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Two novel modifications of the exp-function method have been suggested to solve the nonlinear system of the partial differential
equation of the fractional order for the first time. The fractional-order Hirota-Satsuma coupled KdV system has been solved
precisely; as a result, some exact solutions, which include soliton-type and rational solutions, will be derived. Eventually, the
graphs of the obtained results have been illustrated at the end of the article. The newly used methods are highly accurate,
flexible, effective, and programmable to solve fractional-order devices.

1. Introduction

One of the best ways to model physical processes is to use
fractional partial differential equations (FPDE). FPDE can
be a great instrument for elaborating the properties of differ-
ent materials and processes; therefore, this sort of equations
plays an important role in various scientific fields.

Plenty of definitions had been presented about the deriv-
ative of the fractional order. In the current paper, we con-
sider the conformable derivative definition [1, 2]. Given a
function h : ½0,∞Þ⟶ R, then, the conformable fractional
derivative of f of order α is defined by

Dλ
t h = lim

ε⟶0

h t + εt1−λ
� �

− h tð Þ
ε

,

for all t > 0, 0 < λ < 1:
ð1Þ

One can easily show that the abovementioned definition
satisfies all the properties in the following properties [1]:

(1) Dλ
t c = 0, c is constant

(2) Dλ
t t

k = ktk−λ, k ∈ R

(3) Dλ
t ðc1h1 + c2h2Þ = c1D

λ
t ðh1Þ + c2D

λ
t ðh2Þ

(4) Dλ
t ðh1h2Þ = h1D

λ
t ðh2Þ + h2D

λ
t ðh1Þ

(5) Dλ
t ðh1/h2Þ = ðh2Dλ

t ðh1Þ − h1D
λ
t ðh2ÞÞ/h22

(6) Dλ
t hðtÞ = t1−λDth

Recently, the fractional differential equations have
become the focus of many scientists in the field of physics
and mathematics and also many researchers to focus on this
topic [3–6]. It can provide many methods for obtaining their
exact solutions, such as the G′/G-expansion method [7–9],
the exp-function method [10–28], the homotopy analysis
method [29, 30], and spectral methods [31–33]. And in the
meantime, obtaining the exact soliton solutions to these
equations is more important because this study gives us a
great deal of information on various sciences such as fluid
mechanics, physics, and mathematics. So, a lot of research
has begun in recent years to get this style of solutions
[34–44]. This concept was first introduced by John Scott
Russell (1818–1388). The “translation wave” was the name
he gave to the phenomenon that was reproduced in a wave
reservoir. Although solitons can be said to be solitary waves
that propagate like a particle at constant velocity and shape,
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over the years, there is still no single definition for them. In
short, solitons have three distinct characteristics.

(1) They are in constant shape

(2) They are localized within a region

(3) In interaction with other solitons, they come out
unchanged (except phase shift)

In the current article, two interesting forms of the mod-
ification of the exp-function method has been applied to
attain the soliton solution of fractional-order Hirota-
Satsuma coupled KdV equations as the following.

Dα
t u −

1
4 uxxx − 3uux − 3 −v2 +w

� �
x
= 0,

Dα
t v +

1
2 vxxx + 3uvx = 0,

Dα
t w + 1

2wxxx + 3uwx = 0:

ð2Þ

KdV equations are of great importance due to their var-
ious applications in the different fields of study [36–38]. For
instance, in plasma physics, the abovementioned system can
cause ion-acoustic solutions [39, 40]. Some types of solu-
tions for the coupled-KdV equation have been investigated
by many researchers. For example, this equation has been
studied by a variation iteration method in [41, 42].

2. Modification of the Exp-Function Method for
a System of FPDE

To explain the first modification, the following nonlinear
system of FPDE should be noted:

F u,Dα
t u,Dβ

xu⋯
� �

= 0, 0 < α, β ≤ 1,

G u,Dα
t u,Dβ

xu⋯
� �

= 0, 0 < α, β ≤ 1,
ð3Þ

where Dα
t u,D

β
xu⋯ are the fractional derivatives and F,G

are polynomial in uðx, tÞ and its fractional partial
derivatives.

