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In this paper, we consider a weakly dissipative modified two-component Camassa-Holm system. We demonstrate a simple
sufficient condition on initial data to guarantee blow-up of solutions in finite time, and the solutions exist globally in time.

1. Introduction

The well-known Camassa-Holm (CH) equation

mt + umx + 2uxm = 0, m = u − uxx, ð1Þ

which was first derived by Fokas and Fuchssteiner [1] and
later derived as a model for unidirectional propagation of
shallow water over a flat bottom by Camassa and Holm
[2]. After the birth of the CH equation, a lot of works have
been carried out to it. For example, the CH equation has
travelling wave solutions of the form ce−jx−ctj, called peakons,
which describes an essential feature of the travelling waves
of largest amplitude [3–6]. It is shown in [7] that the
blow-up occurs in the form of breaking waves; namely,
the solution remains bounded but its slope becomes
unbounded in finite time.

In general, it is difficult to avoid energy dissipation
mechanisms in our real world. Ott and Sudan [8] studied
how the KdV equation was modified by the presence of
dissipation and the effect of such dissipation on solitary
solution of the KdV equation. Ghidaglia [9] investigated
the long-time behavior of solutions to a weakly dissipative
KdV equation as a finite-dimensional dynamical system.
Inspired by the above works, Wu and Yin consider the
following weakly dissipative CH equation [10, 11]:

mt + umx + 2uxm + λm = 0, m = uxx, ð2Þ

where λm is the weakly dissipative term and λ > 0 is a dissi-
pative parameter. Wu and Yin show that if the initial
momentum m0 = u0 − u0xx at some point x0 ∈ℝ satisfies
some sign condition, then the corresponding solution to
Equation (2) exists globally in time and blows up in finite
time. Novruzov and Hagverdiyev [12] derived a condition
of the changing of the sign of m0 at some point x0 ∈ℝ to
guarantee blow-up in finite time.

The two-component Camassa-Holm system is as follows:

mt + umx + 2uxm + ρρx = 0,
ρt + ρuð Þx = 0,

(
ð3Þ

wherem = u − uxx, uðt, xÞ describes the horizontal velocity of
the fluid, and ρðt, xÞ describes the horizontal deviation of the
surface from equilibrium. The system (3) appears initially in
[13]; then, Constantin and Ivanov [14] give a demonstration
about its derivation in view of the shallow water theory from
the hydrodynamic point of view. Local well-posedness, blow-
up, global existence, stability, and other mathematical
properties can be seen in [15–22] and references therein.

The modified two-component Camassa-Holm system is
as follows:

mt + umx + 2uxm + ρ�ρx = 0,
ρt + ρuð Þx = 0,

(
ð4Þ
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where m = u − uxx , ρ = ð1 − ∂2xÞð�ρ − �ρ0Þ, u denotes the
velocity field, and �ρ0 is taken to be a constant. The system
(4) does admit peaked solutions in the velocity and average
density; we refer this to Ref. [23] for details. In Ref. [23],
the authors analytically identified the steepening mechanism
that allows the singular solutions to emerge from smooth
spatially confined initial data. They found that wave break-
ing in the fluid velocity does not imply singularity in the
pointwise density ρ at the point of vertical slope. Some
related work can be found in [24–29]. Let γ = �ρ − �ρ0; then,
the system (4) is equivalent to the following one, where
m = u − uxx and ρ = γ − γxx.

In this paper, we are interested in the effect of the weakly
dissipative term on the system (5) as follows:

mt + umx + 2uxm + λm + ργx = 0,
ρt + ρuð Þx + λρ = 0,

(
ð5Þ

where m = u − uxx, ρ = γ − γxx, and λ > 0 is a dissipative
parameter. The main difference between the systems (4)
and (5) is that the system (5) does not have conservation law.

