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In the current work, the modified (2 + 1)-dimensional Hietarinta model is considered by employing Hirota’s bilinear scheme.
Likewise, the bilinear formalism is obtained for the considered model. In addition, the periodic-solitary, periodic wave, cross-kink
wave, and interaction between stripe and periodic wave solutions of the mentioned equation by particular coefficients are offered.
.e obtained results may be used in the description of the model in fruitful way. Finally, by using the available situations, the
physical demeanor of solutions is discussed in the given method. We demonstrated that these solutions validated the program
using Maple and found them correct. Moreover, a lot of graphs in some sections to determine the analysis of obtained findings for
the aforementioned equation are given. .e achieved solutions are also verified by using the Maple software. .ese periodic wave
solutions suggest that these three methods are useful, easy to use, and effective than other methods.

1. Introduction

Research in the field of nonlinear wave theory has been
become very interesting due to its applications in sciences
and engineering. Many physical phenomena are represented
as models in the structure of nonlinear PDEs, mostly in the
form of nonlinear integrable equations..ese models clearly
indicate the parameters that affect the phenomenon that are
not seen directly by observing the phenomenon. Various
models have been made in the field of science and engi-
neering that are representing the different phenomenon. For
example, mostly naturally occurring phenomenons are
modeled as modified tan(φ/2)-expansion technique [1], the
homotopy perturbation scheme [2], the csch-function
method [3], the Lie symmetry analysis [4], the Bäcklund

transformation method [5], the sine-Gordon expansion
approach [6], a new nonlinear mathematical programming
model for dynamic cell formation [7], the (G′/G, 1/G), the
modified (G′/ G2) and (1/G′)-expansion schemes [8], and
imperialist competitive algorithm [9]. Except of these
methods, there are other powerful methods such as the
multiple exp-function method [10–13], a new fuzzy classi-
fication algorithm [14], Hirota’s bilinear method [15–21], a
deterministic mathematical mixed integer linear program-
ming model [22], the coupled modified Korteweg-de Vries
equation with nonzero boundary conditions at infinity [23],
the high-order rogue wave of generalized non-linear
Schrödinger equation with nonzero boundary [24], the
supersymmetric constrained B type and C type KP hierar-
chies of Manin-Radul and Jacobian types [25], the (3 + 1)-
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dimensional extended Jimbo–Miwa equations [26], under-
standing by design model as useful tool for a meaningful and
permanent learning [27], and the first integral method for
constructing the exact solutions of the time-fractional Wu-
Zhang system [28].

In Ref. [29], the authors suggested the fuzzy clustering to
discover the optimal number of clusters as an innovation
clustering algorithm in marketing to determine the best
group of customers, similar items, and products. In a
valuable research, the Bayer–Hanck cointegration test,
wavelet coherence, Fourier Toda–Yamamoto, and Brei-
tung–Candelon frequency-domain spectral causality tests
were investigated the causal relationships among carbon
emissions, economic growth, and life expectancy in [30].
Adinda et al. [31] studied students’ metacognitive awareness
failures about solving absolute value problems (AVPs) in
mathematics education, and they found that there was a
significant failure, and three students were sampled from
who had experienced different metacognitive awareness
failures in solving AVPs. In [32], the residual power series
method to solve the (3 + 1)-dimensional nonlinear con-
formable Schrödinger equation with cubic-quintic-septic
nonlinearities along with three test applications was con-
sidered subject to different initial conditions. Two classes of
lump and line rogue wave solutions for a new (2 + 1)-di-
mensional extension of the Hietarinta equation were ob-
tained by means of the Hirota bilinear scheme by Manukure
and Zhou [32]. In [33], the authors showed the existence of
the three-periodic wave solutions numerically for the Hie-
tarinta equation by using the direct method. Both Dirichlet
and Neumann data on some part of the domain boundary
for a family of quasilinear inverse problems to the Laplace
equation coupled with a sequence of nonlinear scalar
equations were recovered [34]. A novel integral transform
involving the product of the Whittaker function and two
Bessel functions of the first kind was employed to Bessel-
Circular-Gaussian beam to generate a new laser beam called
Exton-Gaussian beams [35]. .e complete discrimination
system method was used to construct the exact traveling
wave solutions for fractional coupled Boussinesq equations
in the sense of conformable fractional derivatives by Han
and Li [36]. .e periodic, cross-kink wave solutions were
obtained by the authors of [37] by the help of Hirota bilinear
operator, and also, the semi-inverse variational principle was
utilized for the (2 + 1)-dimensional generalized Hir-
ota–Satsuma–Ito equation. In [38], the effects of Mobile Ad
Wearout on irritation, intrusiveness, engagement, and
loyalty via social media outlets were studied. Author of [39]
studied the mathematical models for global solar radiation
intensity estimation at Shakardara area which is to estimate
atmospheric transparency percentage. Fauzi and Respati
[40] analyzed and studied the differences in students’ critical
thinking skills utilizing the guided discovery learning model
and the problem-based learning model including both
theoretical and practical knowledge and skills, and also, they
used quantitative methods through an experimental ap-
proach. .e present research focuses on the Hirota bilinear
scheme to getting the analytical solutions of nonlinear
(2 + 1)-dimensional wave equation. In this considered

scheme, the solutions are written as a combination of
trigonometric and hyperbolic waves and also a combination
of trigonometric and exponential waves so that the solutions
can adapt easily made by symbolic estimations.

.e fundamental work of this paper is to extract new
analytical findings of (2 + 1)-D generalized Hietarinta
model. For the purpose, determining the solutions of the
shown model by powerful technique has been made. Many
kinds of schemes have been used to determine the new kinds
of solitons of this model, such as, two good papers in ref-
erences [41, 42]. According to used algorithm in reference
[41] the bilinear shape can be driven as follows

D4
x − DxD

3
t + h1D

2
x + h2DxDt + h3D

2
t ϕ.ϕ � 0, (1)

in which u � u(x, y, t) is a unfamiliar solution and hs(s �

1, 2, 3) are all free quantities. According to expansion and
generalization of the Hietarinta-typemodel, [43] was studied
with the below bilinear model form:

D
4
x + DxD

3
t + h1D

2
x + h2DxDt + h3D

2
t − DtDy ϕ.ϕ � 0.

(2)

In addition, by using the following relations

u � 2(lnϕ)x, v � 2(lnϕ), (3)

the following nonlinear equation will be arisen as

6uxuxx + uxxxx + 3ututt + 3utxvtt + uxttt

+ h1uxx + h2utx + h3utt − uty � 0,
(4)

in which vx � u, and h1, h2, and h3 are arbitrary quantities.
Besides, a new (2 + 1)-D extension of equation (4) was
proposed in [44]. On the basis of Hirota bilinear method, a
few nonlinear models have been investigated as the valuable
researches, for example, the coupled nonlinear Schrödinger
equations [45]; the modified coupled Hirota equation by
help of Riemann-Hilbert approach [46]; an extended (2 + 1)-
dimensional Calogero-Bogoyavlenskii-Schiff-like equation
by using the generalized bilinear operators [47]; a gener-
alized (3 + 1) shallow water-like equation through the Hirota
bilinear method and the Cole–Hopf transformation [48]; a
new (3 + 1)-dimensional weakly coupled B-type Kadomt-
sev–Petviashvili equation by constructing the symmetric
positive semidefinite matrix technique [49]. Wave solutions
have been used for different purposes as modeling of
contaminant distribution or biodegradation in environ-
mental engineering [50–52]. Specifically, Janssen et al.
modeled the biodegradation of contaminants in heteroge-
neous aquifers using a semianalytical traveling wave solution
for the one-dimensional reactive transport [50], and Wang
et al. suggested a multimedia fate model to evaluate the fate
of an organic contaminant by a one-dimensional network
kinematic wave equation [51]. Moreover, wave equations
have also been exploited in the analysis of transient flow in
large distribution systems like groundwater [52]. In this
regard, Jaradat et al. analyzed the health risks from the
intrusion of contaminants into the distribution system from
pressure transients. In [53], the multiple-kink solutions and
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singular-kink solutions for (2 + 1)-D coupled Burgers system
with time variable coefficients were obtained by Jaradat and
coworkers.