By using the nonlinear fractional complex transforma-
tion,

ξ = τxβ

β
+ υtα

α
, ð4Þ

where τ and υ are nonzero parameters and equation (3)
turns to a system of ODE:

Q u, u′, u″, u‴⋯
� �

= 0,

P u, u′, u″, u‴⋯
� �

= 0:
ð5Þ

Now, assume that

u x, tð Þ = u ξð Þ = a1 + b1 exp ξð Þ
1 + c1 exp ξð Þð Þ2

,

v x, tð Þ = v ξð Þ = a2 + b2 exp ξð Þ
1 + c2 exp ξð Þð Þ2

:

ð6Þ

Placing equation (6) into (5) precedes an algebraic sys-
tem including powers of exp ðξÞ. By setting the coefficient
of these powers to zero, ai, bi, ci, τ, and υ are acquired. By
substituting the overdetermined value in eq. (6) the exact
solutions of (3) will be derived.

To apply the second modification of the exp-function
method, the solution of system (5) has been imaged as fol-
lows:

u ξð Þ = 〠
m

i=−m
ai exp φ ξð Þð Þi
�

,

v ξð Þ = 〠
n

i=−n
bi exp φ ξð Þð Þi
�

,
ð7Þ

where φðξÞ satisfies the nonlinear ODE in the form as fol-
lows:

φ′ = exp −φð Þ + α exp φð Þ + β: ð8Þ

ai, bi, α, and β are parameters to be handled further. The
solution of equation (8) is as follows:

(1) If α ≠ 0, β2 − 4α > 0,

φ ξð Þ = ln −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4α

p
2α tan h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4α

p
2 ξ + cð Þ

 !
−

β

2α

 !

ð9Þ

(2) If α ≠ 0, β2 − 4α < 0,

φ ξð Þ = ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α − β2p
2α tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α − β2p
2 ξ + cð Þ

 !
−

β

2α

 !
ð10Þ

(3) If α ≠ 0, β2 − 4α = 0,

φ ξð Þ = ln −
2β ξ + cð Þ + 4
β ξ + cð Þ

� �
ð11Þ

(4) If α = 0, β ≠ 0,

φ ξð Þ = − ln −
β

exp β ξ + cð Þð Þ − 1

� �
ð12Þ
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(5) If α = 0, β = 0,

φ ξð Þ = ln ξ + cð Þ ð13Þ

To obtain the numbers m and n, we strike a balance
between the sentences with the topmost derivative and the
topmost nonlinear order in equation (5). Placing equation
(7) into (4) and considering equation (8) precede an alge-
braic system including powers of exp ðφðξÞÞ. By setting the
coefficient of these powers to zero, ai, bi, τ, υ, α, and β are
acquired. Finally, By substituting the overdetermined value
in eq. (7) and the general solutions of (8) the exact solution
of eq. (3) will be derived.

3. Application First Modified Exp-Function on
the Fractional-Order Hirota-Satsuma
Coupled KdV Equations

By using the nonlinear fractional complex transformation,

ξ = τx −
υtα

α
, ð14Þ

where τ and υ are nonzero arbitrary constants and system
(2) turns to a system of ODE as follows:

−υu′ − 1
4 τ

3u‴ − 3τuu′ − 3τ −v2 +w
� �′ = 0,

−υv′ + 1
2 τ

3v‴ + 3τuv′ = 0,

Dα
t w + 1

2 τ
3w‴ + 3τuw′ = 0:

ð15Þ

We define the solution of the abovementioned system as
follows:

u x, tð Þ = a0 + a1e
ξ

1 + a2eξ
� �2 ,

v x, tð Þ = b0 + b1e
ξ

1 + b2eξ
� �2 ,

w x, tð Þ = c0 + c1e
ξ

1 + c2eξ
� �2 :

ð16Þ

Substituting (16) into (15) and setting the coefficient of
exp-function in the numerator equal to zero yield a system
of algebraic equations, which solving by maple leads to the
following:

Case 1.

υ = 1
2 τ

3,

a0 = 0,
a1 = τ2c2,
a2 = c2,

b0 =
b1
c2
,

b2 = c2,

c0 =
b21
c22
,

c1 = −
1
4 τ

4c2:

ð17Þ

Case 2.

