann number at the center of microchannel for relaxa-
tion time λ1 and retardation time λ2. As shown in Figure 5,
the velocity u first increases with increase of Hartmann
number Ha and then decreases with increase of Hartmann
number Ha, and there is a threshold of Hartmann number
Ha that maximizes the velocity. It is mainly because the
Lorentz force in Equation (15) consists of two parts: one is
the driving force σeEyB and the other is the hindering force
σeB

2u. For the smaller value Ha, the driving force of Lorentz
force is greater than its hindrance force, so the velocity

increase with the enhance of Ha, and with the increase of
Ha, the hindering force of Lorentz force exceeds its driving
force, so the velocity diminishes with the enhance of Ha.
In addition, when the Ha is comparatively small, the velocity
increases with the increase of the relaxation time λ1, but
when Ha gets bigger, the velocity decays with the increase
of relaxation time λ1 (see Figure 5(a)). No matter what the
value Ha is, the velocity always goes down for the increase
of retardation time λ2 (see Figure 5(b)).

In Figure 6, the changing trend of the velocity for differ-
ent electric width K , pressure gradient Ω, and wall Zeta
potential ψ0 in the microchannel is exhibited. Figure 6 shows
that the positive pressure gradient (Ω > 0) promotes the flow
of the fluid, whereas the negative pressure gradient (Ω < 0)
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Figure 6: Dimensionless velocity distribution in a circular microchannel (λ1 = 0:7, λ2 = 0:08, β = 1, t = 1, K = 10, Ha = 1).
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impedes the flow of the fluid for constant electric width K
and wall Zeta potential ψ0. They also display that the veloc-
ity increases with the increase of electric width K when wall
Zeta potential ψ0 and pressure gradient Ω are constant. Fur-
thermore, high Zeta potential ψ0 results in the large magni-
tude of velocity for constant electric width K and pressure
gradient Ω, especially within the EDL. The main reason is
that there is no sufficient time for the flow diffusing far into
the midplane of the wall, and the velocity variations are
restricted only within the EDL.

The variations of the dimensionless velocity distribution
with the nondimensional parameter β and wall Zeta poten-
tial ψ0 is drawn in Figure 7. It is noticed that the velocity u
increases with the increase of β. This is due to the fact that
the increase in β leads to the enhancement of the Lorentz
force, and it in turn increases the velocity. It is also noted
in Figure 7 that the maximum variation area of the velocity
distribution is limited to the vicinity of the wall surface of
the microchannel, that is, the EDL. In the EDL, the velocity
increases rapidly from zero to the maximum because of the
interaction between the external driving force and the
EDL. Outside the EDL, the change of the velocity is small.

5. Conclusion

In this article, the unsteady EOF flow of Jeffrey fluid coacted
by the vertical magnetic field, external electric field, and
pressure is investigated in circular microchannel at high Zeta
potential. Through the use of the Chebyshev spectral
method and finite difference method, the numerical solu-
tions of the electric potential distribution and the velocity
distribution are solved. By comparing the above two
methods, we find that the Chebyshev spectral method is
more accurate and has less computation than finite differ-
ence method. Detailed study reveals that the velocity distri-
bution hinges on Hartmann number Ha, wall Zeta

potential ψ0, relaxation time λ1, retardation time λ2, the
ratio of axial pressure gradient to electroosmosis driving
velocity Ω, strength of the lateral direction electric field β,
and electric width K . The main conclusions are as follows:

(1) Finite difference method and Chebyshev spectral
method are effective methods to solve the potential
and velocity distribution of microfluid under high
Zeta potential, and the Chebyshev spectral method
has higher accuracy and less calculation

(2) Due to the elastic action of Jeffery fluid, the greater
the relaxation time λ1 is, the greater the velocity pro-
file is; the longer the retardation time λ2, the greater
the flow resistance and the smaller the velocity, and
the speed u tends to be stable gradually with the
increase of time t

(3) When Ha is smaller, an enhancement in the relaxa-
tion time λ1 results in the addition of the velocity u
, but when Ha is larger, an increase in the relaxation
time λ1 results in the decline in the velocity u. What-
ever the value Ha is, the velocity always goes down
for the increase of retardation time λ2

(4) The positive pressure gradient (Ω > 0) promotes the
flow of the fluid, whereas the negative pressure gra-
dient (Ω < 0) impedes the flow of the fluid

(5) The velocity increases with the increase of wall Zeta
potential ψ0 and electric width K , and the maximum
variation area of velocity u is restricted within the
EDL

(6) The velocity u increases with the increase of the
strength of the lateral direction electric field β

Based on the research in this paper, the following issues
can be further considered in the future:

(1) The flow and heat transfer characteristics of the two-
layer fluid in different micropipes under high Zeta
potential can be further studied

(2) It can be further expanded to study the flow and heat
transfer characteristics of nanofluids in different
micropipes such as T-shaped micropipes and semi-
cylindrical micropipes at high Zeta potential under
the action of external vertical magnetic field

Nomenclature

B: Magnetic field intensity (T)
K : Dimensionless electrokinetic width
p: Pressure (Pa)
κ: Debye-Hückel parameter
R: Microtube radius (m)
ε: Dielectric permittivity
t: Time (s)
zv : Valence of ions
σe: Conductivity (S/m)
Ha: Hartmann number
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Figure 7: Dimensionless velocity distribution in a circular
microchannel (λ1 = 0:7, λ2 = 0:08,Ω = 1, K = 10, t = 0:5, Ha = 1).
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u: Velocity component (m/s)
β: Electric field parameter
μ: Viscosity (kg·m−1·s−1)
�τ: Stress tensor
λ1: Relaxation time (s)
λ2: Retardation time (s)
ρ: Density of the fluid (kgm-3)
η0: Zero shear rate viscosity
T : Absolute temperature (T)
�ψ: Electric potential (V)
ψ: Dimensionless electric potential
ρe: The net electrical charge density (C m-3)
Ω: Pressure gradient
�ψ0: Wall Zeta potential (V)
ψ0: Dimensionless wall Zeta potential
e: Electrical charge (C)
J : Current vector
nv0: Ion concentration (J/K)
kb: Boltzmann constant
E: Intensity of electric field (V/m)
γ: Deformation rate tensor
vHS: Helmholtz-Smoluchowski electroosmotic velocity.
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