.is paper investigates new the periodic-solitary, peri-
odic wave, cross-kink wave, and interaction between stripe
and periodic wave solutions for the generalized Hietarinta
equation. We seek to explore two types of soliton solutions
using two different formulas according to trigonometric,
hyperbolic, and rational functions. In addition, we establish
singular and dark soliton findings according to trigono-
metric and hyperbolic, respectively.

.e fundamental work of this paper is to extract new
exact findings of equation (4), and the paper is organized as
follows: in Section 2, the analysis of the governing system via
bilinear form polynomials is formulated to the generalized
(2 + 1)-dimensional nonlinear model. In Sections 3–6, we
obtain the periodic-solitary, periodic wave, cross-kink wave,
and interaction between stripe and periodic wave solutions,
respectively, for the generalized (2 + 1)-dimensional Hie-
tarinta equation. Some conclusions that be gained
throughout the paper have been presented in Section 7.

2. The Bilinear Formalism Euations

.rough ref. [21], take λ � λ(x1, x2, . . . , xn) be a C∞

function with multivariables as follows:

Υn1x1 ,...,njxj
(λ) ≡ Υn1 ,...,nj

λd1x1 ,...,djxj
  � e

− λ
z

n1
x1

· · · z
nj

xj
e
λ
, (5)

with the below formalism (BBPs [21])

λd1x1 ,...,djxj
� z

d1
x1

· · · z
dj

xj
λ, λ0xi
≡ λ, d1

� 0, . . . , n1; . . . ; dj � 0, . . . , nj,
(6)

and we have

Υ1(λ) � λx,Υ2(λ) � λ2x + λ2x,Υ3(λ)

� λ3x + 3λxλ2x + λ3x, . . . , λ � λ(x, t),

Υx,t(λ) � λx,t + λxλt,Υ2x,t(λ)

� λ2x,t + λ2xλt + 2λx,tλx + λ2xλt, . . ..

(7)

.e multidimensional binary Bell polynomial can be
written as

Σn1x1 ,...,njxj
μ1, μ2(  � Υn1 ,...,nj

(λ)|

λd1x1 ,...,djxj
�

μ1d1x1 ,...,djxj
, d1 + d2 + · · · + dj, is odd

μ2d1x1 ,...,djxj
, d1 + d2 + · · · + dj, is even.

⎧⎨

⎩
(8)

We have the following conditions as
Σx μ1(  � μ1x, Σ2x μ1, μ2(  � μ2x + μ21x, Σx,t μ1, μ2( 

� μ2x,t + μ1xμ1t, . . . .
(9)

Proposition 1. Let μ1 � ln(Ω1/Ω2), μ2 � ln(Ω1Ω2), then
the relations between binary Bell polynomials and Hirota
D-operator reads

Σn1x1 ,...,njxj
μ1, μ2( |μ1�ln Ω1/Ω2( ), μ2�ln Ω1Ω2( )

� Ω1Ω2( 
− 1

D
n1
x1

. . . D
nj

xj
Ω1Ω2,

(10)

with Hirota operator



j

i�1
D

ni

ξi
g.η � 

j

i�1

z

zξi

−
z

zξi
′ 

ni

Ω1 ξ1, . . . , ξj Ω2

· ξ1′, . . . , ξj
′ |ξ1�ξ1′,...,ξj�ξj

′

. (11)

Proposition 2. Considering Ξ(c) � 
i

δiPd1ξ1 ,...,djξj
� 0 and

μ1 � ln(Ω1/Ω2), μ1 � ln(Ω1Ω2), we receive


i

δ1iΥn1ξ1 ,...,njξj
μ1, μ2(  � 0,


i

δ1iΥd1ξ1 ,...,djξj
μ1, μ2(  � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

which need to satisfy

R c′, c(  � R c′(  − R(c) � R μ2 + μ1(  − R μ2 − μ1(  � 0. (13)

.e generalized Bell polynomials Υn1x1 ,...,njxj
(ξ) is as

Ω1Ω2( 
− 1

D
n1
ξ1

. . . D
nj

ξj
Ω1Ω2 � Σn1ξ1 ,...,njξj

μ1, μ2( |μ1�ln Ω1/Ω2( ), μ2�ln Ω1Ω2( )

� Σn1ξ1 ,...,njξj
μ1, μ1 + c( |μ1�ln Ω1/Ω2( ), c�ln Ω1Ω2( )

� 

n1

k1

. . . 

nj

kj



j

i�1

ni

ki

 Pk1ξ1 ,...,kjξj
(c)Υ

n1−k1( )ξ1 ,..., nj−kj( ξj

μ1( .

(14)
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.e Cole–Hopf relation is as follows:

Υk1ξ1 ,...,kjξj
μ1 � ln(τ)(  �

τn1ξ1 ,...,njξj

τ
,

Ω1Ω
−1
2 D

n1
x1

. . . D
nj

xj
Ω1Ω2| Ω2�exp(c/2),Ω1/Ω2�τ

� τ− 1


n1

k1

. . . 

nj

kj



j

l�1

nl

kl

⎛⎝ ⎞⎠Pk1ξ1 ,...,klξl
(c)τ n1−k1( )ξ1 ,..., nd−kl( )ξl

,

(15)

with

Υt μ1(  �
τt

τ
,Υ2x μ1, β(  � c2x +

τ2x

τ
,Υ2x,y μ1, μ2( 

�
c2xτy

τ
+
2cx,yτx

τ
+
τ2x,y

τ
.

(16)

Also, based on the above writings, the bilinear frame to
the aforementioned nonlinear model will be as

D
4
x + DxD

3
t + h1D

2
x + h2DxDt + h3D

2
t − DtDy ϕ.ϕ

� 2 ϕxxxxϕ − 4ϕxxxϕx + 3ϕ2xx 

+ ϕxtttϕ − 4ϕtttϕx + 6ϕttϕtx − 4ϕtϕttx + ϕxϕttt( 

+ h1 ϕxxϕ − ϕ2x  + h2 ϕxtϕ − ϕxϕt( 

+ h3 ϕttϕ − ϕ2t  − ϕytϕ − ϕyϕt ] � 0.