ð
ℝ

u2 + u2x + γ2 + γ2x
� �

dx: ð6Þ

In fact, for the system (5), EðtÞ decays to zero as time goes
to infinity (see Lemma 7). Recently, a blow-up result for the
system (5) is presented in [30]. Similar to [10, 11], Ref. [30]
shows that if the initial momentum m0 = u0 − u0xx at some
point x0 ∈ℝ satisfies some sign condition, then the corre-
sponding solution to the system (5) blows up in finite time.

The main goal of the present paper is to demonstrate a
simple condition guaranteeing blow-up of solutions in finite
time and guaranteeing the solutions exist globally in time by
using some properties of the solution generated by initial
data. Our results could be stated as follows:

Theorem 1. Suppose that ðu0, γ0Þ ∈HsðℝÞ with s ≥ 5/2, if

m0k k2L2 + ρ0k k2L2
� �1/2 < 4λ

3
: ð7Þ

Then, the corresponding solution uðt, xÞ to the system (5)
exists globally in time.

Theorem 2. Suppose that ðu0, γ0Þ ∈HsðℝÞ ×Hs−1ðℝÞ with
s ≥ 5/2. Assume that ρ0ðx0Þ = 0, ρ0ðxÞ ≥ 0 on ð−∞, x0Þ,
and ρ0ðxÞ ≤ 0 on ðx0,∞Þ, and assume further that

2 λ + 1ffiffiffi
2

p u0k k2H1 + γ0k k2H1

� �1/2� �
< u0 x0ð Þ − u0x x0ð Þ, ð8Þ

for some point x0. Then, the corresponding solution to the
system (5) blows up in finite time.

Remark 3. Note that our theorems do not need to assume
that the initial momentum m0 = u0 − u0xx at some point

x0 ∈ℝ satisfies some sign condition, so our theorems
improve the results in [30]. If ρ = 0, our theorems improve
the global existence and blow-up results in [11] and cover
the results in [12].

The rest of this paper is organized as follows. In Section
2, we recall several useful results which are crucial in the
proof of Theorem 1 and Theorem 2. In Section 3 and Section
4, we complete the proof of our results.

2. Preliminaries

In this section, we recall several useful results to pursue our
goal. First, we recall local well-posedness for the system (5).

Theorem 4 (see [30]). Given ðu0, γ0Þ ∈HsðℝÞ ×Hs−1ðℝÞ
with s ≥ 5/2, there exist a maximal existence time T =
Tðku0kHsðℝÞ, kγ0kHs−1ðℝÞÞ and a unique solution ðu, γÞ to the

system (5) such that

u, γð Þ ∈ C 0, T½ Þ ;Hs ℝð Þ ×Hs−1 ℝð Þ� �
∩ C1 0, T½ Þ ;Hs−1 ℝð Þ ×Hs−2 ℝð Þ� �

:
ð9Þ

Moreover, the solution depends continuously on the initial
data, i.e., the mapping ðu0, γ0Þ↦ ðu, γÞ:

Hs ℝð Þ ×Hs−1 ℝð Þ↦ C 0, T½ Þ ;Hs ℝð Þ ×Hs−1 ℝð Þ� �
∩ C1 0, T½ Þ ;Hs−1 ℝð Þ ×Hs−2 ℝð Þ� � ð10Þ

is continuous.

Next, we state the following precise blow-up scenario.

Theorem 5 (see [30]). Let ðu0, γ0Þ ∈HsðℝÞ ×Hs−1ðℝÞ with
s ≥ 5/2 and T > 0 be the maximal existence time of the solu-
tion ðu, γÞ to the system (5) with initial data ðu0, γ0Þ. Then,
the corresponding solution blows up in a finite time T <∞
if and only if

lim inf
t⟶T

inf
x∈ℝ

ux t, xð Þf g = −∞: ð11Þ

Consider the following initial value problem of ordinary
differential equation (ODE):

qt = u t, q t, xð Þð Þ, t, xð Þ ∈ 0, Tð Þ ×ℝ,
q 0, xð Þ = x, x ∈ℝ:

(
ð12Þ

The following lemma will be used to prove our theorem.

