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Interval-valued intuitionistic fuzzy graph (IVIFG), belonging to the FGs family, has good capabilities when facing with problems
that cannot be expressed by FGs. When an element membership is not clear, neutrality is a good option that can be well supported
by an IVIFG. The previous definitions of limitations in edge irregular FG have led us to offer new definitions in IVIFGs. Hence, in
this paper, some types of edge irregular interval-valued intuitionistic fuzzy graphs (EI-IVIFGs) such as neighborly edge totally
irregular (NETI), strongly edge irregular (SEI), and strongly edge totally irregular (SETI) are introduced. A comparative study
between NEI-IVIFGs and NETI-IVIFGs is done. With the help of IVIFGs, the most efficient person in an organization can be
identified according to the important factors that can be useful for an institution. Finally, an application of IVIFG has been
introduced.

1. Introduction

The FG concept serves as one of the most dominant and
extensively employed tools for multiple real-word problem
representations, modeling, and analysis. To specify the
objects and the relations between them, the graph vertices
or nodes and edges or arcs are applied, respectively.
Graphs have long been used to describe objects and the
relationships between them. Many of the issues and phe-
nomena around us are associated with complexities and
ambiguities that make it difficult to express certainty.
These difficulties were alleviated by the introduction of
fuzzy sets by Zadeh [1]. The fuzzy set focuses on the
membership degree of an object in a particular set. Kauf-
man [2] represented FGs based on Zadeh’s fuzzy relation
[3, 4]. Rosenfeld [5] described the structure of FGs obtain-
ing analogs of several graph theoretical concepts. Bhatta-
charya [6] gave some remarks on FGs. Several concepts
on FGs were introduced by Mordeson and Nair [7]. The
existence of a single degree for a true membership could

not resolve the ambiguity on uncertain issues, so the need
for a degree of membership was felt. Afterward, to over-
come the existing ambiguities, Atanassov [8] defined an
extension of fuzzy set by introducing nonmembership
function and defined intuitionistic fuzzy set (IFS). But
after a while, Atanassov and Gargov [9] developed IFS
and presented interval-valued intuitionistic fuzzy set
(IVIFS). In 1999, Atanassov [10] defined intuitionistic
fuzzy graph (IFG), but Akram and Davvaz investigated it
in more details in [11]. Hongmei and Lianhua [12]
defined interval-valued fuzzy graph and studied its proper-
ties. Karunambigai et al. [13] discussed edge regular IFG.
Mishra and Pal [14] introduced product of IVIFG.
Nagoorgani and Radha [15, 16] studied the concept of
regular fuzzy graphs and defined degree of a vertex in
FGs. Nagoorgani and Latha [17] investigated the concept
of IFGs, NI-FGs, and HI-FGs in 2008. Shao et al. [18] dis-
cussed new concepts in IFG. Nandhini and Nandhini [19]
described the concept of SI-FGs and studied its properties.
Santhi Maheswari and Sekar defined the concepts of edge
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irregular FGs and edge totally irregular FGs [20]. Also,
they analyzed some properties of NEI-FGs, NETI-FGs,
SEI-FGs, and SETI-FGs [21, 22]. Rao et al. [23–25] studied
dominating set, equitable dominating set, valid degree, iso-
lated vertex, and some properties of VGs with novel appli-
cation. Shi and Kosari [26] introduced total dominating
set and global dominating set in product vague graphs.
Talebi et al. [27–30] defined new concepts of irregularity
in single-valued neutrosophic graphs and intuitionistic
fuzzy graphs. Kou et al. [31] studied vague graphs with
application in transportation systems. Kalaiarasi and
Mahalakshmi [32] investigated regular and irregular m
-polar fuzzy graphs. Selvanayaki [33] introduced strong
and balanced irregular interval-valued fuzzy graphs. Rash-
manlou et al. [34] investigate new results in cubic graphs.
Poulik and Ghorai [35–37] initiated degree of nodes,
detour g-interior nodes, and indices of bipolar fuzzy
graphs with applications in real-life systems. Pramanik
et al. [38] defined fuzzy competition graph and its uses
in manufacturing industries. Muhiuddin et al. [39] intro-
duced reinforcement number of a graph with respect to
half-domination. Amanathulla et al. [40] studied on dis-
tance two surjective labeling of paths and interval graphs.
Ramprasad et al. [41] investigated some properties of
highly irregular, edge regular, and totally edge regular m
-polar fuzzy graphs. Nazeer et al. [42] introduced an appli-
cation of product intuitionistic fuzzy incidence graphs in
textile industry. Bhattacharya and Pal [43] studied fuzzy
covering problem of fuzzy graphs and its application. Bor-
zooei et al. [44] defined inverse fuzzy graphs.

IVIFGs have a wide range of applications in the field of
psychological sciences as well as the identification of individ-
uals based on oncological behaviors. With the help of
IVIFGs, the most efficient person in an organization can be
identified according to the important factors that can be use-
ful for an institution. So, in this paper, some types of EI-
IVIFGs such as neighborly edge totally irregular- (NETI-)
IVIFGs, strongly edge irregular- (SEI-) IVIFGs, and strongly
edge totally irregular- (SETI-) IVIFGs are introduced. Also,
we have given some interesting results about EI-IVIFGs,
and several examples are investigated. Finally, an application
of IVIFG is presented.

2. Preliminaries

A graph G = ðV , EÞ is a mathematical model consisting of a
set of nodes V and a set of edges E, where each is an unor-
dered pair of distinct nodes.

Definition 1 (see [5]). A FG Z = ðV , ν, ξÞ is a nonempty set V
together with a pair of functions ν : V ⟶ ½0, 1� and ξ : V
×V ⟶ ½0, 1� so that ξðxyÞ ≤min fνðxÞ, νðyÞg, ∀x, y ∈ V .

Definition 2 (see [11]). An IFG is of the form G : ðη, ςÞ which
η = ðη1, η2Þ and ς = ðς1, ς2Þ so that

(i) The functions η1 : V ⟶ ½0, 1� and η2 : V ⟶ ½0, 1�
denotes the MD and NM-D of the element w ∈ V ,

respectively, and 0 ≤ η1ðwÞ + η2ðwÞ ≤ 1 for each w
∈ V

(ii) The functions ς1 : V × V ⟶ ½0, 1� and ς2 : V ×V
⟶ ½0, 1� are the MD and NM-D of the edge xw ∈
E, respectively, so that ς1ðxwÞ ≤min ðη1ðxÞ, η1ðwÞÞ
and ς2ðxwÞ ≥max ðη2ðxÞ, η2ðwÞÞ and 0 ≤ ς1ðxwÞ +
ς2ðxwÞ ≤ 1, for each xw in E

Definition 3 (see [11]). An IVFG is of the form G : ðθ, ζÞ
which θ = ½θ−, θ+� is an IVFS in V and ζ = ðζ−, ζ+Þ is an IVFS
in E ⊆ V ×V so that ζ−ðxwÞ ≤min ðθ−ðxÞ, θ−ðwÞÞ and ζ+ðx
wÞ ≤min ðθ+ðxÞ, θ+ðwÞÞ for each xw in E.