(17)

3. Periodic-Solitary Solutions

Here, we utilize to formulate the new exact solutions to the
(2 + 1)-dimensional generalized Hietarinta equation. Con-
sider the following function for studying the periodic-sol-
itary solutions as

ϕ � ϵ3 sin τ1(  + ϵ4sinh τ2(  + ϵ5, τs

� αsx + βsy + δst + ϵs, s � 1, 2.
(18)

Afterwards, the values αs, βs, δs, ϵs(s � 1: 5) will be
found. Bymaking use of equation (18) into equation (17) and
taking the coefficients, each powers of sin(x, y, t) and
sinh(x, y, t) to zero, a system of equations (algebraic) (these
are not collected here for minimalist) for αs, βs, δs, ϵs(s �

1: 5) is yielded. .ese algebraic equations by using the
emblematic computation software like, Maple, give the
following solutions with using u � 2(lnϕ)x and v � 2(lnϕ).

3.1. Set I Solutions

β1 �
3 α21 + α22 

2
α21ε

2
3 − α22ε

2
4  + 3 δ21 + δ22  α21ε

2
3 − α22ε

2
4  α1δ1 + α2δ2(  + ε23 + ε24  α1δ2 − α2δ1(  −α1δ2h3 + α2δ1h3 + α1β2( 

α1δ2 − α2δ1( α2 ε23 + ε24 
,

h1 �
δ21 + δ22  3α1δ

3
1ε

2
3 + 4α1δ1δ

2
2ε

2
3 + α1δ1δ

2
2ε

2
4 − α2δ

2
1δ2ε

2
3 − 4α2δ

2
1δ2ε

2
4 − 3α2δ

2
3ε

2
4  +Φ1

ε23 + ε24  α1δ2 − α2δ1( 
2 ,

Φ1 � δ21 3ε23α
4
1 + 6ε23α

2
1α

2
2 − ε23α

4
2 − 4ε24α

4
2  + δ22 4ε23α

4
1 + α41ε

2
4 − 6α21α

2
2ε

2
4 − 3ε24α

4
2 −

4α1α2δ1δ2 ε23 + ε24  α21 − α22 , h2 �
Φ2

α2 ε23 + ε24  α1δ2 − α2δ1( 
2,

Φ2 � α21 + α22  α1ε
2
3 3α31δ2 − 6α21α2δ1 − α1α

2
2δ2 − 2α23δ1  − α22ε

2
4 α21δ2 − 4α1α2δ1 − 3α22δ2   +

ε23 + ε24  α1δ2 − α2δ1( 
2

−δ2h3 + β2(  − α21α2 6δ41ε
2
3 + 3δ21δ

2
2ε

2
3 + δ42ε

2
3 + 4δ42ε

2
4  + 3α31δ1δ2ε

2
3 δ21 + δ22 

−α1α
2
2δ1δ2 10δ21ε

2
3 + δ21ε

2
4 + 2δ22ε

2
3 − 7δ22ε

2
4  + α32 4δ41ε

2
3 + 4δ41ε

2
4 + 3δ21δ

2
2ε

2
4 + 3δ42ε

2
4 , ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)
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Here, αd, δd, and εk for d � 1: 2, k � 1: 4, β2 are the
unknown parameters. By considering the necessary
assumption:

α2 ε23 + ε24  α1δ2 − α2δ1( 
2 ≠ 0, (20)

by substituting the received above parameters into equation
(18), we obtain an analytical form of rational equation:

u � 2 lnϕ1( x � 2
ϵ3 cos tδ1 + xα1 + yβ1 + ϵ1( α1 + ϵ4cosh tδ2 + xα2 + yβ2 + ϵ2( α2
ϵ3 sin tδ1 + xα1 + yβ1 + ϵ1(  + ϵ4sinh tδ2 + xα2 + yβ2 + ϵ2( 

,

ϕ1 � ϵ3 sin tδ1 + xα1 + yβ1 + ϵ1(  + ϵ4sinh tδ2 + xα2 + yβ2 + ϵ2( .

(21)

If τ2⟶∞, ϕ1 will be constant with any time Figure 1
shows the analysis of treatment of periodic and progress of
soliton wave as hyperbolic function with graphs of ϕ1 with
the following selected parameters:

δ1 � 1, δ2 � 0.5, α1 � 0.1, α2 � 0.5, β2 � 1, h3

� 2, ε1 � 1, ε2 � 2, ε3 � 4, ε4 � 2, t � 1,
(22)

in equation (21).

3.2. Set II Solutions

β1 �
α21 + α22  3ε23α

4
1 − ε23α

2
1α

2
2 − α21α

2
2ε

2
4 + 3ε24α

2
2  + α22δ1 ε23 + ε24  α1h2 + δ1h3(  + α1δ

3
1 3α21ε

2
3 − 4α22ε

2
3 − α22ε

2
4 

α22δ1 ε23 + ε24 
,

β2 �
2α1 α21 + α22  3α21ε

2
3 + α22ε

2
3 − 2α22ε

2
4  + 2δ31 3α21ε

2
3 − 2α22ε

2
3 − 2α22ε

2
4  + α22δ1h2 ε23 + ε24 

α2 ε23 + ε24 δ1
,

h1 �
3ε23α

4
1 + 6ε23α

2
1α

2
2 + 3α1δ

3
1ε

2
3 − ε23α

4
2 − 4ε24α

4
2

α22 ε24 + ε24 
, δ2 � ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Here, αd, ϵk for d � 1: 2, k � 1: 4, δ1 are the unknown
parameters. By considering the necessary assumption,

α22 ε23 + ε24 δ1 ≠ 0, (24)

by substituting the above parameters into equation (18), we
obtain an analytical form of rational equation:

u2 � 2 lnϕ2( x � 2
ϵ3 cos tδ1 + xα1 + yβ1 + ϵ1( α1 + ϵ4cosh xα2 + yβ2 + ϵ2( α2
ϵ3 sin tδ1 + xα1 + yβ1 + ϵ1(  + ϵ4sinh xα2 + yβ2 + ϵ2(  + ϵ5

. (25)

If τ2⟶∞, the periodic-solitary wave outputs
u⟶ 2α2 at every time. Figure 2 shows the analysis of
treatment of periodic and progress of soliton wave as hy-
perbolic function with graphs of ϕ2 with the following se-
lected parameters:

δ1 � 1, δ2 � 0.5, α1 � 0.1, α2 � 0.5, β2 � 1, h2 � 1, h3 � 2, ε1
� 1, ε2 � 2, ε3 � 4, ε4 � 2, t � 1,

(26)

in equation (25).
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3.3. Set III Solutions

α2 � ε5 � 0, β1 �
α1 3α31δ1ε

2
3 + 3δ41ε

2
3 + 3δ21δ

2
2ε

2
3 + 4δ42ε

2
3 + 4δ42ε

2
4  + δ22 ε23 + ε24  α1h2 + δ1h3( 

δ22 ε23 + ε24 
,

β2 � −
α1ε

2
3 α31 + δ31 + δ1δ

2
2  − δ22h3 ε23 + ε24 

δ2 ε23 + ε24 
, h1 �

α31 3δ21ε
2
3 + 4δ22ε

2
3 + δ22ε

2
4  + δ1 δ21 + δ22  3δ21ε

2
3 + 4δ22ε

2
3 + δ22ε

2
4 

α1δ
2
2 ε23 + ε24 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)
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Figure 1: Periodic-solitary solution (24) such that (a) 3-D design of u(x, y, t) at t � 1 and (b) 2D plot of u(x, y, t) at t � 1 andx � −1, 0, 1.
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Figure 2: Periodic-solitary solution (26) such that (a) 3-D design of u(x, y, t) at t � 1 and (b) 2D plot of u(x, y, t) at t � 1, x � −2, 0, 2.
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Here, δd and ϵk for d � 1: 2, k � 1: 4, α1 are the un-
known parameters. By considering the necessary
assumption,

α1δ
2
2 ε23 + ε24 ≠ 0, (28)

and by substituting the above parameters into equation (18),
we obtain an analytical form of rational equation:

u3 � 2 lnϕ3( x �
2ε3 cos tδ1 + xα1 + yβ1 + ε1( α1

ε3 sin tδ1 + xα1 + yβ1 + ε1(  + ε4sinh tδ2 + xα2 + yβ2 + ε2( 
. (29)

If τ3⟶∞, the periodic-solitary solution u⟶ 0 at
every time.

