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The heat transfer ratio plays an important role in the production sector, and hybrid nanofluid has more heat transfer as compared
to the base fluid. Two sorts of hybrid nanofluids have been used for heat enhancement applications. The present research paper is
aimed at investigating an approximate analytical study of time-dependent MHD Casson hybrid nanofluid on an extending surface
along with thermal radiation. The novelty of present research is that the first time-dependent Casson MHD flow of hybrid is
addressed analytically in the form of a series solution along with flexible properties on an extending surface. Transforming the
nonlinear partial differential equation to nonlinear ordinary differential equation, we used the defined similarity
transformation. The governing nonlinear equations are solved with help of the approximate analytical method presented by
Liao. The impact of different parameters like Casson parameter, unsteady parameter, magnetic field parameter, porosity
parameter, Prandtl number, Eckert number, radiation parameter, and Grashof number is presumed in the form figures for
velocity and temperature profile. The current research article has a good comparison with the previously published work.

1. Introduction

In engineering processes, magneto hydrodynamics (MHD)
has important applications, for example, design of a cooling
system, liquid system, cooling of the nuclear reactor, thermal
insulators, geothermal system, polymer, petroleum, and
blood-pumping machines. The researcher takes more inter-
est in the problem involved in chemical reaction on unsteady
MHD-free convection flow, due to some important applica-
tion in numerous industrial methods. Mekheimer [1] studies
convection flow with the induced magnetic field by using
peristaltic flow. Ellahi and Riaz [2] investigate MHD flow

with the help of third grad fluid. Mukhopadhyay and Gorla
[3] study time-dependent magneto hydrodnamics boundary
layer flow by using moveable surface. The study of non-
Newtonian fluids has more important as compared to New-
tonian fluid, due to the inclusive variety application in
organic field such blood at little sheer rate suspension, muds,
chime, apple sauce, honey, and shampoos. These are the
many applications of non-Newtonian fluids, the mathemat-
ical problem for Casson fluid is presented to investigate the
mechanism of pseudoplastic yield stress liquids. Nadeem
et al. [4] used linearly extending sheet to discuss 3D Casson
fluid. Benazir et al. [5] used vertical cone and flat with
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nonuniform heat source to study unsteady magneto hydy-
namics Casson fluid flow in this study, and they show that
growth of the Casson fluid parameter decreases liquid flow
and increases shear stress in the flow system. Nowadays,
for energy resources, nanofluids are the effective agents.
These fluids are used for improvement temperature spread
devices used in several industries and engineering fields. It
is not sufficient to acquire energy but to control absorptions
of energy so can only solve this problem one to agree
advance heat transfer fluids to rheostat the expenses of
energy and the development the maximum heat transfer
which is the requirement of the manufacturing and other
related scientific arenas. The study of nanofluid is more
important due to some key application in different parts of
industries because of high heat transfer ratio. Parmar et al.
[6] investigate the Casson flow and blood flow. Nadeem
et al. [7] investigate the consequence of radioactivity for Cas-
son fluid. Ullah et al. [8] used porous sheet to study the non-
Newtonian fluid flow. Kamran et al. [9] investigate Casson
nanofluid flow numerical along with joule heating and slip
effect. Archana et al. [10] study the consequence of radiation
on the energy expression of Casson fluid. Gireesha et al. [11]
study the impression of Casson nanofluid flow and chemical
reaction. Numerous other investigations are related to the
Casson fluid, Souayeh et al. [12], Ullah et al. [13], and Aziz
and Afify [14]. In the view of the above study, recently, sev-
eral revisions have been conducted around the nanofluid,
but the researchers take more interest in the new type intro-
duced nanofluid known as hybrid nanofluid. Hybrid nano-
fluid is defined as two or more types of nanofluid are
suspended in the base fluid. The interest of the researchers
in this subject is the high heat transfer ratio improvement
and invention rate saving that can be attained by the using
these nanofluids. The researchers take more interest in this
new type of nanofluids to solve the problems of real world.
Initially, the idea of hybrid nanofluid increases the advanced
structures of usual nanofluid was investigated by Suresh
et al. [15]. Devi and Devi [16, 17] used to move surface to
investigate the problems of MHD hybrid nanofluid. Tayebi
and Chamkha [18] used an annulus to study the heat trans-
fer of hybrid nanofluid. Ghadikolaei et al. [19] study the fea-
tures of TiO2-Cu/H2O a hybrid nanofluid in the presence of
resistance force. Hayat et al. [20] used the rotating disc to
study flow Ag-CuO/water hybrid nanofluid. Yousefi et al.
[21] used stretching cylinder to study the stagnation point
flow of aqueous titanic-copper hybrid. Subhani and Nadeem
[22] used stretching surface to study the behavior of Cu-
TiO2/H2O hybrid nanofluid. Li et al. [23] under seismic con-
ditions examine modeling response of magnetorheological
fluid dampers. The influence of MHD (magneto hydrody-
namics) flow of Casson fluid is examined by Crane et al.
[24]. Nadeem et al. [25] used stretching sheet to examine
the 2D viscous fluid flow. The mass diffusion on MHD
(magneto hydrodynamics) flow over a moveable surface
was deliberated by Ali and Sandeep [26]. The unsteady Cas-
son fluid over extending sheet was studied by Vyas and Ran-
jan [27]. Chamka and Takhar [28] studied the MHD flow on
nonlinear extending surface by permeable surface. Sandhya
et al. [29] discuss buoyancy forces and activation energy