All the basic notations are shown in Table 1.

3. New Concepts of Irregular IVIFGs

Definition 4. An IVIFG is of the form G : ðσ, μÞ which σ =
ðσ1, σ2Þ = ððσ−1 , σ+1 Þ, ðσ−2 , σ+2 ÞÞ and μ = ðμ1, μ2Þ = ððμ−1 , μ+1 Þ, ð
μ−2 , μ+2 ÞÞ so that

(i) The functions σ1 : V ⟶D½0, 1� and σ2 : V ⟶D½
0, 1� denote the degree of IVM and IV-NM of the
element w ∈ V , respectively, so that 0 ≤ σ+1 ðwÞ + σ+2 ð
wÞ ≤ 1, for each w ∈ V

(ii) The functions μ1 : V ×V ⟶D½0, 1� and μ2 : V ×
V ⟶D½0, 1� denote the degree of IVM and IV-
NM of the edge wz ∈ E, respectively, are defined by
the following:

(i) μ−1 ðwzÞ ≤min ðσ−
1 ðwÞ, σ−

1 ðzÞÞ and μ+1 ðwzÞ ≤min ð
σ+1 ðwÞ, σ+1 ðzÞÞ

(ii) μ−2 ðwzÞ ≥max ðσ−2 ðwÞ, σ−2 ðzÞÞ and μ+2 ðwzÞ ≥max ð
σ+2 ðwÞ, σ+2 ðzÞÞ

so that 0 ≤ μ+1 ðwzÞ + μ+2 ðwzÞ ≤ 1, for each wz in E.

Definition 5. Let G be an IVIFG. Then, the degree of a node
w is defined as dGðwÞ = ððdσ−1 ðwÞ, dσ+1 ðwÞÞ, ðdσ−2 ðwÞ, dσ+2 ðwÞ
ÞÞ, where dσ−1 ðwÞ = Σz≠wμ

−
1 ðw, zÞ, dσ+1 ðwÞ = Σz≠wμ

+
1 ðw, zÞ,

dσ−2 ðwÞ = Σz≠wμ
−
2 ðw, zÞ, and dσ+2 ðwÞ = Σz≠wμ

+
2 ðw, zÞ.

Definition 6. Let G be an IVIFG. Then, the TD of a node w is
defined as tdGðwÞ = ððtdσ−1 ðwÞ, tdσ+1 ðwÞÞ, ðtdσ−2 ðwÞ, tdσ+2 ðwÞÞ
Þ which tdσ−1 ðwÞ = Σz≠wμ

−
1 ðw, zÞ + σ−1 ðwÞ, tdσ+1 ðwÞ = Σz≠wμ

+
1

ðw, zÞ + σ+1 ðwÞ, tdσ−2 ðwÞ = Σz≠wμ
−
2 ðw, zÞ + σ−2 ðwÞ, and tdσ+2 ð

wÞ = Σz≠wμ
+
2 ðw, zÞ + σ+2 ðwÞ.

Definition 7. Let G be an IVIFG on. Then,

(i) G is irregular, if there is a node which is a neighbor
to nodes with VDs

(ii) G is TI, if there is a node which is a neighbor to
nodes with various TDs
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Definition 8. Let G be a CIVIFG. Then, G is called an

(i) NI-IVIFG if each pair of neighbor nodes has VDs

(ii) NTI-IVIFG if each pair of neighbor nodes has vari-
ous TDs

(iii) SI-IVIFG if each pair of nodes has VDs

(iv) STI-IVIFG if each pair of nodes has various TDs

(v) HI-IVIFG if each node in G is neighbor to the nodes
having VDs

(vi) HTI-IVIFG if each node in G is neighbor to the
nodes having various TDs

Definition 9. Let G be an IVIFG on. The degree of an edge
wz is described as dGðwzÞ = ððdμ−1 ðwzÞ, dμ+1 ðwzÞÞ, ðdμ−2 ðwzÞ,
dμ+2 ðwzÞÞÞ which dμ−i ðwzÞ = dσ−i ðwÞ + dσ−i ðzÞ − 2μ−i ðwzÞ and

dμ+i ðwzÞ = dσ+i ðwÞ + dσ+i ðzÞ − 2μ+i ðwzÞ, for i = 1, 2.

Definition 10. Let G be an IVIFG. The TD of an edge wz is
presented as tdGðwzÞ = ððtdμ−1 ðwzÞ, tdμ+1 ðwzÞÞ, ðtdμ−2 ðwzÞ, t
dμ+2 ðwzÞÞÞ where tdμ−i ðwzÞ = dσ−i ðwÞ + dσ−i ðzÞ − μ−i ðwzÞ =
dμ−i ðwzÞ + μ−i ðwzÞ and tdμ+i ðwzÞ = dσ+i ðwÞ + dσ+i ðzÞ − μ+i ðwzÞ
= dμ+i ðwzÞ + μ+i ðwzÞ, for i = 1, 2.

Definition 11. Let G be a CIVIFG. Then, G is called an

(i) NEI-IVIFG if each pair of NEs has VDs

(ii) NETI-IVIFG if each pair of NEs has various TDs

Example 12. Graph which is both NEI-IVIFG and NETI-
IVIFG.

Consider G∗ which V = fu, v,w, xg and E = fuv, vw,w
x, xug.

From Figure 1, dGðuÞ = dGðvÞ = dGðwÞ = dGðxÞ = ðð0:3,0:5Þ,
ð0:5,1:0ÞÞ, dGðuvÞ = dGðwxÞ = ðð0:4,0:6Þ, ð0:4,0:8ÞÞ, and dGð
vwÞ = dGðxuÞ = ðð0:2,0:4Þ, ð0:6,1:2ÞÞ.

Table 1: Some basic notations.