Lemma 6 (see [30]). Let ðu0, γ0Þ ∈HsðℝÞ ×Hs−1ðℝÞ with
s ≥ 5/2 and T > 0 be the maximal existence time of the solution
ðu, γÞ to the system (5) with initial data ðu0, γ0Þ. Then, we
have

ρ t, q t, xð Þð Þqx t, xð Þ = ρ0 xð Þe−λt ,  t, xð Þ ∈ 0, T½ Þ ×ℝ: ð13Þ
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Moreover, if there exist x0 ∈ℝ such that ρ0ðx0Þ = 0, then
ρðt, qðt, x0ÞÞ = 0 for all t ∈ ½0, TÞ.

Lemma 7 (see [30]). Let ðu0, γ0Þ ∈HsðℝÞ ×Hs−1ðℝÞ with
s ≥ 5/2 and T > 0 be the maximal existence time of the solution
ðu, γÞ to the system (5) with initial data ðu0, γ0Þ. Then, we
have

E tð Þ =
ð
ℝ

u2 + u2x + γ2 + γ2x
� �

dx

= e−2λt
ð
ℝ

u20 + u20x + γ20 + γ20x
� �

dx
ð14Þ

or

E tð Þ = uk k2H1 + γk k2H1 = e−2λt u0k k2H1 + γ0k k2H1

� �
= e−2λtE 0ð Þ:

ð15Þ

Lemma 8. If ρ0ðx0Þ = 0, ρ0ðxÞ ≥ 0 on ð−∞, x0Þ, and ρ0ðxÞ ≤ 0
on ðx0,∞Þ, then for any fixed t,

γ2x t, xð Þ − γ2 t, xð Þ ≤ γ2x t, q t, x0ð Þð Þ − γ2 t, q t, x0ð Þð Þ, ð16Þ

for all x ∈ℝ.

Proof. If x ≤ qðt, x0Þ, then

γ2x t, xð Þ − γ2 t, xð Þ = −
ðq t,x0ð Þ

−∞
eξρ t, ξð Þdξ −

ðq t,x0ð Þ

x
eξρ t, ξð Þdξ

� �

×
ð∞
q t,x0ð Þ

e−ξρ t, ξð Þdξ +
ðq t,x0ð Þ

x
e−ξρ t, ξð Þdξ

 !

= γ2x t, q t, x0ð Þð Þ − γ2 t, q t, x0ð Þð Þ

−
ðx
−∞

eξρ t, ξð Þdξ
ðq t,x0ð Þ

x
e−ξρ t, ξð Þdξ

+
ðq t,x0ð Þ

x
eξρ t, ξð Þdξ

ð∞
q t,x0ð Þ

e−ξρ t, ξð Þdξ

≤ γ2x t, q t, x0ð Þð Þ − γ2 t, q t, x0ð Þð Þ:
ð17Þ

Similarly, if x ≥ qðt, x0Þ, we also have

γ2x t, xð Þ − γ2 t, xð Þ ≤ γ2x t, q t, x0ð Þð Þ − γ2 t, q t, x0ð Þð Þ: ð18Þ

Therefore, we complete the proof of Lemma 8.

3. Proof of Theorem 1

First, multiplying the first equation of the system (5) by 2m
and integrating by parts, we get

d
dt

ð
ℝ
m2dx = −2

ð
ℝ
ummxdx − 4

ð
ℝ
m2uxdx

− 2λ
ð
ℝ
m2dx − 2

ð
ℝ
mργxdx

= −3
ð
ℝ
m2uxdx − 2λ

ð
ℝ
m2dx − 2

ð
ℝ
mργxdx:

ð19Þ

Similarly,

d
dt

ð
ℝ
ρ2dx = −

ð
ℝ
ρ2uxdx − 2λ

ð
ℝ
ρ2dx: ð20Þ

Adding (19) and (20), we have

d
dt

ð
ℝ

m2 + ρ2
� �

dx + 2λ
ð
ℝ

m2 + ρ2
� �

dx

= −3
ð
ℝ
m2uxdx −

ð
ℝ
ρ2uxdx − 2

ð
ℝ
mργxdx:

ð21Þ

Multiplying (21) by e2λt yields

d
dt

e2λt
ð
ℝ

m2 + ρ2
� �

dx
� �

= −3e2λt
ð
ℝ
m2uxdx − e2λt

ð
ℝ
ρ2uxdx

− 2e2λt
ð
ℝ
mργxdx:

ð22Þ

Note that pðxÞ= Δð1/2Þe−jxj; we have ð1 − ∂2xÞ
−1
f = p ∗ f

for all f ∈ L2ðℝÞ and p ∗m = u, where we denote by $ ∗ $
the convolution. Then, taking the Young inequality, one gets

uxk kL∞ = px ∗mk kL∞ ≤ pxk kL2 mk kL2 ≤
1
2 mk kL2 ,ð

ℝ
ρ2uxdx ≤ uxk kL∞

ð
ℝ
ρ2dx ≤

1
2 mk kL2

ð
ℝ
ρ2dx,

ð
ℝ
mργxdx ≤ mk kL∞

ð
ℝ
ργxdx

����
���� = 0:

ð23Þ

Hence, we have

d
dt

e2λt
ð
ℝ

m2 + ρ2
� �

dx
� �

≤
3
2 e

2λt
ð
ℝ
m2dx

� �1/2 ð
ℝ
m2dx

� �

+ 1
2 e

2λt
ð
ℝ
m2dx

� �1/2 ð
ℝ
ρ2dx

� �

≤
3
2 e

2λt
ð
ℝ

m2 + ρ2
� �

dx
� �3/2

= 3
2 e

−λt e2λt
ð
ℝ

m2 + ρ2
� �

dx
� �3/2

:

ð24Þ
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It is easy to derive that

d
dt

e2λt
ð
ℝ

m2 + ρ2
� �

dx
� �− 1/2ð Þ

≥ −
3
4 e

−λt : ð25Þ

Integrating from 0 to t yields

e2λt
ð
ℝ

m2 + ρ2
� �

dx
� �− 1/2ð Þ

−
ð
ℝ

m2
0 + ρ20

� �
dx

� �− 1/2ð Þ

≥
3
4λ e−λt − 1
� 	

≥ −
3
4λ :

ð26Þ

Thus, it follows that

mk k2L2 + ρk k2L2
� �1/2 ≤ e−λt m0k k2L2 + ρ0k k2L2

� �− 1/2ð Þ −
3
4λ

� �−1
,

ð27Þ

due to ðkm0k2L2 + kρ0k2L2Þ
1/2 < ð4λ/3Þ and

uxk kL∞ ≤
1
2 mk kL2 < mk k2L2 + ρk k2L2

� �1/2
< e−λt m0k k2L2 + ρ0k k2L2

� �− 1/2ð Þ −
3
4λ

� �−1
:

ð28Þ

According to Theorem 5, we have that the solution exists
globally in time.

4. Proof of Theorem 2

First, we introduce the following notation:

I tð Þ =
ðq t,x0ð Þ

−∞
eξm t, ξð Þdξ: ð29Þ

Differentiating IðtÞ with respect to x, we get

dI tð Þ
dt

=
ðq t,x0ð Þ

−∞
eξmt t, ξð Þdξ + eq t,x0ð Þm t, q t, x0ð Þð Þqt t, x0ð Þ:

ð30Þ

By using the first equation of the system (5) and integrat-
ing by parts, we have