on the MHD radiative flow over an exponentially stretching
sheet. Lund et al. [30] study double comparison of MHD
flow of Casson fluid. Ibrahim and Anbessa [31] study 3D
MHD flow of nanofluid along with ion slip effects. Varun
Kumar et al. [32] used stretching surface to investigate
modeling on Casson nanofluid flow along with the influence
of magnetic field. Yusuf et al. [33] study magneto-
bioconvection flow of Williamson nanofluid over an
inclined plate with gyro tactic microorganisms and entropy
generation. Kumar et al. [34] study the impact of thermo-
phoretic element testimony heat transmission through the
dynamics of Casson fluid flow on a stretching needle. Reh-
man and Salleh [35] used stretching surface to study effect
on MHD flow and heat transmission on hybrid nanofluids.
Rehman and Salleh [36] used stretching surface to study
time-dependent boundary layer stagnation point flow of
nanofluid. The purpose of the present research paper is to
investigate approximate analytical study of time-dependent
MHD Casson hybrid nanofluid on an extending surface
along with thermal radiation. The novelty of present
research paper is that the first time-dependent Casson
MHD flow of hybrid is addressed along with variable prop-
erties over stretching surface and the approximate solution
one for velocity and other for temperature profile is analyzed
by analytical method. Two sorts of hybrid nanofluids TiO2
+ Ag + blood and TiO2+blood are heat enhancement appli-
cations. Transforming the nonlinear partial differential
equation to nonlinear ordinary differential equation, we
used the defined similarity transformation. The governing
nonlinear ODE (ordinary differential equations) is solving
with approximate analytical method [37]. With the help of
graphs, the influence of dissimilar parameters is presented.
Also the consequence of Cf and Nu are obtainable in the
form of tables. The current research article has good com-
parison with the already published work.

2. Mathematical Formulation

The two-dimensional time-dependent incomparable lami-
nar boundary layer MHD flow of hybrid nanofluid over
a permeable inclined movable surface. The impact in den-
sity difference with temperature only arises on the body
force term, and later, changed temperature induces the
buoyancy forces. The velocity of the moving surface in
the direction of applied force in x direction is uwðx, tÞ,
and the mass transfer is vwðtÞ which is normal to the
moving surface. The surface (wall) temperature is Twðx, t
Þ, and uniform temperature away from the moving surface
is T∞. Under these assumptions, the governing model
equations are as follows:

∂u
∂x

+
∂v
∂y

= 0, ð1Þ

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= 1 +
1
β

� �
∂2u
∂y2

−
σhnf

ρhnf
B2
0 tð Þu + g T − T∞ð Þ cos α,

ð2Þ
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∂T
∂t

+ u
∂T
∂x

+ u
∂T
∂y

=
khnf

ρCp

� �
hnf

∂2T
∂y2

−
1

ρCp

� �
hnf

∂qr
∂y

+
μhnf
ρCp

 !
hnf

∂u
∂y

� �2
+

σhnf

ρCp

� �
hnf

B2
0 tð Þu2,

ð3Þ

where t represents time, u and v represent velocity in
x and y directions, ρhnf is the density of the hybrid nano-

fluid, μhnf represents the coefficient of viscosity, Cp repre-

sents the specific heat, βT is the convection term, T is the
temperature of the wall, and T∞ is temperature away from
the surface; the kinematic viscosity of the hybrid nanofluid
is denoted by νhnf , the electrical conductivity of the hybrid
nanofluid is σhnf , the strength of the external magnetic
field is denoted by B0, and qr is the radiation heat flux.
The relevant boundary condition is given below.

u = uw x, tð Þ = cx
1 − λt

,

v = vw tð Þ,
T = Tw x, tð Þ,

y = 0,

u⟶ o,

T ⟶ T∞,

y⟶∞:

ð4Þ

In Equation (4), c represents the early extending rate,
λ represents constant, and the subscripts w and ∞ are
attitude for surface and boundary layer edge. To convert
the nonlinear partial differential equation (Equations (1)
and (2)) to nonlinear ordinary differential equation, we
used the following similarity transformation.

η =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
ν∗ 1 − λtð Þ y,

r

ψ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν∗c
1 − λtð Þ

s
xf ηð Þ,

θ ηð Þ = T − T∞
Tw − T∞

:

ð5Þ

Using Equation (5) in Equations (1)–(3), Equation (5)
satisfied Equation (1) identically, and convert Equations
(2) and (3) to the following form.

1 − ϕ1 − ϕ2ð Þ−2:5
1 − ϕ1 − ϕ2ð Þ + ϕ1 ρ1/ρf

� �
+ ϕ2 ρ2/ρf

� � 1 +
1
β

� �
f ‴ −

S f ′ + η

2
f ″

� �
− 1 − ϕ1ð Þ2:5 1 − ϕ1ð Þ2:5 φ +M½ �f ′ − f ′

� �2
+ f f ″ +Grθ = 0,

ð6Þ

1 − ϕ1 − ϕ2ð Þ−2:5
1 − ϕ1 − ϕ2ð Þ + ϕ1 ρ1/ρf

� �
+ ϕ2 ρ2/ρf

� � ks
khnf

θ″ +

β1 θ′
� �2

+ 1 − ϕ1ð Þ2:5 1 − ϕ1ð Þ2:5Pr S η/2ð Þθ′ + 2Sθ + f ′θ − f θ′ − Ec f ″
� �2	 


1 + R + β1θð Þ :

ð7Þ
The transform boundary conditions for the defined

problem are as follows:

f 0ð Þ = 0,

f ′ 0ð Þ = 1,

θ 0ð Þ = 1,

f ′ ∞ð Þ = 0,

θ′ ∞ð Þ = 0,

ð8Þ

where S , φ, M, Gr , Pr, R, Ec, and β are time-
dependent parameter, porous medium parameter, mag-
netic parameter, Grashof number, Prandtl number, radia-
tion parameter, Eckert number, and Casson parameter
and defined in

S =
λ

c
,

φ =
ν∗ 1 − λtð Þ

k∗c
,

M =
σB2

0 1 − λtð Þ
ρc

,

Gr =
gβTx Tw − T∞ð Þ

u2w
cos α,

Pr =
ν

α
,

Ec =
u2w

Cp Tw − T∞ð Þ :

ð9Þ

The skin friction in x and y directions is as follows:

Re1/2x Chnf = −
1 − ϕ1 − ϕ2ð Þ−2:5

1 − ϕ1 − ϕ2ð Þ + ϕ1 ρ1/ρf

� �
+ ϕ2 ρ2/ρf

� � f ″ 0ð Þ:

ð10Þ

Nusselt number and Sherwood number is given by

Re−1/2x Nux = −
ks
khnf

θ′ 0ð Þ, ð11Þ

2.1. OHAM Solution. The model governing Equations (6)
and (7) is analyzed with the help of approximate analytical
OHAM

E w ηð Þð Þ + J w ηð Þð Þ + r ηð Þ = 0, C w ηð Þ = 0ð Þ: ð12Þ

3Advances in Mathematical Physics



In Equation (12), E represents linear operator, η repre-
sents the independent variable, rðηÞ represents the
unknown function, J represents the nonlinear operator,
and CðwÞ represents the boundary operator for the
problem.