3.4. Set IV Solutions

α1 �
α2ε4
ε3

, β1 �
ε4 2ε23α

4
2 + 2ε24α

4
2 + 2α2δ

3
2ε

2
3 + 2α2δ

3
2ε

2
4 + β2δ2ε

2
4 

ε33δ2
, δ1 �

δ2ε4
ε3

,

h2 � −
ε23α

4
2 − 3ε24α

4
2 + α2ε

3
2ε

2
3 − 3α2δ

3
2ε

2
4 + α22h1ε

2
4 + δ22h3ε

2
3 − β2δ2δ

2
3

δ23δ2α2
, ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Here, εk for k � 1: 4, and α2 and δ2 are the unknown
parameters. By considering the necessary assumption,

ε23δ2α2 ≠ 0, (31)

and by substituting the above parameters into equation (18),
we obtain an analytical form of rational equation:

u4 � 2 ln ϕ4( x � 2
cos tδ2ε4/ε3 + xα2ε4/ε3 + yβ1 + ε1( α2ε4 + ε4cosh tδ2 + xα2 + yβ2 + ε2( α2
ε3 sin tδ2ε4/ε3 + xα2ε4/ε3 + yβ1 + ε1(  + ε4sinh tδ2 + xα2 + yβ2 + ε2( 

. (32)

If τ2⟶∞, the periodic-solitary solution u⟶ 2α2 at
every time. Figure 3 offers the analysis of treatment of pe-
riodic and progress of soliton as hyperbolic function with
graphs of ϕ4 with the following selected parameters:

δ1 � 1, δ2 � 2, α1 � 0.1, α2 � 0.25, β2 � 1, h2 � 1, h3

� 1.5, ϵ1 � 1, ϵ2 � 2, ϵ3 � 4, ϵ4 � 2, t � 1,
(33)

in equation (31).

3.5. Collection V Findings

αi � −δi, i � 1, 2, β1 �
β2δ1
δ2

, h2 �
δ22h1 + δ22h3 − β2δ2

δ22
, ε5 � 0.

(34)

Here, δd, ϵj for d � 1, 2, k � 1: 4, and β2 are the un-
known parameters. By considering the necessary
assumption

δ2 ≠ 0, (35)

and by substituting the above parameters into equation (18),
we obtain an analytical form of rational equation:

u5 � 2 lnϕ5( x � 2
−ε3 cos tδ1 − xδ1 + yβ2δ1/δ2 + ε1( δ1 − ε4cosh tδ2 − xδ2 + yβ2 + ε2( δ2

ε3 sin tδ1 − xδ1 + yβ2δ1/δ2 + ε1(  + ε4sinh tδ2 − xδ2 + yβ2 + ε2( 
. (36)

3.6. Set VI Solutions
αi � −δi, i � 1, 2, β1 � δ1 h1 − h2 + h3( , β2 � δ2 h1 − h2 + h3( .

(37)
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Here, δd, ϵk for d � 1, 2, k � 1: 5 are the unknown pa-
rameters. By considering the necessary assumptions and by

substituting the above parameters into equation (18), we
obtain an analytical form of rational equation

u6 � 2 lnϕ6( x � 2
−ε3 cos ζ1( δ1 − ε4cosh tδ2 − xδ2 + yδ2 h1 − h2 + h3(  + ε2( δ2
ε3 sin ζ1(  + ε4sinh tδ2 − xδ2 + yδ2 h1 − h2 + h3(  + ε2(  + ε5

, ζ1 � tδ1 − xδ1 + yδ1 h1 − h2 + h3(  + ε1.

(38)

4. Periodic Wave Solutions

In this paragraph, we find out some advanced exact periodic
wave soliton solutions to the (2 + 1)-dimensional generalized
Hietarinta equation. Assume the stated function for studying
the periodic wave solutions which is as follows:

ϕ � ε3e
τ1 + ε4e

− τ1 + ε5 cos τ2( , τs � αsx + βsy + δst + εs, s � 1, 2.

(39)

Afterwards, the values αs, βs, δs, εs(s � 1: 5) will be
found. By making use of equation (39) into equation (17)
and taking the coefficients, each powers of eΦ1(x,y,t), eΦ2(x,y,t),
and trigonometric function cos(Φ(x, y, t)) to zero yield a
system of equations (algebraic) (these are not collected here

for minimalist) for αs, βs, δs, εs(s � 1: 5). .ese algebraic
equations by using the emblematic computation software
like, Maple, give the solutions as follows with using u �

2(lnϕ)x and v � 2(lnϕ).

4.1. Set I Findings

αl � −δl, βl � δl h1 − h2 + h3( , l � 1, 2, ϵ3 � 0. (40)

Here, δd, ϵk for d � 1, 2, k � 1: 4 are the unknown pa-
rameters and by substituting the above parameters into
equation (39), we obtain an analytical form of rational
equation:

u � 2 lnϕ1( x � 2
ε4δ1e

ζ1 + ε5 sin tδ2 − xδ2 + yδ2 h1 − h2 + h3(  + ε2( δ2
ε4e

ζ1 + ε5 cos tδ2 − xδ2 + yδ2 h1 − h2 + h3(  + ε2( 
, ζ1 � −tδ1 + xδ1 − yδ1 h1 − h2 + h3(  − ε1. (41)

If τ1⟶∞, the breather outputs u⟶ 2δ1 at every time. 4.2. Set II Solutions

−1

−1
−2

−3
−4

−5
−6−7

−8

−2000

−1000

0

1000

−0.5
0

0.5
1

y

x

(a)

x=−1
x=0
x=1

−12

−10

−8

−6

−4

−2

2

4

6

−1−2−3−4−5−6−7−8 0
y

(b)

Figure 3: Periodic-solitary solution (33) such that (a) 3-D design of u(x, y, t) at t � 1 and (b) 2D plot of u(x, y, t) at t � 1, x � −2, 0, 2.
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β1 � −
4α1ε3ε4 3α51 + 2α31α