Notation Meaning

IFG Intuitionistic fuzzy graph

IVFG Interval-valued fuzzy graph

IVIFG Interval-valued intuitionistic fuzzy graph

IVM Interval valued membership

IV-NM Interval-valued nonmembership

I-FG Irregular fuzzy graph

SI Strongly irregular

HI Highly irregular

NI Neighborly irregular

VD Various degree

TD Total degree

TI Total irregular

MD Membership degree

NE Neighbor edge

NEI-IVIFG Neighborly edge irregular interval-valued intuitionistic fuzzy graph

CIVIFG Connected interval-valued intuitionistic fuzzy graph

IVFS Interval-valued fuzzy set

NEI Neighborly edge irregular

NETI Neighborly edge totally irregular

TER Totally edge regular

SETI Strongly edge totally irregular

SEI Strongly edge irregular

HEI Highly edge irregular

HETI Highly edge totally irregular

CF Constant function
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Clearly, neighbor edges have VDs. Hence, G is a NEI-
IVIFG.

For TDs, we have the following:

tdG uvð Þ = tdG wxð Þ = 0:5,0:8ð Þ, 0:7,1:4ð Þð Þ,
tdG vwð Þ = tdG xuð Þ = 0:4,0:7ð Þ, 0:8,1:6ð Þð Þ:

ð1Þ

Obviously, neighbor edges have various TDs. So, G is a
NETI-IVIFG. Hence, G is both NEI-IVIFG and NETI-
IVIFG.

Example 13. NEI-IVIFG needs not to be NETI-IVIFG.
Consider G be an IVIFG and G∗ a star includes four

nodes.

From Figure 2, dGðuÞ = ðð0:2,0:3Þ, ð0:3,0:4ÞÞ, dGðvÞ = ðð
0:1,0:2Þ, ð0:4,0:5ÞÞ, dGðwÞ = ðð0:0,0:1Þ, ð0:5,0:6ÞÞ, dGðxÞ = ðð
0:3,0:6Þ, ð1:2,1:5ÞÞ, dGðuxÞ = ðð0:1,0:3Þ, ð0:9,1:1ÞÞ, dGðvxÞ =
ðð0:2,0:4Þ, ð0:8,1:0ÞÞ, dGðwxÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, and t
dGðuxÞ = tdGðvxÞ = tdGðwxÞ = ðð0:3,0:6Þ, ð1:2,1:5ÞÞ.

Here, dGðuxÞ ≠ dGðvxÞ ≠ dGðwxÞ. Hence, G is a NEI-
IVIFG. But G is not a NETI-IVIFG, since all edges have
same TDs.

Example 14. NETI-IVIFGs need not to be NEI-IVIFGs. The
following shows this subject:

Consider G be an IVIFG so that G∗ a path consists of 4
nodes.

From Figure 3, dGðuÞ = dGðxÞ = ðð0:05,0:20Þ, ð0:15,0:25
ÞÞ, dGðvÞ = dGðwÞ = ðð0:15,0:60Þ, ð0:45,0:75ÞÞ, dGðuvÞ = dGð
vwÞ = dGðwxÞ = ðð0:1,0:4Þ, ð0:3,0:5ÞÞ, tdGðuvÞ = ðð0:15,0:60Þ
, ð0:45,0:75ÞÞ, tdGðvwÞ = ðð0:2,0:8Þ, ð0:6,1:0ÞÞ, and tdGðwxÞ
= ðð0:15,0:60Þ, ð0:45,0:75ÞÞ.

Here, dGðuvÞ = dGðvwÞ = dGðwxÞ. Hence, G is not a NEI-
IVIFG. But G is a NETI-IVIFG, since tdGðuvÞ ≠ tdGðvwÞ
and tdGðvwÞ ≠ tdGðwxÞ.

Theorem 15. Suppose G is a CIVIFG and μ is a CF. Then, G
is a NEI-IVIFG if G is a NETI-IVIFG.

Proof. Assume that μ is a CF and μðwzÞ = f , ∀wz in E, which
f = ðð f −1 , f +1 Þ, ð f −2 , f +2 ÞÞ is constant.

Let wz and zy be pairs of neighbor edges in E; then, we
have the following:

dG wzð Þ ≠ dG zyð Þ⇔ dG wzð Þ + d ≠ dG zyð Þ + d⇔ dμ−1 wzð Þ, dμ+1 wzð Þ
� �

, dμ−2 wzð Þ, dμ+2 wzð Þ
� �� �

+ f −1 , f +1
� �

, f −2 , f +2
� �� �

≠ dμ−1 zyð Þ, dμ+1 zyð Þ
� �

, dμ−2 zyð Þ, dμ+2 zyð Þ
� �� �

+ f −1 , f +1
� �

, f −2 , f +2
� �� �

⇔ dμ−1 wzð Þ + f −1 , dμ+1 wzð Þ + f +1
� �

, dμ−2 wzð Þ
��

+ f −2 , dμ+2 wzð Þ + f +2
�
Þ ≠ dμ−1 zyð Þ + f −1 , dμ+1 zyð Þ + f +1

� �
,

�
· dμ−2 zyð Þ + f −2 , dμ+2 zyð Þ + f +2
� ��

⇔ dμ−1 wzð Þ + μ−1 wzð Þ, dμ+1 wzð Þ + μ+1 wzð Þ
� �

,
�

· dμ−2 wzð Þ + μ−2 wzð Þ, dμ+2 wzð Þ + μ+2 wzð Þ
� ��

≠ dμ−1 zyð Þ + μ−1 zyð Þ, dμ+1 zyð Þ
��

+ μ+1 zyð Þ
�
, dμ−2 zyð Þ + μ−2 zyð Þ, dμ+2 zyð Þ + μ+2 zyð Þ
� ��

⇔ tdμ−1 wzð Þ, tdμ+1 wzð Þ
� �

,
�

· tdμ−2 wzð Þ, tdμ+2 wzð Þ
� ��

≠ tdμ−1 zyð Þ, tdμ+1 zyð Þ
� �

,
�

· tdμ−2 zyð Þ, tdμ+2 zyð Þ
� ��

⇔ tdG wzð Þ ≠ tdG zyð Þ:

ð2Þ

Therefore, neighbor edges have VDs if they have various
TDs. Hence, G is a NEI-IVIFG if G is a NETI-IVIFG.

Remark 16. Let G be a CIVIFG. If G is both NEI-IVIFG and
NETI-IVIFG, then μ needs not to be a CF.

Example 17. Suppose G is an IVIFG and G∗ a path consists
of four nodes.

From Figure 4, dGðuÞ = dGðxÞ = ðð0:2,0:3Þ, ð0:4,0:5ÞÞ,
dGðvÞ = dGðwÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, dGðuvÞ = ðð0:1,0:2Þ, ð
0:3,0:4ÞÞ, dGðvwÞ = ðð0:4,0:6Þ, ð0:8,1:0ÞÞ, dGðwxÞ = ðð0:1,0:2
Þ, ð0:3,0:4ÞÞ, tdGðuvÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, tdGðvwÞ = ðð
0:5,0:8Þ, ð1:1,1:4ÞÞ, and tdGðwxÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ.