The initial solution for the defined f ′ðηÞ and θðηÞ is

f0 ηð Þ = η3 + e−η, ð13Þ

θ0 ηð Þ = 1
2
e−η: ð14Þ

These two initial guess are obtained with the help of lin-
ear operator.

Ef = f ‴ + f f ″ = 0, Eθ = θ″ = 0: ð15Þ

The residual error for Equations (6) and (7) is defined by
Liao [37].

εfm =
1

n1 + 1
〠
n1

j1=1
κf 〠

n1

j1=1
f1 ηð Þη=jδη

 !" #
, ð16Þ

εθm =
1

n + 1
〠
n

j=1
κθ 〠

n

j=1
f ηð Þη=jδη, 〠

n

j=1
θ ηð Þη=jδη

 !" #
, ð17Þ

εtm = εfm + εθm: ð18Þ
2.2. Analysis of OHAM. This approximate analytical method
is commonly used for the solution of nonlinear boundary
value problem. For justification, consider the following non-
linear boundary value problem.

E F ηð Þð Þ + r ηð Þ + J F ηð Þð Þ = 0

C F,
dF
dη

� �
= 0:

ð19Þ

In Equation (19), E represents linear operator, J repre-
sents the nonlinear operators, rðηÞ represents the known
function, FðηÞ represents the indefinite function, and C rep-
resents the boundary operative for the defined problem. The
deformation equation for OHAM is given below.

1 − qð Þ E F η, qð Þð Þ + r ηð Þf g = Z qð Þ E F η, qð Þð Þ + r ηð Þ + J F η, qð Þð Þf g

C F η, qð Þ, dF η, qð Þ
dη

� �
:

ð20Þ

In Equation (20), q represents an implanting parameter,
and its range is from 0 to 1, and ZðqÞ represents a nonzero

Table 1: The inspiration of M and β on skin friction coefficient.

β M TiO2+Ag+blood TiO2+blood

0.1 1 0.5223 0.3137

0.2 2 0.5573 0.3418

0.3 3 0.5911 0.3756

0.4 4 0.6317 0.4434

0.5 5 0.6794 0.4754

0.6 6 0.7521 0.5316

0.7 7 0.7965 0.5641

Table 2: Inspiration of R and Ec on Nusselt number.

R Ec TiO2+Ag+blood TiO2 + blood
0.5 1 0.2123 0.6071

1 2 0.2934 0.6825

1.5 3 0.3745 0.7037

2 4 0.3956 0.7563

2.5 5 0.4376 0.7912

3 6 0.4959 0.8025

3.5 7 0.5502 0.8341

Table 3: Convergence control parameter for particular method.

m εfm TiO2 + Ag + blood εθmTiO2 + Ag + blood

5 0:6438 × 10−1 0:6775 × 10−3

10 0:4094 × 10−2 0:1873 × 10−5

15 0:9443 × 10−3 0:9729 × 10−7

20 0:7298 × 10−5 0:5413 × 10−8

25 0:5787 × 10−7 0:1442 × 10−9

Table 4: Convergence control parameter for particular method.

m εfm TiO2 + blood εθmTiO2 + blood

5 0:7991 × 10−1 0:8574 × 10−1

10 0:5266 × 10−3 0:5759 × 10−2

15 0:1138 × 10−5 0:8759 × 10−5

20 0:9616 × 10−6 0:3721 × 10−7

25 0:5133 × 10−9 0:6632 × 10−9

Table 5: Comparison for f ′ðηÞ. And publish work.

m Numerical Analytical Error

1 1 1 0

2 1.52…. 1.50…. 0.02…

3 1.31…. 1.29…. 0.02…

4 1.46…. 1.44…. 0.02…

5 0.57…. 0.53…. 0.04…

6 0.73…. 0.71…. 0.02…

7 0.79…. 0.77…. 0.02…

8 0.89…. 0.88…. 0.01…

9 0.32…. 0.27…. 0.05…

10 0.52…. 0.50…. 0.02…
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supplementary function with the Zð0Þ = 1 for q = 0 and q = 1
.