2
2 + 3α21δ

3
1 − α1α

4
2 − 4α22δ

3
1  + α1α

2
2ε

2
5 α31 − 2α1α

2
2 + δ31  − 3α62ε

2
5 − α22δ1 4ε3ε4 − ε25  α1h2 + δ1h3( 

α22δ1 4ε3ε4 − ε25 
,

β2 � −
8ε3ε4 3α51 + 4α31α

2
2 + 3α21δ

3
1 + α1α

4
2 − 2α22δ

3
1  + 4α22ε

2
5 α31 + α1α

2
2 + δ31  − α22δ1h2 4ε3ε4 − ε25 

α2 4ε3ε4 − ε25 δ1
,

δ2 � 0, h1 � −4
3α41ε3ε4 + 6α21α

2
2ε3ε4 + 3α1δ

3
1ε3ε4 − α42ε3ε4 + α42ε

2
5

α22 4ε3ε4 − ε25 
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

Here, αd, ϵk for d � 1, 2, k � 1: 5, and δ1 are the un-
known parameters. By considering the necessary
assumption,

α2 4ε3ε4 − ε25 δ1 ≠ 0, (43)

and by substituting the above parameters into the equation
(36), we obtain an analytical form of rational equation:

u2 � 2 lnϕ2( x � 2
ε3α1e

tδ1+xα1+yβ1+ε1 − ε4α1e
− tδ1− xα1− yβ1− ε1 − ε5 sin xα2 + yβ2 + ε2( α2

ε3e
tδ1+xα1+yβ1+ε1 + ε4e

−tδ1−xα1−yβ1−ε1 + ε5 cos xα2 + yβ2 + ε2( 
. (44)

If τ1⟶∞, the breather outputs u⟶ 2α1 at every
time. Figure 4 shows the analysis of treatment of periodic
and progress of breather-wave solutions as exponential and
trigonometric functions with graphs of ϕ1 with the following
selected parameters:

δ1 � 1, α1 � 0.1, α2 � 0.5, h2 � 1, h3 � 2, ε1 � 1, ε2
� 2, ε3 � 4, ε4 � 2, ε5 � 3, t � 1,

(45)

in equation (41).

4.3. Collection III Outputs

α2 � 0, β1 � −
4α1ε3ε4 3α31δ1 + 3δ41 + 3δ21δ

2
2 + 4δ42  − 4α1δ

4
2ε

2
5 − δ22 4ε3ε4 − ε25  α1h2 + δ1h3( 

δ22 4ε3ε4 − ε25 
,

β2 �
4ε3ε4 3α41 + 3α1δ

3
1 + 3α1δ1δ

2
2 + δ22h3  − δ22h3ε

2
5

δ2 4ε3ε4 − ε25 
,

h1 � −
4ε3ε4 3δ21 + 4δ22  α31 + δ31 + δ1δ

2
2  − δ22ε

2
5 α31 + δ31 + δ1δ

2
2 

α1δ
2
2 4ε3ε4 − ε25 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Here, δd, ϵk for d � 1, 2, k � 1: 5, α1, and β2 are the
unknown parameters. By considering the necessary
assumption,

α1δ
2
2 4ε3ε4 − ε25 ≠ 0, (47)

and by substituting the above parameters into equation (39),
we obtain an analytical form of rational equation:

u3 � 2 ln ϕ3( x � 2
ε3α1e

tδ1+xα1+yβ1+ε1 − ε4α1e
− tδ1− xα1− yβ1− ε1

ε3e
tδ1+xα1+yβ1+ε1 + ε4e

−tδ1−xα1−yβ1−ε1 + ε5 cos tδ2 + xα2 + yβ2 + ε2( 
. (48)
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If τ1⟶∞, the periodic outputs u⟶ 2α1 at any time.
Figure 5 shows the analysis of treatment of periodic and
progress of periodic wave solutions as exponential and
trigonometric functions with graphs of ϕ3 with the following
selected parameters:

δ1 � 1, δ−2 � 2, α1 � 0.1, h2 � 1, h3 � 2, ε1 � 1, ε2
� 2, ε3 � 4, ε4 � 2, ε5 � 3, t � 1,

(49)

in equation (48).

4.4. Set IV Solutions

α1 �
α2δ1
δ2

, β1 � −
δ1 2α42δ

2
1 + 2α42δ

2
2 + 2α2δ

2
1δ

3
2 + 2α2δ

5
2 − β2δ

3
2 

δ42
,

h2 � −
3α42δ

2
1 − α42δ

2
2 + 3α2δ

2
1δ

3
2 − α2δ

5
2 + α22δ

2
2h1 + δ42h3 − β2δ

3
2

α2δ
3
2

, ε3 � −
1
4
δ22δ

2
5

δ21ε4
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(50)

Here, δd, ϵk for d � 1, 2, k � 1: 5, α2, and β2 are the
unknown parameters. By considering the necessary
assumption,

α2δ2 ≠ 0, (51)

and by substituting the above parameters into equation (39),
we obtain an analytical form of rational equation:

u4 � 2 lnϕ4( x � 2
−1/4δ22ε

2
5α1/δ

2
1ε4e

tδ1+xα2δ1/δ2+yβ1+ε1 − ε4α1e
− tδ1− xα2δ1/δ2− yβ1− ε1 − ε5 sin tδ2 + xα2 + yβ2 + ε2( α2

−1/4δ22ε
2
5/δ

2
1ε4e

tδ1+xα2δ1/δ2+yβ1+ε1 + ε4e
−tδ1−xα2δ1/δ2−yβ1−ε1 + ε5 cos tδ2 + xα2 + yβ2 + ε2( 

.. (52)

If τ1⟶∞, the breather outputs u⟶ 2α2δ1/δ2 at
every time. Figure 6 shows the analysis of treatment of
periodic and progress of periodic wave solutions as expo-
nential and trigonometric functions with graphs of ϕ4 with
the following selected parameters:

δ1 � 1, δ2 � 0.5, α2 � 0.5, β2 � 0.2, h1 � 1, h3

� 2, ε1 � 1, ε2 � 0.1, ε4 � 2, ε5 � 3, t � 0.5,
(53)

in equation (48).
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0.2

10−1−2−3−4−5 2 3

x=0
x=1

y

(b)

Figure 4: Periodic-wave solution (41) such that (a) 3D design of u(x, y, t) at t � 1 and (b) 2D plot of u(x, y, t) at t � 1, x � −1, 0, 1.
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4.5. Collection V Outputs

αl � −δl, l � 1, 2, β1 �
β2δ1
δ2

, h2 � −
−δ2h1 − δ2h3 + β2

δ2
.

(54)

Here, δd, ϵk for d � 1, 2, k � 1: 5, and β2 are the un-
known parameters. By considering the necessary
assumption,

δ2 ≠ 0, (55)
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Figure 5: Periodic-wave solution (48) such that (a) 3D design of u(x, y, t) at t � 1 and (b) 2D plot of u(x, y, t) at t � 1, x � −2, 0, 2.
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Figure 6: Periodic-wave solution (48) such that (a) 3D design of u(x, y, t) at t � 1 and (b) 2D plot of u(x, y, t) at t � 1, x � −2, 0, 2.