Here, dGðuvÞ ≠ dGðvwÞ and dGðvwÞ ≠ dGðwxÞ. Hence, G
is a NEI-IVIFG. Also, tdGðuvÞ ≠ tdGðvwÞ and tdGðvwÞ ≠ t
dGðwxÞ. Hence, G is a NETI-IVIFG but μ is not CF.

Theorem 18. Let G be a CIVIFG and μ a CF. If G is a SI-
IVIFG, then, G is a NEI-IVIFG.

Proof. Assume G is a CIVIFG, μ is a CF, and μðwzÞ = f , ∀wz
in E, which f = ðð f −1 , f +1 Þ, ð f −2 , f +2 ÞÞ is constant.

Let wz and zy be any two NEs in G. Assume that G is a
SI-IVIFG. Then, each pair of nodes in G has VDs, and

((0.3,0.5),(0.2,0.3))

((0.2,0.4),(0.1,0.2))x

u

((0.2
,0.3)

,(0.2
,0.4)

) ((0.1,0.2),(0.3,0.6))

w

v((0.2,0.4),(0.1,0.2))

((0.3,0.5),(0.2,0.3))

((0.2
,0.3)

,(0.2
,0.4)

)((0.1,0.2),(0.3,0.6))

Figure 1: G is both NEI-IVIFG and NETI-IVIFG.
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hence,

dG wð Þ ≠ dG zð Þ ≠ dG yð Þ⇒ dσ−1 wð Þ, dσ+1 wð Þ
� �

,
�

� dσ−2 wð Þ, dσ+2 wð Þ
� ��

≠ dσ−1 zð Þ, dσ+1 zð Þ
� �

,
�

� dσ−2 zð Þ, dσ+2 zð Þ
� ��

≠ dσ−1 yð Þ, dσ+1 yð Þ
� �

,
�

� dσ−2 yð Þ, dσ+2 yð Þ
� ��

⇒ dσ−1 wð Þ, dσ+1 wð Þ
� �

,
�

� dσ−2 wð Þ, dσ+2 wð Þ
� ��

+ dσ−1 zð Þ, dσ+1 zð Þ
� �

,
�

� dσ−2 zð Þ, dσ+2 zð Þ
� ��

− 2 f −1 , f +1
� �

, f −2 , f +2
� �� �

≠ dσ−1 zð Þ, dσ+1 zð Þ
� �

,
�

� dσ−2 zð Þ, dσ+2 zð Þ
� ��

+ dσ−1 yð Þ, dσ+1 yð Þ
� �

, dσ−2 yð Þ, dσ+2 yð Þ
� �� �

− 2 f −1 , f +1
� �

, f −2 , f +2
� �� �

⇒ dσ−1 wð Þ + dσ−1 zð Þ − 2f −1 , dσ+1 wð Þ + dσ+1 zð Þ − 2f +1
� �

,
�

� dσ−2 wð Þ + dσ−2 zð Þ − 2f −2 , dσ+2 wð Þ + dσ+2 zð Þ − 2f +2
� ��

≠ dσ−1 zð Þ + dσ−1 yð Þ
��

− 2f −1 , dσ+1 zð Þ + dσ+1 yð Þ − 2f +1
�
, dσ−2 zð Þ + dσ−2 yð Þ − 2f −2 , dσ+2 zð Þ + dσ+2 yð Þ
�

− 2f +2
��

⇒ dσ−1 wð Þ + dσ−1 zð Þ − 2μ−1 wzð Þ, dσ+1 wð Þ + dσ+1 zð Þ − μ+1 wzð Þ
� �

,
�

� dσ−2 wð Þ + dσ−2 zð Þ − 2μ−2 wzð Þ, dσ+2 wð Þ + dσ+2 zð Þ − 2μ+2 wzð Þ
� ��

≠ dσ−1 zð Þ
��

+ dσ−1 yð Þ − 2μ−1 zyð Þ, dσ+1 zð Þ + dσ+1 yð Þ − 2μ+1 zyð Þ
�
, dσ−2 zð Þ + dσ−2 yð Þ
�

− 2μ−2 zyð Þ, dσ+2 zð Þ + dσ+2 yð Þ − 2μ+2 zyð Þ
��

⇒ dμ−1 wzð Þ, dμ+1 wzð Þ
� �

,
�

� dμ−2 wzð Þ, dμ+2 wzð Þ
� ��

≠ dμ−1 zyð Þ, dμ+1 zyð Þ
� �

,
�

� dμ−2 zyð Þ, dμ+2 zyð Þ
� ��

⇒ dG wzð Þ ≠ dG zyð Þ:

ð3Þ

Hence, neighbor edges have VDs. Thus, G is a NEII-
VIFG.

Theorem 19. Let G be a CIVIFG on G∗ and μ a CF. If G is a
SI-IVIFG, then G is a NETI-IVIFG.

Proof. It is similar to Theorem 18.

Remark 20. Converse of Theorem 19 is not generally true.

Example 21. Let G be an IVIFG so that G∗ consists of four
nodes.

From Figure 5, dGðuÞ = dGðxÞ = ðð0:1,0:3Þ, ð0:2,0:4ÞÞ and
dGðvÞ = dGðwÞ = ðð0:2,0:6Þ, ð0:4,0:8ÞÞ.

Here, G is not a SI-IVIFG. dGðuvÞ = ðð0:1,0:3Þ, ð0:2,0:4ÞÞ
, dGðvwÞ = ðð0:2,0:6Þ, ð0:4,0:8ÞÞ, dGðwxÞ = ðð0:1,0:3Þ, ð
0:2,0:4ÞÞ, tdGðuvÞ = ðð0:2,0:6Þ, ð0:4,0:8ÞÞ, tdGðvwÞ = ðð
0:3,0:9Þ, ð0:6,1:2ÞÞ, and tdGðwxÞ = ðð0:2,0:6Þ, ð0:4,0:8ÞÞ.

Hence, dGðuvÞ ≠ dGðvwÞ and dGðvwÞ ≠ dGðwxÞ. Further-
more, tdGðuvÞ ≠ tdGðvwÞ and tdGðvwÞ ≠ tdGðwxÞ. Hence, G
is both NEI-IVIFG and NETI-IVIFG. But G is not a SI-
IVIFG.

Theorem 22. Let G be a CIVIFG and μ a CF. Then, G is a
HI-IVIFG if G is a NEI-IVIFG.