υ = 1
2 τ

3,

a0 = 0,
a1 = 2τ2c2,
a2 = c2,
b0 = 0,
b1 = ±τ2c2,
b2 = c2,
c0 = 0,

c1 = −
1
2 τ

4c2:

ð18Þ

So, the corresponding soliton solutions will be achieved.

u1 x, tð Þ = τ2c2e
ξ

1 + c2eð Þξ2
,

v1 x, tð Þ = b1
c2 1 + c2eξ
� � ,

w1 x, tð Þ = b21 − 1/4ð Þτ4c23eξ
c22 1 + c2eξ
� �2 ,

ð19Þ

u2 x, tð Þ = 2τ2c2eξ

1 + c2eξ
� �2 ,

v2 x, tð Þ = ±τ2c2eξ

1 + c2eξ
� �2 ,

w2 x, tð Þ = −τ4c2eξ

2 1 + c2eξ
� �2 ,

ð20Þ

where ξ = τx − ðτ3tα/2αÞ.
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In Figures 1–4, the plots of solutions (19) and (20), for
some values of parameters, have been illustrated.

The plots of solutions (19) and (20) for different values
of α = 0:1, 0:3, 0:5, 0:9, 1 are illustrated in Figures 5 and 6.
These figures show the effect of the order of the fractional
derivative on the solutions. In fact, one can compare the
solutions for different values of α.

4. Application of the Second Modified Exp-
Function on the Fractional-Order Hirota-
Satsuma Coupled KdV Equations

By using the nonlinear fractional complex transformation,

ξ = τx −
υtα

α
, ð21Þ

where τ and υ are nonzero arbitrary parameters and system

(2) changes to a system of ODE differential equations.

−υu′ − 1
4 τ

3u‴ − 3τuu′ − 3τ −v2 +w
� �′ = 0,

−υv′ + 1
2 τ

3v‴ + 3τuv′ = 0,

Dα
t w + 1

2 τ
3w‴ + 3τuw′ = 0:

ð22Þ

The solution of (22) will be imaged as follows:

u ξð Þ = 〠
m

i=−m
ai exp φ ξð Þð Þi
�

,

v ξð Þ = 〠
n

i=−n
bi exp φ ξð Þð Þi
�

,

w ξð Þ = 〠
k

i=−k
ci exp φ ξð Þð Þi
�

,

ð23Þ
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Figure 1: Plots of solution (19) for α = 0:5, b1 = τ = c2 = 1.
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Figure 2: Plots of solution (19) for α = 0:5, b1 = τ = c2 = 1, and t = 1.
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Figure 3: Plots of solution (20) for α = 0:5, b1 = τ = c2 = 1.
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Figure 4: Plots of solution (20) for α = 0:5, b1 = τ = c2 = 1, and t = 1.
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Figure 5: Plots of solution (19) for b1 = τ = c2 = 1 and t = 1 for different values of α.
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where φðξÞ is satisfied in equation (8). The homogeneous
balance between linear and nonlinear terms in each equation
of (22) leads to m = 2, n = 1 or 2, and k is arbitrary. So, solu-
tion (23) will be written as follows:

u ξð Þ = a2e
2φ ξð Þ + a1e

φ ξð Þ + a0 + a−1e
−φ ξð Þ + a−2e

−2φ ξð Þ,

v ξð Þ = b1e
φ ξð Þ + b0 + b−1e

−φ ξð Þ,

w ξð Þ = c1e
φ ξð Þ + c0 + c−1e

−φ ξð Þ:

ð24Þ

Putting (24) in (22) and putting the coefficient of eφðxÞ
equal to zero yield a system of algebraic equations, which
solving by maple leads to the following:

Case 1.

α = 0,
β = 0,

ν = −
3τ −b2−1 + a−2
� �

a−2
,

a−1 = 0,

a0 = −
−b2−1 + a−2

a−2
,

a1 = 0,
a2 = 0,
b1 = 0,
c1 = 0,

c−1 = 2b−1b0,

c0 =
a2−2b

2
0 − b4−1 + a−2b

2
−1

a2−2
:

ð25Þ

By placing the abovementioned solution into (24), the
following exact solution will be derived:

u ξð Þ = −
−b2−1 + a−2

a−2
+ a−2 ξ + cð Þ−2,

v ξð Þ = b0 +
b−1
ξ + cð Þ ,

w ξð Þ = a2−2b
2
0 − b4−1 + a−2b

2
−1

a2−2
+ 2b−1b0

ξ + cð Þ ,

ð26Þ

where ξ = τx + ð3τð−b2−1 + a−2Þtα/a−2αÞ.