Advances in Mathematical Physics 11



and by substituting the above parameters into equation (39),
we obtain an analytical form of rational equation:

u5 � 2 ln ϕ5( x � 2
−ε3δ1e

tδ1− xδ1+yβ2δ1/δ2+ε1 + ε4δ1e
− tδ1+xδ1− yβ2δ1/δ2− ε1 + ε5 sin tδ2 − xδ2 + yβ2 + ε2( δ2

ε3e
tδ1−xδ1+yβ2δ1/δ2+ε1 + ε4e

−tδ1+xδ1−yβ2δ1/δ2−ε1 + ε5 cos tδ2 − xδ2 + yβ2 + ε2( 
. (56)

4.6. Set VI Solutions.

α1 � θ, α2 � 0, β1 � −
4θδ32 − θδ2h2 − 2δ1δ2h3 + β2δ1

δ2
, h1

� −
−δ21δ2h3 − δ32h3 + β2δ

2
1 + β2δ

2
2

θ2δ2
, ε3 �

1
4
ε25
ε4

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(57)

Here, θ �
���
[3]

√
− δ41 − δ1δ

2
2, δd, εk for d � 1, 2, k � 1: 5

and β2 are the unknown parameters. By considering the
necessary assumption,

δ2θ ≠ 0, (58)

and by substituting the above parameters into equation (39),
we obtain an analytical form of rational equation:

u6 � 2 lnϕ6( x � 2
1/4ε25θe

tδ1+xα1+yβ1+ε1 /ε4 − ε4α1e
− tδ1− xα1− yβ1− ε1

1/4ε25e
tδ1+xα1+yβ1+ε1 /ε4 + ε4e

−tδ1−xα1−yβ1−ε1 + ε5 cos tδ2 + yβ2 + ε2( 
. (59)

4.7. Set VII Solutions

β1 �
−8α21α

2
2 + θ2h3 + α1θh2 + α21h1 − α22h1

θ
, β2 �

α2 −12α21α
2
2 − 4α42 + α1θh2 + 2α21h1 

α1θ
,

δ1 � θ, δ2 � 0, θ �

���
[3]

√
−α41 − 2α21α

2
2 − α42 α21

α1
, ε3 �

1
4
ε25
ε4

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Here, αd, ϵk for d � 1, 2, k � 1: 5 are the unknown pa-
rameters. By considering the necessary assumption,

α1θ ≠ 0, (61)

and by substituting the above parameters into equation (39),
we obtain an analytical form of rational equation:

u7 � 2 lnϕ7( x � 2
1/4ε25α1e

tδ1+xα1+yβ1+ε1 /ε4 − ϵ4α1e
− tθ− xα1− yβ1− ϵ1 − ϵ5 sin xα2 + yβ2 + ϵ2( α2

1/4ε25e
tδ1+xα1+yβ1+ε1 /ε4 + ϵ4e

−tθ−xα1−yβ1−ϵ1 + ϵ5 cos xα2 + yβ2 + ϵ2( 
. (62)

5. Cross-Kink Wave Solutions

In this segment, we utilize to formulate the new exact so-
lutions to the (2 + 1)-dimensional generalized Hietarinta
equation. Consider the following function for studying the
cross-kink wave solutions as

ϕ � e
− τ1 + ε4e

τ1 + ε5 sin τ2(  + ε6sinh τ3( , τs

� αsx + βsy + δst + εs, s � 1: 3.
(63)

Afterwards, the values αs, βs, δs, ϵs(s � 1: 3) will be
found. By making use of equation (63) into (17) and taking
the coefficients, each powers of eΦ(x,y,t), sin(x, y, t), and
sinh(x, y, t) to zero yield a system of equations (algebraic)
(these are not collected here for minimalist) for
αs, βs, δs, ϵs(s � 1: 3). .ese algebraic equations by using
the emblematic computation software like, Maple, give
the following solutions with using u � 2(lnϕ)x and
v � 2(lnϕ).
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5.1. Set I Solutions

β1 �
α23ε

2
6 α41 + 2α21α

2
3 + α1δ

3
1 − 3α43  + 4α1ε4 3α51 − 2α31α

2
3 + 3α21δ

3
1 − α1α

4
3 + 4α23δ

3
1  + α23δ1 ε26 + 4ε4  α1h2 + δ1h3( 

α23δ1 ε26 + 4ε4 
,

β3 �
4α23ε

2
6 α31 − α1α

2
3 + δ31  + 8ε4 3α51 − 4α31α

2
3 + 3α21δ

3
1 + α1α

4
3 + 2α23δ

3
1  + α23δ1h2 ε26 + 4ε4 

α3 ε26 + 4ε4 δ1
,

δ3 � 0, h1 � 4
−α43ε

2
6 + ε4 3α41 − 6α21α

2
3 + 3α1δ

3
1 − α43 

α23 ε26 + 4ε4 
, ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

Here, αd, ϵk for d � 1: 2, k � 1: 6, β2, δ1, and δ2 are the
unknown parameters. By considering the necessary
assumption,

α23δ1 ε26 + 4ε4 ≠ 0, (65)

and by substituting the above parameters into equation (63),
we obtain an analytical form of rational equation:

u1 � 2 lnϕ1( x � 2
−α1e

− ζ1 + ε4α1e
ζ1 + ε6cosh xα3 + yβ3 + ε3( α3

e
−ζ1 + ε4e

ζ1 + ε6sinh xα3 + yβ3 + ε3( 
, ζ1 � tδ1 + xα1 + yβ1 + ε1. (66)

If τ1⟶∞, the breather outputs u⟶ 2α3 at every
time.

5.2. Set II Solutions

α3 � ε5 � 0, β1 �
4α1δ

4
3ε

2
6 + 4α1ε4 3α31δ1 + 3δ41 − 3δ21δ

2
3 + 4δ43  + δ23 ε26 + 4ε4  α1h2 + δ1h3( 

δ23 ε26 + 4ε4 
,

β3 � −
12α1ε4 α31 + δ31 − δ1δ

2
3  − δ23h3 ε26 + 4ε4 

δ3 ε26 + 4ε4 
,

h1 �
−δ23ε

2
6 α31 + δ31 − δ1δ

2
3  + 4ε4 3δ21 − 4δ23  α31 + δ31 − δ1δ

2
3 

α1δ
2
3 ε26 + 4ε4 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)

Here, δd, ϵk for d � 1: 3, k � 1: 6, α1, α2, and β2 are the
unknown parameters. By considering the necessary
assumption,

α1δ
2
3 ε26 + 4ε4 ≠ 0, (68)

and by substituting the above parameters into equation (63),
we obtain an analytical form of rational equation:

u2 � 2 lnϕ2( x � 2
−α1e

− ζ1 + ε4α1e
ζ1

e
−ζ1 + ε4e

ζ1 + ε6sinh tδ3 + yβ3 + ε3( 
, ζ1

� tδ1 + xα1 + yβ1 + ε1.
(69)

If τ3 > τ1⟶∞, the cross-kink outputs u⟶ 0 at every
t, but if τ3 < τ1⟶∞, the cross-kink outputs u⟶ 2α1 at
every time.