Proof. Assume G is a CIVIFG and μ is a CF. Consider μðw
zÞ = f , ∀wz in E, which f = ðð f −1 , f +1 Þ, ð f −2 , f +2 ÞÞ is CF.

Let wz and zy be any two neighbor edges in G. Then,

dG wð Þ ≠ dG yð Þ⇒ dσ−1 wð Þ, dσ+
1
wð Þ

� �
, dσ−2 wð Þ, dσ+2 wð Þ
� �� �

≠ dσ−1 yð Þ, dσ+1 yð Þ
� �

,
�

� dσ−2 yð Þ, dσ+2 yð Þ
� ��

⇒ dσ−1 wð Þ, dσ+1 wð Þ
� �

, dσ−2 wð Þ, dσ+2 wð Þ
� �� �

+ dσ−1 zð Þ, dσ+1 zð Þ
� �

, dσ−2 zð Þ, dσ+2 zð Þ
� �� �

− 2 f −1 , f +1
� �

, f −2 , f +2
� �� �

≠ dσ−1 zð Þ, dσ+1 zð Þ
� �

, dσ−2 zð Þ, dσ+
2
zð Þ

� �� �
+ dσ−1 yð Þ, dσ+1 yð Þ
� �

, dσ−
2
yð Þ, dσ+2 yð Þ

� �� �
− 2 f −1 , f +1

� �
, f −2 , f +2
� �� �

⇒ dσ−1 wð Þ + dσ−1 zð Þ − 2f −1 , dσ+1 wð Þ + dσ+1 zð Þ
��

− 2f +1
�
, dσ−2 wð Þ + dσ−2 zð Þ − 2f −2 , dσ+

2
wð Þ + dσ+2 zð Þ − 2f +2

� ��
≠ dσ−1 zð Þ + dσ−

1
yð Þ − 2f −1 , dσ+1 zð Þ + dσ+1 yð Þ − 2f +1

� �
, dσ−2 zð Þ + dσ−

2
yð Þ

��
− 2f −2 , dσ+2 zð Þ + dσ+2 yð Þ − 2f +2

��
⇒ dσ−

1
wð Þ + dσ−1 zð Þ − 2μ−1 wzð Þ, dσ+1 wð Þ

��
+ dσ+1 zð Þ − μ+1 wzð Þ

�
, dσ−2 wð Þ + dσ−2 zð Þ − 2μ−2 wzð Þ, dσ+2 wð Þ + dσ+2 zð Þ
�

− 2μ+2 wzð Þ
��

≠ dσ−1 zð Þ + dσ−1 yð Þ − 2μ−1 zyð Þ, dσ+
1
zð Þ + dσ+1 yð Þ

��
− 2μ+1 zyð Þ

�
, dσ−2 zð Þ + dσ−2 yð Þ − 2μ−2 zyð Þ, dσ+2 zð Þ + dσ+2 yð Þ
�

− 2μ+2 zyð Þ
��

⇒ dμ−1 wzð Þ, dμ+1 wzð Þ
� �

, dμ−2 wzð Þ, dμ+2 wzð Þ
� �� �

≠ dμ−1 zyð Þ, dμ+1 zyð Þ
� �

, dμ−2 zyð Þ, dμ+2 zyð Þ
� �� �

⇒ dG wzð Þ ≠ dG zyð Þ:

ð4Þ

Therefore, neighbor edges have VDs, if each node neigh-
bor to the nodes has VDs. Hence, G is a HIIVIFG, if G is a
NEIIVIFG.

Theorem 23. Suppose G is a CIVIFG and μ is a CF. Then, G
is HI-IVIFG if and only if G is NETI-IVIFG.

Proof. It is clear.

Theorem 24. Let G be an IVIFG on G∗, a star K1,n. Then, G
is a TER-IVIFG. If the degrees of IVM and IV-NM of no two
edges are similar, then G is a NEI-IVIFG.

((0.2,0.3),(0.1,0.2))
x

((0.5,0.6),(0.1,0.2))
((0.4,0.5),(0.3,0.4))((0.3,0.4),(0.2,0.3))

((0
.2,0

.3)
,(0
.3,0

.4)
) ((0.0,0.1),(0.5,0.6))

((
0.
1,
0.
2)
,(0

.4
,0
.5
))

u
v

w

Figure 2: G is NEI-IVIFG but it is not NETI-IVIFG.
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Proof. Suppose v1, v2, v3,⋯, vn are the nodes neighbor to the
node x. Assume e1, e2, e3,⋯, en are the edges of a star G∗ in
that order having degrees of IVM m1,m2,m3,⋯,mn and
degrees of IV-NM n1, n2, n3,⋯, nn which mi = ðm−

i ,m+
i Þ

and ni = ðn−i , n+i Þ, for i = 1, 2 so that 0 ≤m+
i + n+i ≤ 1, for each

1 ≤ i ≤ n:

Then,

tdG eið Þ = tdμ−1 eið Þ, tdμ+1 eið Þ
� �

, tdμ−2 eið Þ, tdμ+2 eið Þ
� �� �

= dμ−1 eið Þ + μ−1 eið Þ, dμ+1 eið Þ + μ+1 eið Þ
� �

,
�

· dμ−2 eið Þ + μ−2 eið Þ, dμ+2 eið Þ + μ+2 eið Þ
� ��

= 〠
n

k=1
m−

k −m−
i +m−

i , 〠
n

k=1
m+

k −m+
i +m+

i

 !
,

 

· 〠
n

k=1
n−k − n−i + n−i , 〠

n

k=1
n+k − n+i + n+i

 !!

= 〠
n

k=1
m−

k , 〠
n

k=1
m+

k

 !
, 〠

n

k=1
n−k , 〠

n

k=1
n+k

 ! !
:

ð5Þ

((0.4,0.6),(0.05,0.15))

((0.05,0.2),(0.15,0.25)) ((0.1,0.4),(0.3,0.5)) ((0.05,0.2),(0.15,0.25))

u
((0.5,0.7),(0.1,0.2))

v
((0.2,0.4),(0.15,0.25))

w
((0.3,0.5),(0.05,0.1))

x

Figure 3: G is NETI-IVIFG but it is not NEI-IVIFG.

((0.3,0.5),(0.1,0.4))

((0.2,0.3),(0.4,0.5)) ((0.1,0.2),(0.3,0.4)) ((0.2,0.3),(0.4,0.5))

u
((0.2,0.3),(0.3,0.4))

v
((0.3,0.4),(0.1,0.3))

w
((0.2,0.3),(0.3,0.5))

x

Figure 4: μ is not a CF.