ðq t,x0ð Þ

−∞
eξmt t, ξð Þdξ

=
ðq t,x0ð Þ

−∞
eξ − umð Þx − uxm − λm − ργx
� �

dξ

= −eξum
���q t,x0ð Þ

−∞
+
ðq t,x0ð Þ

−∞
eξumdξ −

1
2 e

ξ u2−u2x
� ���q t,x0ð Þ

−∞

+ 12

ðq t,x0ð Þ

−∞
eξ u2 − u2x
� �

dξ−λ
ðq t,x0ð Þ

−∞
eξmdξ

+ 1
2 e

q t,x0ð Þγ2x t, q t, x0ð Þð Þ − 1
2 e

q t,x0ð Þγ2 t, q t, x0ð Þð Þ

−
1
2

ðq t,x0ð Þ

−∞
eξ γ2x − γ2
� �

dξ

= −eξum
���q t,x0ð Þ

−∞
+
ðq t,x0ð Þ

−∞
eξ u2 + 1

2 u
2
x

� �
dξ−λ

ðq t,x0ð Þ

−∞
eξmdξ

+12 e
ξu2x

����
q t,x0ð Þ

−∞
−eξuux

���q t,x0ð Þ

−∞
+ 1
2 e

q t,x0ð Þγ2x t, q t, x0ð Þð Þ

−
1
2 e

q t,x0ð Þγ2 t, q t, x0ð Þð Þ− 12
ðq t,x0ð Þ

−∞
eξ γ2x − γ2
� �

dξ: ð31Þ

Note that

ðq t,x0ð Þ

−∞
eξ u2 + 1

2 u
2
x

� �
dξ

= 1
2

ðq t,x0ð Þ

−∞
eξu2dξ+ 12

ðq t,x0ð Þ

−∞
eξ u2 + u2x
� �

dξ

≥
1
2

ðq t,x0ð Þ

−∞
eξu2dξ+ 12

ðq t,x0ð Þ

−∞
2eξuuxdξ

≥
1
2

ðq t,x0ð Þ

−∞
eξu2dξ+ 12

ðq t,x0ð Þ

−∞
eξ u2
� �

x
dξ

= 1
2 e

q t,x0ð Þu2 t, q t, x0ð Þð Þ:

ð32Þ

Inserting (31), (32), and (12) into (30), we have

dI tð Þ
dt

+λ
ðq t,x0ð Þ

−∞
eξmdξ ≥

1
2 e

q t,x0ð Þu2 t, q t, x0ð Þð Þ + 1
2 e

ξu2x

����
q t,x0ð Þ

−∞

−eξuux
���q t,x0ð Þ

−∞
−eξum

���q t,x0ð Þ

−∞

+ eq t,x0ð Þm t, q t, x0ð Þð Þqt t, x0ð Þ
+ 1
2 e

q t,x0ð Þγ2x t, q t, x0ð Þð Þ

−
1
2 e

q t,x0ð Þγ2 t, q t, x0ð Þð Þ

−
1
2

ðq t,x0ð Þ

−∞
eξ γ2x − γ2
� �

dξ

≥
1
2 e

q t,x0ð Þu2 t, q t, x0ð Þð Þ
− eq t,x0ð Þu t, q t, x0ð Þð Þux t, q t, x0ð Þð Þ
+ 1
2 e

q t,x0ð Þu2x t, q t, x0ð Þð Þ

= 1
2 e

q t,x0ð Þ u t, q t, x0ð Þð Þ − ux t, q t, x0ð Þð Þð Þ2:
ð33Þ
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Next, by integrating by parts, we have