5.3. Set III Solutions

β1 �
8α43 + 8α3δ

3
3 + 2α23h1 + 2α3δ3h2 + 2δ23h3 − β3δ3

δ3
, ε4

� −
1
4
ε26, ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(70)
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Here αd, δd, ϵk for d � 1: 3, k � 1: 6, β2, and β3 are the
unknown parameters. By considering the necessary
assumption,

δ3 ≠ 0, (71)

and by substituting the above parameters into equation (63),
we obtain an analytical form of rational equation:

u3 � 2 ln ϕ3( x � 2
−α1e

− tδ1− xα1− yβ1− ε1 − 1/4ε26α1e
tδ1+xα1+yβ1+ε1 + ε6cosh tδ3 + xα3 + yβ3 + ε3( α3

e
−tδ1−xα1−yβ1−ε1 − 1/4ε26e

tδ1+xα1+yβ1+ε1 + ε6sinh tδ3 + xα3 + yβ3 + ε3( 
. (72)

If τ3 > τ1⟶∞, the cross-kink outputs u⟶ 2α3 at
every time, but if τ3 < τ1⟶∞, the cross-kink outputs
u⟶ 2α1 at any t.

5.4. Set IV Solutions

α1 � θ, α3 � 0, β1 �
4θδ33 + θδ3h2 + 2δ1δ3h3 − β3δ1

δ3
, h1 � −

−δ21δ3h3 + δ33h3 + β3δ
2
1 − β3δ

2
3

θ2δ3
,

ε4 � −
1
4
ε26, ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(73)

Here, θ �
���
[3]

√
− δ31 + δ1δ

2
3, αd, δd, εk for

d � 1: 3, k � 1: 6, β2, and β3 are the unknown parameters.
By considering the necessary assumption,

δ3 ≠ 0, (74)

and by substituting the above parameters into equation (63),
we obtain an analytical form of rational equation:

u4 � 2 lnϕ4( x � 2
−α1e

− ζ1 − 1/4ε26α1e
ζ1 + ε6cosh tδ3 + xα3 + yβ3 + ε3( α3

e
−ζ1 − 1/4ε26e

ζ1 + ε6sinh tδ3 + xα3 + yβ3 + ε3( 
, ζ1 � tδ1 + xα1 + yβ1 + ε1. (75)

If τ3 > τ1⟶∞, the cross-kink outputs u⟶ 2α3 at
every time, but if τ3 < τ1⟶∞, the cross-kink outputs
u⟶ 2α1 at every time.

5.5. Set V Solutions.

α1 � θ, α3 � 0, β1 �
4θδ33 + θδ3h2 + 2δ1δ3h3 − β3δ1

δ3
,

h1 � −
−δ21δ3h3 + δ33h3 + β3δ

2
1 − β3δ

2
3

θ2δ3
, ε4 � −

1
4
ε26, ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(76)

Here, θ �
���
[3]

√
− δ31 + δ1δ

2
3, αd, δd, εk for

d � 1: 3, k � 1: 6, β2, and β3 are the unknown parameters.
By considering the necessary assumption,

δ3 ≠ 0, (77)

and by substituting the above parameters into equation (63),
we obtain an analytical form of rational equation:

u5 � 2 lnϕ5( x � 2
−α1e

− ζ1 − 1/4ε26α1e
ζ1 + ε6cosh tδ3 + xα3 + yβ3 + ε3( α3

e
−ζ1 − 1/4ε26e

ζ1 + ε6sinh tδ3 + xα3 + yβ3 + ε3( 
, ζ1 � tδ1 + xα1 + yβ1 + ε1. (78)

If τ3 > τ1⟶∞, the cross-kink outputs u⟶ 2α3 at
every time, but if τ3 < τ1⟶∞, the cross-kink outputs
u⟶ 2α1 at any time. Figure 7 show the analysis of

treatment of cross-kink wave as periodic and hyperbolic
function with graphs of ϕ5 with the following selected
parameters:
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δ1 � 1, δ3 � 0.5, α1 � 1, α2 � 2, α3 � 3, β3 � 0.2, h2 � 1,

h3 � 2, ε1 � 1, ε2 � 0.1, ε3 � 2, ε4 � 3, ε5 � 2, t � 0.5,

(79)

in equation (74).

5.6. Set VI Solutions

α2 � ε6 � 0, β1 � −
−4α1δ

4
2ε

2
5 + 4α1ε4 3α31δ1 + 3δ41 + 3δ21δ

2
2 + 4δ42  − δ22 −ε25 + 4ε4  α1h2 + δ1h3( 

δ22 −ε35 + 4ε4 
,

β2 �
12α1ε4 α31 + δ31 + δ1δ

2
2  − δ22h3ε

2
5 + 4δ22h3ε4

δ2 −ε35 + 4ε4 
,

h1 � −
−δ22ε

2
5 α31 + δ31 + δ1δ

2
2  + 4ε4 3δ21 + 4δ22  α31 + δ31 + δ1δ

2
2 

α1δ
2
2 −ε25 + 4ε4 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(80)

Here, δd, ϵk for d � 1: 3, k � 1: 6, α1, α3, and β3 are the
unknown parameters. By considering the necessary
assumption,

α1δ
2
2 −ε25 + 4ε4 ≠ 0, (81)

and by substituting the above parameters into equation (63),
we obtain an analytical form of rational equation:

u6 � 2 lnf6( x � 2
−α1e

− tδ1− xα1− yβ1− ε1 + ε4α1e
tδ1+xα1+yβ1+ε1

e
−tδ1−xα1−yβ1−ε1 + ε4e

tδ1+xα1+yβ1+ε1 + ε5 sin tδ2 + yβ2 + ε2( 
. (82)

−3
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−2
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0

1
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3
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−3

−2

−1

−0.1−0.2 0
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x=0.2

y

(b)

Figure 7: Cross-kink solution (78) such that (a) 3D design of u(x, y, t) at t � 1 and (b) 2D plot of u(x, y, t) at t � 1, x � −0.2, 0, 0.2.
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If τ2 > τ1⟶∞, the cross-kink outputs u⟶ 0 at every
time, but if τ2 < τ1⟶∞, the cross-kink outputs u⟶ 2α1
at every time.

5.7. Set VII Solutions

α1 �
α2δ1
δ2

, β1 � −
δ1 2α42δ

2
1 + 2α42δ

2
2 + 2α2δ

2
1δ

3
2 + 2α2δ

5
2 − β2δ

3
2 

δ42
,

h2 � −
3α42δ

2
1 − α42δ

2
2 + 3α2δ

2
1δ

3
2 − α2δ

5
2 + α22δ

2
2h1 + δ42h3 − β2δ

3
2

α2δ
3
2

, ε4 � −
1
4
δ22ε

2
5

δ21
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(83)

Here δd, ϵk for d � 1: 3, k � 1: 6, α2, α3, β2, and β3 are
the unknown parameters. By considering the necessary
assumption,

α2δ2 ≠ 0, (84)

and by substituting the above parameters into equation (63),
we obtain an analytical form of rational equation:

u7 � 2 lnf7( x � 2
−α1e

− tδ1− xα2δ1/δ2− yβ1− ε1 − 1/4δ2ε
2
5α2/δ1e

tδ1+xα2δ1/δ2+yβ1+ε1 + ε5 cos tδ2 + xα2 + yβ2 + ε2( α2
e

−tδ1−xα2δ1/δ2−yβ1−ε1 − 1/4δ22ε
2
5/δ

2
1e

tδ1+xα2δ1/δ2+yβ1+ε1 + ε5 sin tδ2 + xα2 + yβ2 + ε2( 
. (85)

If τ1⟶∞, the cross-kink wave outputs
u⟶ 2α2δ1/δ2 at any time.