((0.1,0.4),(0.2,0.3))

((0.1,0.3),(0.2,0.4)) ((0.1,0.3),(0.2,0.4)) ((0.1,0.3),(0.2,0.4))

u
((0.1,0.5),(0.2,0.4))

v
((0.1,0.6),(0.1,0.3))

w
((0.1,0.3),(0.1,0.2))

x

Figure 5: G is both NEI-IVIFG and NETI-IVIFG, not SI-IVIFG.

((0.1,0.2),(0.4,0.6))((0.
4,0.

6),(
0.1,

0.2)
)

((0.3,0.5),(0.2,0.3)) ((0
.2,
0.3

),(
0.3

,0.
5)
)

((0.5,0.6),(0.1,0.2))
u

v((0.2,0.4),(0.3,0.5))((0.4,0.7),(0.1,0.2))y

((0.3,0.4),(0.3,0.4))x w
((0.5,0.6),(0.2,0.3)) ((0.3,0.4),(0.2,0.3))

Figure 6: G is both SEI-IVIFG and SETI-IVIFG.

((0.2,0.3),(0.4,0.6))

((0.3,0.4),(0.3,0.5))
w((0.4,0.5),(0.2,0.3))((0.3,0.4),(0.1,0.2))v

((0.1,0.2),(0.4,0.6))((0
.2,
0.3
),(
0.5
,0.
7))

u

Figure 7: G is SEI-IVIFG but it is not SETI-IVIFG.
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All edges ei, ð1 ≤ i ≤ nÞ, have same TDs. Hence, G is a
TER-IVIFG. Now, if m−

i ≠m−
j , m

+
i ≠m+

j , n
−
i ≠ n−j , and n+i ≠

n+j , for each 1 ≤ i, j ≤ n, then we have the following:

dG eið Þ = dμ−1 eið Þ, dμ+1 eið Þ
� �

, dμ−2 eið Þ, dμ+2 eið Þ
� �� �

= dσ−1 xð Þ + dσ−1 við Þ − 2μ−1 xvið Þ, dσ+1 xð Þ + dσ+1 við Þ − 2μ+1 xvið Þ
� �

,
�

· dσ−2 xð Þ + dσ−2 við Þ − 2μ−2 xvið Þ, dσ+2 xð Þ + dσ+2 við Þ − 2μ+2 xvið Þ
� ��

= 〠
n

k=1
m−

k +m−
i − 2m−

i , 〠
n

k=1
m+

k +m+
i − 2m+

i

 !
,

 

· 〠
n

k=1
n−k + n−i − 2n−i , 〠

n

k=1
n+k + n+i − 2n+i

 !!

= 〠
n

k=1
m−

k −m−
i , 〠

n

k=1
m+

k −m+
i

 !
, 〠

n

k=1
n−k − n−i , 〠

n

k=1
n+k − n+i

 ! !
,

 for each 1 ≤ i ≤ n: ð6Þ

Therefore, all edges ei,ð1 ≤ i ≤ nÞ, have VDs. Hence, G is
a NEI-IVIFG.

Definition 25. Let G be a CIVIFG on G∗. Then, G is called to
be a:

((0.6,0.8),(0.1,0.2))

((0.6,0.8),(0.1,0.2))x

u

((0.6
,0.88

),(0.
1,0.2

)) ((0.1,0.3),(0.3,0.4))

w

v((0.4,0.6),(0.2,0.4))

((0.5,0.7),(0.2,0.3))

((0.3
,0.5)

,(0.4
,0.5)

)((0.5,0.7),(0.2,0.3))

Figure 8: G is SETI-IVIFG but it is not SEI-IVIFG.

((0.1,0.2),(0.4,0.6))((0.
4,0.

6),(
0.1,

0.2)
)

((0.3,0.5),(0.2,0.3)) ((0
.2,
0.3

),(
0.3

,0.
5)
)

((0.5,0.6),(0.1,0.2))
u

v((0.2,0.4),(0.3,0.5))((0.4,0.7),(0.1,0.2))y

((0.3,0.4),(0.3,0.4))x w
((0.5,0.6),(0.2,0.3)) ((0.3,0.4),(0.2,0.3))

Figure 9: μ is not a CF.

((0.3,0.5),(0.1,0.4))

((0.2,0.3),(0.4,0.5)) ((0.1,0.2),(0.3,0.4)) ((0.2,0.3),(0.4,0.5))

u
((0.2,0.3),(0.3,0.4))

v
((0.3,0.4),(0.1,0.3))

w
((0.2,0.3),(0.3,0.5))

x

Figure 10: G is NEI and NETI-IVIFG but it is not SEI and SETI-IVIFG.

Table 2: The names of the staff and their specialization in the
hospital.

Name Services

Jafari (Ja) Medical equipment expert

Mohseni (Mo) Head of security guard

Alavi (Al) Head of admissions

Samie (Sa) Expert radiology and laboratory

Rezai (Re) Hospital head

Ghoreishi (Gh) IT expert

Khorami (Kh) Head of finance

Table 3: Employee power based on degree of membership and
nonmembership.

Jafari Mohseni Alavi Samie Rezai Ghoreishi Khorami

σ−1 0.85 0.85 0.75 0.65 0.55 0.55 0.45

σ+1 0.95 0.95 0.85 0.75 0.65 0.65 0.55

σ−2 0 0 0.05 0.05 0.25 0.25 0.25

σ+2 0.05 0.05 0.15 0.15 0.35 0.35 0.35
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Re

((0.45,0.55),(0.25,0.35))
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Figure 11: IVIF digraph (influence graph).

Table 4: Adjacency matrix corresponding to Figure 11.

Ja Mo Al Sa Re Gh Kh

Ja 0

0:75,0:85ð Þ
,

0,0:05ð Þ

0
BB@

1
CCA 0 0 0 0 0

Mo 0 0

0:65,0:75ð Þ
,

0,0:05ð Þ

0
BB@

1
CCA 0 0 0

0:15,0:25ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Al 0 0 0 0 0 0

0:35,0:45ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Sa 0 0 0 0 0

0:45,0:55ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

0:25,0:35ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Re

0:55,0:65ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

0:55,0:65ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA 0 0 0 0

0:25,0:35ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Gh 0 0 0 0 0 0

0:15,0:25ð Þ
,

0:25,0:35ð Þ

0
BB@

1
CCA

Kh 0 0 0 0 0 0 0
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(i) SEI-IVIFG if each pair of edges has VDs

(ii) SETI-IVIFG if each pair of edges has various TDs

Example 26. Graph that is both SEI-IVIFG and SETI-IVIFG.
Let G be a CIVIFG on G∗ which is a cycle of length five.