We also have Fðη, 0Þ = F0ðηÞ and Fðη, 1Þ = FðηÞ respec-
tively. Thus, as q increases, from 0 to 1, the solution Fðη, qÞ
varies from F0ðηÞ to FðηÞ.

L′ F0 ηð Þð Þ + F ηð Þ = 0,

B F0,
dF0
dη

� �
:

ð21Þ

The power series in q is

Z qð Þ =D1q +D2q+:⋯ ð22Þ

In Equation (22), D1 and D2 represent the unknown
constant which can be obtained. The required solution is
presented as follows:

F η, q,D1 ⋯D2mð Þ, ð23Þ

F η, q,D1 ⋯Dmð Þ = F0 ηð Þ +〠
k≥1

Fk η, q,D1 ⋯Dmð Þ qk:

ð24Þ
Putting Equation (21) in Equation (22) and comparing

the coefficients of like power of q primes to the governing
equation F0ðηÞ, F1ðηÞ up to FkðηÞ,

JmðF0ðηÞ, F1ðηÞ⋯ FmðηÞÞ are the coefficients of pm,

which are gained by expanding JðFðη, p,D1 ⋯DmÞÞ in the
form of power series about the embedding parameter q.
Likewise,

J F η, q,D1 ⋯Dmð Þð Þ = J F0 ηð Þ +〠
k≥
Jk F0 ηð Þ, F1 ηð Þ⋯ Fk ηð Þð Þqk

" #
:

ð27Þ

JðFðη, q,D1 ⋯DmÞÞ is assumed in Equation (26), and
the convergence of Equation (26) depends on the auxiliary
constant Di, i = 1, 2, 3⋯ . Equation (27) converges when q
= 1, and we gain

F η,D1,D2,⋯Dmð Þ = F0 ηð Þ +〠
k≥2

Fk η,D1,D2 ⋯ð Þ: ð28Þ

The mth-order approximation for the problem is

F η,D1,D2,⋯Dmð Þ = F0 ηð Þ + 〠
m

k≥1
Fm η,D1,D2 ⋯Dmð Þ:

ð29Þ

The residual error for the problem is

R′ η,D1,D2 ⋯Dmð Þ
= E F η,D1,D2 ⋯Dmð Þ + F ηð Þ + J F η,D1,D2 ⋯Dmð Þð Þð Þ:

ð30Þ

R′ðη,D1,D2 ⋯DmÞ = 0 and Fðη,D1,D2 ⋯DmÞ have an
exact solution which in overall impossible particularly in
nonlinear problems. For Di, i = 1, 2,⋯,m, we used the

Table 6: Comparison for θðηÞ. And publish work.

η Numerical Analytical Error

1 1 1 0

2 1.21…. 1.19…. 0.02…

3 1.32…. 1.30…. 0.02…

4 1.40…. 1.35…. 0.05…

5 1.54…. 1.51…. 0.03…

6 1.64…. 1.60…. 0.04…

7 1.75…. 1.70…. 0.05…

8 1.50…. 1.40…. 0.1…

9 1.24…. 1.20…. 0.04…

10 1.15…. 1.10…. 0.05…

Table 7: Riahi et al.’s [38] thermophysical properties of silver
titanium oxide.