Case 2.

α = −
1
2
3τ2 + τυ + 3b2−1

τ4
,

β = 0,
a−2 = −τ2,
a−1 = 0,

a0 =
1
2
τ2 + τυ + b2−1

τ2
,

a1 = 0,
a2 = 0,

b0 =
1
2 ,

b1 = 0,
c1 = 0,

c−1 = b−1,

c0 =
1
24

3τ2 − 10τ3υ − 3τ2υ2 + 6τ2b2−1 + 2τυb2−1 + 9b4−1
τ4

:

ð27Þ
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Figure 6: Plots of solution (20) for b1 = τ = c2 = 1 and t = 1 for different values of α.
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Figure 8: Plots of solution (26) for α = 0:5, b−1 = b0 = τ = c = t = 1, and a−2 = 2.
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Figure 9: Plots of solution (28) for α = 0:5, b−1 = ν = τ = c = 1.
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Figure 11: Plots of solution (29) for α = 0:5, b−1 = τ = c = 1, ν = −7.
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By placing the abovementioned solution into (24), the
following exact solution will be derived:

If 3τ2 + τυ + 3b2−1 > 0,

u ξð Þ = 1
2
τ2 + τυ + b2−1

τ2
−
3τ2 + τυ + 3b2−1

2τ2 tan h−2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3τ2 + τυ + 3b2−1
� �q

2τ2 ξ + cð Þ
0
@

1
A,

v ξð Þ = 1
2 + b−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3τ2 + τυ + 3b2−1

q
τ2

ffiffiffi
2

p tan h−1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3τ2 + τυ + 3b2−1
� �q

2τ2 ξ + cð Þ
0
@

1
A,

w ξð Þ = 1
24

3τ2 − 10τ3υ − 3τ2υ2 + 6τ2b2−1 + 2τυb2−1 + 9b4−1
τ4

+ b−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3τ2 + τυ + 3b2−1

q
τ2

ffiffiffi
2

p tan h−1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3τ2 + τυ + 3b2−1
� �q

2τ2 ξ + cð Þ
0
@

1
A:

ð28Þ

And, if 3τ2 + τυ + 3b2−1 < 0, so, we get

u ξð Þ = 1
2
τ2 + τυ + b2−1

τ2
+ 3τ2 + τυ + 3b2−1
� �

2τ2 tan−2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 3τ2 + τυ + 3b2−1
� �q

2τ2 ξ + cð Þ
0
@

1
A,

v ξð Þ = 1
2 + b−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 3τ2 + τυ + 3b2−1
� �q

ffiffiffi
2

p
τ2

tan−1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 3τ2 + τυ + 3b2−1
� �q

2τ2 ξ + cð Þ
0
@

1
A,

w ξð Þ = 1
24

3τ2 − 10τ3υ − 3τ2υ2 + 6τ2b2−1 + 2τυb2−1 + 9b4−1
τ4

+ b−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 3τ2 + τυ + 3b2−1
� �q

ffiffiffi
2

p
τ2

tan−1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 3τ2 + τυ + 3b2−1
� �q

2τ2 ξ + cð Þ
0
@

1
A,

ð29Þ

where ξ = τx − ðυtα/αÞ.
In Figures 7–12, the plots of solutions (26)–(29), for

some values of parameters, have been illustrated.

The plots of solutions (19) and (20) for different values
of α = 0:1, 0:3, 0:5, 0:9, 1 are illustrated in Figures 13–15.
These figures show the effect of the order of the fractional
derivative on the solutions. In fact, one can compare the
solutions for different values of α.

5. Conclusions

In the current paper, the soliton solutions of a system of
fractional-order Hirota-Satsuma coupled KdV equations
have been derived by two modifications of the Exp-
function method. The outcomes indicate that the proposed
methods are powerful, effective, and simple techniques to
obtain the solution of partial differential equations of the
fractional order in applied sciences. Most of the systems
which could be converted to differential equations can be
solved by this method. Furthermore, it has been for the first
time that these methods have been used to solve system of
fractional partial differential equation. The application of
our method yields rational and soliton solution to these
equations.
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