From Figure 6, dGðuÞ = ðð0:5,0:8Þ, ð0:5,0:8ÞÞ, dGðvÞ = ðð
0:3,0:5Þ, ð0:7,1:1ÞÞ, dGðwÞ = ðð0:5,0:7Þ, ð0:6,0:9ÞÞ, dGðxÞ = ðð
0:6,0:9Þ, ð0:5,0:7ÞÞ, dGðyÞ = ðð0:7,1:1Þ, ð0:3,0:5ÞÞ, dGðuvÞ = ð
ð0:6,0:9Þ, ð0:4,0:7ÞÞ, dGðvwÞ = ðð0:4,0:6Þ, ð0:7,1:0ÞÞ, dGðwxÞ
= ðð0:5,0:8Þ, ð0:5,0:8ÞÞ, dGðxyÞ = ðð0:7,1:0Þ, ð0:4,0:6ÞÞ, and
dGðyuÞ = ðð0:4,0:7Þ, ð0:6,0:9ÞÞ.

Thus, G is a SEI-IVIFG.
tdGðuvÞ = ðð0:7,1:1Þ, ð0:8,1:3ÞÞ, tdGðvwÞ = ðð0:6,0:9Þ, ð

1:0,1:5ÞÞ, tdGðwxÞ = ðð0:8,1:2Þ, ð0:8,1:2ÞÞ, tdGðxyÞ = ðð
1:0,1:5Þ, ð0:6,0:9ÞÞ, and tdGðyuÞ = ðð0:8,1:3Þ, ð0:7,1:1ÞÞ:

The above calculations show that each edge has various
TD. Therefore, G is a SETI-IVIFG.

So, G is both SEI-IVIFG and SETI-IVIFG.

Example 27. SEI-IVIFG needs not be SETI-IVIFG.
Let G be an IVIFG so that G∗, a cycle of length three.

From Figure 7, dGðuÞ = ðð0:3,0:5Þ, ð0:9,1:3ÞÞ, dGðvÞ = ðð
0:5,0:7Þ, ð0:8,1:2ÞÞ, dGðwÞ = ðð0:4,0:6Þ, ð0:7,1:1ÞÞ, dGðuvÞ =
ðð0:4,0:6Þ, ð0:7,1:1ÞÞ, dGðvwÞ = ðð0:3,0:5Þ, ð0:9,1:3ÞÞ, dGðwu
Þ = ðð0:5,0:7Þ, ð0:8,1:2ÞÞ, and tdGðuvÞ = tdGðvwÞ = tdGðwuÞ
= ðð0:6,0:9Þ, ð1:2,1:8ÞÞ.

Note that G is SEI-IVIFG, since each pair of edges has
VDs. Also, G is not SETI-IVIFG, since all the edges have
same TDs. Hence, SEI-IVIFG needs not to be SETI-IVIFG.

Example 28. SETI-IVIFG needs not to be SEI-IVIFG.
Suppose G is an IVIFG so that G∗, a cycle of length four.

From Figure 8, dGðuÞ = ðð0:7,1:1Þ, ð0:4,0:6ÞÞ, dGðvÞ = ðð
0:4,0:8Þ, ð0:7,0:9ÞÞ, dGðwÞ = ðð0:8,1:2Þ, ð0:6,0:8ÞÞ, dGðxÞ = ðð
1:1,1:5Þ, ð0:3,0:5ÞÞ, dGðuvÞ = dGðwxÞ = ðð0:9,1:3Þ, ð0:5,0:7ÞÞ,
dGðvwÞ = dGðxuÞ = ðð0:6,1:0Þ, ð0:5,0:7ÞÞ, tdGðuvÞ = ðð1:0,1:6
Þ, ð0:8,1:1ÞÞ, tdGðvwÞ = ðð0:9,1:5Þ, ð0:9,1:2ÞÞ, tdGðwxÞ = ðð
1:4,2:0Þ, ð0:7,1:0ÞÞ, and dGðxuÞ = ðð1:2,1:8Þ, ð0:6,0:9ÞÞ.

It is noted that dGðuvÞ = dGðwxÞ. So, G is not SEI-IVIFG.
But G is SETI-IVIFG, since tdGðuvÞ ≠ tdGðvwÞ ≠ tdGðw

xÞ ≠ tdGðxuÞ. Hence, SETI-IVIFG needs not to be SEI-
IVIFG.

Remark 29. Let G be a CIVIFG on G∗. If G is both SEI-
IVIFG and SETI-IVIFG, then μ needs not to be a CF.

Example 30. Consider G be an IVIFG so that G∗ is a cycle of
length five.

From Figure 9, dGðuÞ = ðð0:5,0:8Þ, ð0:5,0:8ÞÞ, dGðvÞ = ðð
0:3,0:5Þ, ð0:7,1:1ÞÞ, dGðwÞ = ðð0:5,0:7Þ, ð0:6,0:9ÞÞ, dGðxÞ = ðð
0:6,0:9Þ, ð0:5,0:7ÞÞ, and dGðyÞ = ðð0:7,1:1Þ, ð0:3,0:5ÞÞ. Also,
dGðuvÞ = ðð0:6,0:9Þ, ð0:4,0:7ÞÞ, dGðvwÞ = ðð0:4,0:6Þ, ð0:7,1:0Þ

Þ, dGðwxÞ = ðð0:5,0:8Þ, ð0:5,0:8ÞÞ, dGðxyÞ = ðð0:7,1:0Þ, ð
0:4,0:6ÞÞ, and dGðyuÞ = ðð0:4,0:7Þ, ð0:6,0:9ÞÞ.

Clearly, each edge in G has VD. Therefore, G is a SEI-
IVIFG.

Also, tdGðuvÞ = ðð0:7,1:1Þ, ð0:8,1:3ÞÞ, tdGðvwÞ = ðð
0:6,0:9Þ, ð1:0,1:5ÞÞ, tdGðwxÞ = ðð0:8,1:2Þ, ð0:8,1:2ÞÞ, tdGðxyÞ
= ðð1:0,1:5Þ, ð0:6,0:9ÞÞ, and tdGðyuÞ = ðð0:8,1:3Þ, ð0:7,1:1ÞÞ.

Thus, each edge in G has various TD. So, G is a SETI-
IVIFG. Hence, G is both SEI-IVIFG and SETI-IVIFG. But
μ is not a CF.

Theorem 31. Let G be an IVIFG on G∗. If G is a SEI-IVIFG,
then G is a NEI-IVIFG.

Proof. Let G be an IVIFG on G∗ that is SEI-IVIFG. Then,
each edge in G has VD. Thus, each neighbor edge has VD.
So, G is a NEI-IVIFG.