ρ k Cp β

Silver (Ag) 10:5 429 235 1:89 × 10−5

Titanium (TiO2) 4250 8:95 686 0:9 × 10−5

E F1 ηð Þð Þ =D1 J0 F0 ηð Þð Þ,

C F1,
dF1
dη

� �
= 0, ð25Þ

E Fk ηð Þ − Fk−1 ηð Þð Þ =DkJ0 F0 ηð Þð Þ + 〠
k−2

i=2
Di E Fk−1 ηð Þ + Jk−1 F0 ηð Þ, F1 ηð Þ⋯ Fk−1 ηð Þð Þð Þf g

C Fk,
dFk

dη

� �
= 0, k = 1, 2,:⋯

ð26Þ
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method of least square.

∂J
∂D1

=
∂J
∂D2

⋯
∂J
∂Dm

= 0, ð31Þ

J D1,D2,⋯Dmð Þ =
ðb
a
R′2 η,D1,D2 ⋯Dmð Þdη: ð32Þ

3. Discussion

In this section, we discuss the effect of different parameters
such as β, M, S, φ, Pr, R, Gr , and Ec (Casson parameter,
magnetic field parameter, time-dependent parameter,
porous medium parameter, Prandtl number, radiation
parameter, Grashof number, and Eckert number) on f ′ðηÞ
and θðηÞ distribution. The similarity transformation is used
to convert the given nonlinear partial differential equation
(PDE) to a nonlinear ordinary differential equation (ODE).
Two sorts of hybrid nanofluids TiO2+Ag+blood and TiO2+-
blood are used for the enhancement heat ratio. In the pres-
ent research paper, TiO2+blood represents the base fluid
and TiO2+Ag+blood represents hybrid nanofluid. The flow
investigation is discussing on a moveable surface along with
magnetic field and couple stress along with nonlinear con-
vection. The approximate analytical technique is used to
obtain analytical solution of particular problem. The impacts
of dissimilar parameter on velocity f ′ðηÞ and θðηÞ are acces-
sible in figures [1–7, 40], the effects on velocity profile are
presented in figures [1–4], and the effects of different param-
eter on temperature profile are presented in figures [5–7, 40].
Tables 1 and 2 represent the impact of different parameters
on Cf and Nu for both hybrid nanofluid and base nanofluid.
The table shows that Cf (skin friction) coefficient is increas-
ing in both cases for both hybrid nanofluid and base nano-
fluid. For the increasing values of magnetic field parameter
M and Casson parameter β, physically increasing these
parameters, viscous force is increasing so as a result, Cf (skin
friction) is increasing. Table 2 presents the effect of Ec and R
on Nu (Nusselt number) for both hybrid nanofluid and base
nanofluid. Nusselt number coefficient is increasing in on
both hybrid nanofluid and base nanofluid for growing
amount of Ec and R. The convergence of the hybrid nano-
fluid and base fluid is gained for 25th iteration for both
hybrid nanofluid and base nanofluid in Tables 3 and 4. From
Tables 3 and 4, we see that growing the iteration decreases
the order of residual error and good convergence was
achieved. The assessment of the current work and with the
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published research work is obtainable in Tables 5 and 6.
Table 7 shows the thermophysical properties of silver tita-
nium oxide. The thermophysical properties of the nanofluid
and hybrid nanofluid are presented in Table 8. The variation
in Casson parameter β on velocity profile is captured in
Figure 1 for both hybrid nanofluid and base nanofluid on
f ′ðηÞ, and from Figure 1, we see that f ′ðηÞ is the declining