I tð Þ =
ðq t,x0ð Þ

−∞
eξm t, ξð Þdξ

=
ðq t,x0ð Þ

−∞
eξudξ+

ðq t,x0ð Þ

−∞
eξuxdξ − eq t,x0ð Þux t, q t, x0ð Þð Þ

= eq t,x0ð Þ u t, q t, x0ð Þð Þ − ux t, q t, x0ð Þð Þð Þ:
ð34Þ

Thus, from (33) and (34), it is obvious that

dI tð Þ
dt

≥
1
2 e

−q t,x0ð ÞI tð Þ2 − λI tð Þ: ð35Þ

Multiplying (35) by e−qðt,x0Þ, we have

e−q t,x0ð Þ dI tð Þ
dt

≥
1
2 e

−2q t,x0ð ÞI tð Þ2 − λe−q t,x0ð ÞI tð Þ: ð36Þ

Due to qtðt, x0Þ = uðt, qðt, x0ÞÞ, adding −qtðt, x0Þe−qðt,x0Þ
IðtÞ to the left side of (36) and −uðt, qðt, x0ÞÞe−qðt,x0ÞIðtÞ to
the right side of (36) yields

d
dt

e−q t,x0ð ÞI tð Þ
� 	

≥
1
2 e−q t,x0ð ÞI tð Þ
� 	2

− λ + uð Þ e−q t,x0ð ÞI tð Þ
� 	

= 1
2 e

−q t,x0ð ÞI tð Þ − λ − u
� �

e−q t,x0ð ÞI tð Þ
� 	

:

ð37Þ

Hence, ðd/dtÞðe−qðt,x0ÞIðtÞÞ > 0 holds as long as ð1/2Þ
e−qðt,x0ÞIðtÞ > λ + u and e−qðt,x0ÞIðtÞ > 0. In view of Lemma 7,
we have

uk kL∞ ≤
1ffiffiffi
2

p uk kH1 ≤
1ffiffiffi
2

p uk k2H1 + γk k2H1
� �1/2

≤
1ffiffiffi
2

p e−λt
ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
:

ð38Þ

Note that in (34) and the condition of Theorem 2, we get

1
2 e

−q0 x0ð ÞI 0ð Þ = 1
2 u0 x0ð Þ − u0x x0ð Þð Þ > λ + 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
≥ λ + u0k kL∞ ≥ λ + u0 x0ð Þ:

ð39Þ

Therefore, we can conclude that ðd/dtÞðe−qðt,x0ÞIðtÞÞ =
ðd/dtÞðuðt, qðt, x0ÞÞ − uxðt, qðt, x0ÞÞÞ > 0 holds. Since uðt,
qðt, x0ÞÞ − uxðt, qðt, x0ÞÞ is a continuous function, so we have

1
2 u t, q t, x0ð Þð Þ − ux t, q t, x0ð Þð Þð Þ > 1

2 u0 x0ð Þ − u0x x0ð Þð Þ

> λ + 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
:

ð40Þ

Lemma 7 implies that uðt, qðt, x0ÞÞ⟶ 0 as t⟶∞, so
there exist a T0 > 0 such that for t > T0

−
1
2 ux t, q t, x0ð Þð Þ > λ + 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
: ð41Þ

Thus, we have

−
1
2 u

2
x t, q t, x0ð Þð Þ − λux t, q t, x0ð Þð Þ

= ux t, q t, x0ð Þð Þ −
1
2 ux t, q t, x0ð Þð Þ − λ

� �

= − ux t, q t, x0ð Þð Þj j −
1
2 ux t, q t, x0ð Þð Þ − λ

� �

< −2 λ + 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p� � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
= −

ffiffiffi
2

p
λ + 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p� � ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
:

ð42Þ

Note that pðxÞ= Δð1/2Þe−jxj, we have ð1 − ∂2xÞ
−1
f = p ∗ f

for all f ∈ L2ðℝÞ and p ∗m = u, where we denote by ∗ the
convolution. Then, we can rewrite the first equation of the
system (5) as follows:

ut + uux + ∂xp ∗ u2 + 1
2 u

2
x +

1
2 γ

2 −
1
2 γ

2
x

� �
+ λu = 0: ð43Þ

Differentiating (43) with respect to x, we get

utx + uuxx = u2 −
1
2 u

2
x +

1
2 γ

2 −
1
2 γ

2
x − p

∗ u2 + 1
2 u

2
x +

1
2 γ

2 −
1
2 γ

2
x

� �
− λux,

ð44Þ

then

d
dt

ux t, q t, x0ð Þð Þ = utx t, q t, x0ð Þð Þ + u t, q t, x0ð Þð Þuxx t, q t, x0ð Þð Þ