Theorem 32. Let G be an IVIFG on G∗. If G is a SETI-IVIFG,
then G is a NETI-IVIFG.

Proof. Let G be an IVIFG on G∗ that is SETI-IVIFG. Then,
each pair of edges in G has various TDs. Hence, each pair
of neighbor edges has various TDs. Therefore, G is a
NETI-IVIFG.

Remark 33. The inverse of Theorems 31 and 32 is not gener-
ally true.

Example 34. Let G be an IVIFG so that G∗ is a path with four
nodes.

From Figure 10, dGðuÞ = dGðxÞ = ðð0:2,0:3Þ, ð0:4,0:5ÞÞ,
dGðvÞ = dGðwÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, dGðuvÞ = ðð0:1,0:2Þ, ð
0:3,0:4ÞÞ, dGðvwÞ = ðð0:4,0:6Þ, ð0:8,1:0ÞÞ, dGðwxÞ = ðð0:1,0:2
Þ, ð0:3,0:4ÞÞ, tdGðuvÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ, tdGðvwÞ = ðð
0:5,0:8Þ, ð1:1,1:4ÞÞ, and tdGðwxÞ = ðð0:3,0:5Þ, ð0:7,0:9ÞÞ.

Here, dGðuvÞ ≠ dGðvwÞ and dGðvwÞ ≠ dGðwxÞ. Hence, G
is a NEI-IVIFG. But G is not a SEI-IVIFG, since dGðuvÞ ≠
dGðwxÞ. Also, note that tdGðuvÞ ≠ tdGðvwÞ and tdGðvwÞ ≠ t
dGðwxÞ. So, G is a NETI-IVIFG. But G is not a SETI-IVIFG,
since tdGðuvÞ ≠ tdGðwxÞ.

4. Application of IVIF Influence Digraph to
Find the Most Effective Person in a Hospital

Serving the people has always been an important duty of any
government, and this has also played a significant role in the
growth and prosperity of any country, because if the people
are satisfied with the government of their country, then they
will perform their duties in the best possible way. As a result,
a healthier society will be formed with more progress. One of
these very important services is taking care of people’s
health. Hospitals and medical centers must also serve
patients in the best possible way and not neglect to admit
and treat patients. But a very important issue that can be
important in the service and treatment of patients in the
fastest possible time is the rapid and correct management
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of hospital wards and health centers. If a manager can prop-
erly guide the staff under her supervision and give them the
necessary training to treat patients, then the service will be
provided in the best possible way. Therefore, in this section,
we try to introduce the most effective staff of a hospital with
the help of an IVIFG. To do this, we consider the nodes of
this influence graph as the staff of a hospital and the edges
as the influence of one employee on another employee.
The names of the staff and their specialization in the hospital
are shown in Table 2. For this hospital, the staff is as follows:

E = Jafari, Mohseni, Alavi, Samie, Rezai, Ghoreishi, Khoramif g:
ð7Þ

(i) Mohseni has been working with Samie for 12 years
and values his views on issues

(ii) Rezai has been the head of the hospital, and not
only Mohseni but also Samie is very satisfied with
Rezai’s performance

(iii) The safety of hospital staff and also the care of hos-
pital equipment is a very important issue. Mohseni
is an expert for this

(iv) Alavi and Ghoreishi have a long history of conflict

(v) Samie is very effective in laboratory and radiology
affairs of the hospital

Considering the above points, the influence graph can be
very important. But such a graph cannot show the power of
employees within a hospital and the degree of influence of
employees on each other. Since power and influence do
not have defined boundaries, they can be represented as an
interval-valued fuzzy set. On the other hand, there can be
no fair interpretation of the power and influence of individ-
uals, because evaluations are always accompanied by skepti-
cism. So, here we use the interval-valued intuitionistic fuzzy
degrees, which is very useful for influence and conflicts
between employees. The interval-valued intuitionistic fuzzy
set of employees is shown in Table 3.

We have shown the influence of persons in the IVIF
digraph with an edge. This graph is shown in Figure 11,
and its adjacency matrix is shown in Table 4.

Hospital staff are the vertices of the IVIF digraph of
Figure 11, and their strength in terms of conditions, degrees
of IVM, and IV-NM is that it can also be expressed as a per-
centage. For example, Mr. Alavi has 75% to 85% of power
and between 5% and 15% does not have this power. Also,
the edges of this graph indicate the influence of one person
on another. Degree of IVM and IV-NM can be described
in terms of positive and negative influence. For example,
between 55% and 65% of the time, Mr. Jafari is influenced
by Mr. Rezaei’s thoughts and ideas, but 25% to 35% of the
time he is not influenced by his opinions.

In Figure 11, it is clear that Mr. Rezaei controls both the
medical equipment experts: Mr. Jafari and the head of secu-

rity guard, Mr. Mohseni. His influence on both of them is
the same. Because the IV membership rate in both of them
is (0.55, 0.65), i.e., 55% to 65%. But in the case of Mr. Rezaei
and Mr. Mohseni, the degree of doubt is between 0% and
20% because

1 − 0:65 − 0:35,1 − 0:55 − 0:25ð Þ = 0,0:20ð Þ, ð8Þ

and in the case of Mr. Jafari and Mohseni, it is between 10%
and 25% because

1 − 0:85 − 0:05,1 − 0:75 − 0ð Þ = 0:10,0:25ð Þ: ð9Þ

The implication is that Mr. Jafari is more skeptical than
Mr. Rezaei. Clearly, Mr. Rezaei has the most influence in the
organization, because he dominates both the equipment
expert and the security guard; these two people have the
most power in the hospital, i.e., between 85% and 95%.

5. Conclusions

Interval-valued intuitionistic fuzzy graphs have various uses
in modern science and technology, especially in the fields of
neural networks, computer science, operation research, and
decision-making. Also, they have a wide range of applica-
tions in the field of psychological sciences as well as the iden-
tification of individuals based on oncological behaviors.
With the help of IVIFGs, the most effective person in an
organization can be identified according to the important
factors that can be useful for an institution. Therefore, in this
research, some types of EI-IVIFGs such as NETI-IVIFGs,
SEI-IVIFGs, and SETI-IVIFGs are introduced. A compara-
tive study between NEI-IVIFGs and NETI-IVIFGs is pre-
sented. Finally, an application of IVIF influence digraph
has presented. In our future work, we will introduce connec-
tivity index, Winer index, and Randic index in interval-
valued intuitionistic fuzzy graphs and investigate some of
their properties. Also, we will investigate some types of
energy, including Laplacian and skew Laplacian in both
interval-valued intuitionistic fuzzy graphs and interval-
valued intuitionistic fuzzy digraphs.
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