function of the Casson parameter β. Or there is inverse rela-
tion between Casson parameter and f ′ðηÞ distribution, that is,
the growing magnitude of Casson parameter decreases the
velocity distribution. This effect is due to construction of resis-
tive forces known as viscous force. The power of this force
improves with the increasing power of Casson parameter β
which responds the motion of fluid within boundary layer
and drops the thickness of boundary layer. The deviation in
M (magnetic field parameter) on f ′ðηÞ profile is captured in
Figure 2 for both hybrid nanofluid and base nanofluid on f ′
ðηÞ, and from Figure 2, we see that f ′ðηÞ is the declining func-
tion of M. Or there is inverse relation between magnetic field
parameter and f ′ðηÞ distribution, that is, the growing amount
ofM declarations in f ′ðηÞ distribution. This effect is due to the
production of resistive type force known as Lorentz force.
These forces improve with the growing asset of magnetic field
parameter M. Due to this, the motion of fluid particles inside
boundary layer drops the thickness of boundary layer. The
variation in time-dependent parameter S on velocity profile
is captured in Figure 3 and for both hybrid nanofluid and base
nanofluid, and from Figure 3, we see that velocity is the
decreasing function of time-dependent parameter S. The var-
iation in porous medium parameter φ on f ′ðηÞ profile is cap-
tured in Figure 4 for both hybrid nanofluid and base nanofluid
on f ′ðηÞ, and from Figure 4, we see that f ′ðηÞ is the declining
function of the porousmedium parameter φ or there is inverse
relation between porous medium parameter and velocity dis-
tribution, that is, the growing magnitude of porous medium
parameter decreases the velocity distribution. Such state hap-
pens due to the injection and suction of fluid particles. The
strength of such force enhances with the rising strength of
porous medium parameter φ, which counteracts the motion
of fluid within boundary layer and drops the thickness of
boundary layer. Figure 5 is schemed for Pr for both hybrid
nanofluid and base nanofluid. From Figure 5, we see that θð
ηÞ is the declining function of Pr. We can say that the Prandtl
number works as a cooling agent, and this time, the fact is true
in the case of hybrid nanofluid other than nanofluids. Figure 6
is schemed for Grashof number Gr for both hybrid nanofluid
and base nanofluid. It is noticeable from Figure 6 that the rela-
tion between θðηÞ and Grashof number Gr is inverse relation,
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that is, the large value of Grashof number Gr is declining in
temperature distribution as shown in Figure 6. Figure 7 shows
the relation between Eckert number Ec and θðηÞ is direct rela-
tion or θðηÞ is the increasing function of Eckert number Ec.
Therefore, enhancing the of Eckert number Ec heat is reserved
in nanofluid because of the drug or frictional force, and hence,
θðηÞ enhances. Figure 8 shows the relation between radiation
parameter R and temperature profile is direct relation or tem-
perature profile is the increasing function of radiation param-
eter R Therefore, enhancing the of radiation parameter R heat
is reserved in nanofluid because of the drug or frictional force,
and hence, θðηÞ enhances.

4. Conclusion

This paper investigates approximate analytical study of time-
dependent MHD Casson hybrid nanofluid over a stretching
sheet along with thermal radiation and on extending surface.
Novelty of current research is that the first time-dependent
CassonMHD flow of hybrid is addressed for hybrid nanofluid
along with variable properties over stretching surface. Trans-
forming nonlinear PDE (partial differential equation) to non-
linear ODE (ordinary differential equation), we used the
defined similarity transformation. The governing nonlinear
equations are solving with the help of approximate analytical
method. The impression of different parameters like couple
stress, magnetic field parameter, porous medium parameter,
time-dependent parameter, Prandtl number, Grashof number,
Eckert number, and radiation parameter is interpreted
through graphs for velocity and temperature profile. The key
finding of the present research article is as follows:

(1) Growing the value of Casson parameter declarations
in velocity

(2) Growing the value of magnetic field parameter decla-
rations in velocity

(3) Growing the value of time-dependent parameter
declarations in velocity

(4) Growing the value of porous medium parameter
declarations in velocity

(5) Growing the value of Prandtl number declarations in
the temperature profile

(6) Growing the value of Grashof number declarations
in the temperature profile

(7) Growing the value of Eckert number rise tempera-
ture profile

(8) Growing the value of radiation parameter rise tem-
perature profile

Nomenclature

x, y: Cartesian coordinates
u, v: Velocity components
Uw, Vw: Moving surface velocity
S: Unsteady parameter

β: Casson parameter
T : Away from surface temperature
M: Magnetic field parameter
Nu: Local Nusselt number
Pr: Prandtl number
Tw: Sheet temperature
B0: Continuous magnetic field
T∞: Ambient temperature
Cf : Skin friction
φ: Porous medium
Gr : Grashof number
R: Radiation parameter
ϕ: Dimensionless concentration
θ: Dimensionless temperature.
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