= u2 t, q t, x0ð Þð Þ − 1
2 u

2
x t, q t, x0ð Þð Þ

+ 1
2 γ

2 t, q t, x0ð Þð Þ − 1
2 γ

2
x t, q t, x0ð Þð Þ − p

∗ u2 + 1
2 u

2
x +

1
2 γ

2 −
1
2 γ

2
x

� �
− λux t, q t, x0ð Þð Þ

≤ u2 t, q t, x0ð Þð Þ − 1
2 u

2
x t, q t, x0ð Þð Þ − p

∗ u2 + 1
2 u

2
x

� �
− λux t, q t, x0ð Þð Þ

≤
1
2 u

2 t, q t, x0ð Þð Þ − 1
2 u

2
x t, q t, x0ð Þð Þ

− λux t, q t, x0ð Þð Þ,
ð45Þ
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where we used Lemma 6 and the inequality p ∗ ðu2 +
ð1/2Þu2xÞ ≥ ð1/2Þu2. Then, by (42) and (45), we can infer that

dux t, q t, x0ð Þð Þ
dt

< 1
2 u

2 t, q t, x0ð Þð Þ

−
ffiffiffi
2

p
λ + 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p� � ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
:

ð46Þ

Further, by Lemma 7, for sufficiently large t, we have

1
2 u

2 t, q t, x0ð Þð Þ <
ffiffiffi
2

p
−
1
2

� �
λ + 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p� � ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
:

ð47Þ

Then, there exists a T1 such that for t > T1 > T0,

dux t, q t, x0ð Þð Þ
dt

< −
1
2 λ + 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p� � ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
: ð48Þ

Thus, integrating from T1 to t, we get

ux t, q t, x0ð Þð Þ < ux T1, q T1, x0ð Þð Þ
−
1
2 λ + 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p� � ffiffiffiffiffiffiffiffiffi
E 0ð Þ

p
t − T1ð Þ:

ð49Þ

This means that we can choose a T2 > T1 such that for all
t > T2,

−λux t, q t, x0ð Þð Þ < 1
8 u

2
x t, q t, x0ð Þð Þ, ð50Þ

and by Lemma 7, we have

1
2 u

2 t, q t, x0ð Þð Þ < 1
8 u

2
x t, q t, x0ð Þð Þ, ð51Þ

for t > T2.
Then, substituting (50) and (51) into (45) yields

d
dt

ux t, q t, x0ð Þð Þ

≤
1
2 u

2 t, q t, x0ð Þð Þ − 1
2 u

2
x t, q t, x0ð Þð Þ − λux t, q t, x0ð Þð Þ

< 1
8 u

2
x t, q t, x0ð Þð Þ − 1

2 u
2
x t, q t, x0ð Þð Þ + 1

8 u
2
x t, q t, x0ð Þð Þ

= −
1
4 u

2
x t, q t, x0ð Þð Þ,

ð52Þ

which leads to

−
d
dt

1
ux t, q t, x0ð Þð Þ
� �

< −
1
4 , ð53Þ

and integrating from T2 to t gives

0 < −
1

ux t, q t, x0ð Þð Þ < −
1

ux T2, q T2, x0ð Þð Þ −
1
4 t − T2ð Þ:

ð54Þ

Thus, if we suppose that the solution exists globally, then
for sufficiently large t∗ > T2,

0 < −
1

ux t, q t, x0ð Þð Þ < −
1

ux T2, q T2, x0ð Þð Þ −
1
4 t∗ − T2ð Þ < 0,

ð55Þ

which contradicts that the solution blows up in finite time.
Therefore, we complete the proof of Theorem 2.
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