5.8. Set VIII Solutions

αl � −δl, l � 1, 2, β1 �
β2δ1
δ2

, h2 � −
−δ2h1 − δ2h3 + β2

δ2
,

ε6 � 0, θ �

���
[3]

√
−α41 − 2α21α

2
2 − α42 α21

α1
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(86)

Here δd, ϵk for d � 1: 3, k � 1: 5, α3, β2, and β3 are ar-
bitrary inputs, and the following case is considered as

δ2 ≠ 0. (87)

By substituting the above parameters into equation (63),
we obtain an analytical form of rational equation:

u8 � 2 lnϕ8( x � 2
−α1e

− tθ− xα1− yβ1− ε1 + 1/4ε25α1e
tθ+xα1+yβ1+ε1 + ε5 cos xα2 + yβ2 + ε2( α2

e
−tθ−xα1−yβ1−ε1 + 1/4ε25e

tθ+xα1+yβ1+ε1 + ε5 sin xα2 + yβ2 + ε2( 
. (88)

If τ1⟶∞, the cross-kink wave outputs u⟶ 2α1 at
any time.

6. Interaction between Stripe and Periodic
Wave Solutions

In this paragraph, we find out some advanced exact inter-
action between stripe and periodic wave solutions to the
(2 + 1)-dimensional generalized Hietarinta equation. As-
sume the stated function for studying the interaction of
solutions as

ϕ � e
− τ1 + ε4e

τ1 + ε5 cos τ2(  + ε6cosh τ3( , τs

� αsx + βsy + δst + εs, s � 1: 3.
(89)

Afterwards, the values αs, βs, δs, ϵs(s � 1: 3) will be
found. By making use of equation (18) into (17) and taking
the coefficients, each powers of cos(x, y, t) and cosh(x, y, t)

and exponential function to zero yield a system of equations
(algebraic) (these are not collected here for minimalist) for
αs, βs, δs, ϵs(s � 1: 3). .ese algebraic equations by using the
emblematic computation software like, Maple, give the
following solutions with using u � 2(lnϕ)x and v � 2(lnϕ).
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6.1. Set I Solutions

β1 �
−α23ε

2
6 α31 + 2α21α

2
3 + α1δ

3
1 − 3α43  + 4α1ε4 3α51 − 2α31α

2
3 + 3α21δ

3
1 − α1α

4
3 + 4α23δ

3
1  + α23δ1 −ε26 + 4ε4  α1h2 + δ1h3( 

α23δ1 −ε26 + 4ε4 
,

β3 �
−4α23ε

2
6 α31 − α1α

2
3 + δ31  + 8ε4 3α51 − 4α31α

2
3 + 3α21δ

3
1 + α1α

4
3 + 2α23δ

3
1  + α23δ1h2 −ε26 + 4ε4 

α3 −ε26 + 4ε4 δ1
,

δ3 � 0, h1 � 4
α43ε

2
6 + 3α41ε4 − 6α21α

2
3ε4 + 3α1δ

3
1ε4 − α43ε4

α23 −ε26 + 4ε4 
, ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(90)

Here, αd, ϵk for d � 1: 2, k � 1: 6, β2, δ1, and δ2 are the
unknown parameters. By considering the necessary
assumption,

α23δ1 ε26 + 4ε4 ≠ 0, (91)

and by substituting the above parameters into equation (89),
we obtain an analytical form of rational equation:

u1 � 2 lnϕ1( x � 2
−α1e

− ζ1 + ε4α1e
ζ1 + ε6sinh xα3 + yβ3 + ε3( α3

e
−ζ1 + ε4e

ζ1 + ε6cosh xα3 + yβ3 + ε3( 
, ζ1 � tδ1 + xα1 + yβ1 + ε1. (92)

If τ1⟶∞, the breather outputs u⟶ 2α3 at very
time.

6.2. Set II Solutions

α3 � ε5 � 0, β1 �
−4α1δ

4
3ε

2
6 + 4α1ε4 3α31δ1 + 3δ41 − 3δ21δ

2
3 + 4δ43  + δ23 −ε26 + 4ε4  α1h2 + δ1h3( 

−ε26 + 4ε4 δ23
,

β3 � −
12α41ε4 + 12α1δ

3
1ε4 − 12α1δ1δ

2
3ε4 + δ23h3ε

2
6 − 4δ23h3ε4

δ3 −ε26 + 4ε4 
,

h1 �
δ23ε

2
6 α31 + δ31 − δ1δ

2
3  + 4ε4 3δ21 − 4δ23  α41 + δ31 − δ1δ

2
3 

α1δ
2
3 −ε26 + 4ε4 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(93)

Here δd, ϵk for d � 1: 3, k � 1: 6, α1, α2, β2 are the un-
known parameters. By considering the necessary
assumption,

α1δ
2
3 ε26 + 4ε4 ≠ 0, (94)

and by substituting the above parameters into equation (89),
we obtain an analytical form of rational equation:

u2 � 2 lnϕ2( x � 2
−α1e

− ζ1 + ε4α1e
ζ1

e
−ζ1 + ε4e

ζ1 + ε6cosh tδ3 + xα3 + yβ3 + ε3( 
, ζ1

� tδ1 + xα1 + yβ1 + ε1.

(95)

If τ3 > τ1⟶∞, the interaction between stripe and
periodic wave outputs u⟶ 0 at every time, but if
τ3 < τ1⟶∞, the cross-kink outputs u⟶ 2α1 at every
time.

6.3. Set III Solutions

β1 �
4α43 + 4α3δ

3
3 + α23h1 + α3δ3h2 + δ23h3

δ3
, β3

�
4α43 + 4α3δ

3
3 + α23h1 + α3δ3h2 + δ23h3

δ3
, ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(96)
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Here, αd, δd, ϵk for d � 1: 3, k � 1: 6, β2 , and β3 are the
unknown parameters. By considering the necessary
assumption,

δ3 ≠ 0, (97)

and by substituting the above parameters into equation (89),
we obtain an analytical form of rational equation:

u3 � 2 lnϕ3( x

� 2
−α1e

− ζ1 + ε4α1e
ζ1 + ε6sinh tδ3 + xα3 + yβ3 + ε3( α3

e
−tδ1−xα1−yβ1−ε1 + ε4e

ζ1 + ε6cosh tδ3 + xα3 + yβ3 + ε3( 
.

(98)

If τ3 > τ1⟶∞, the cross-kink outputs u⟶ 2α3 at
every time, but if τ3 < τ1⟶∞, the cross-kink outputs
u⟶ 2α1 at any time.

6.4. Set IV Solutions

α1 � −α3, β1 � 2δ3h3 − β3, h1 � −4α23, ε4 �
1
4
ε26, ε5 � 0.

(99)

Here, δd, ϵk for d � 1: 3, k � 1: 6, α2, α3, β2, and β3 are
the unknown parameters, and by considering the necessary
assumption and also by substituting the above parameters
into equation (89), we obtain an analytical form of rational
equation:

u4 � 2 ln ϕ4( x � 2
−α3e

− tδ1+xα3− y 2δ3h3− β3( )− ε1 − 1/4α3ε
2
6e

tδ1− xα3+y 2δ3h3− β3( )+ε1 + ε6sinh tδ3 + xα3 + yβ3 + ε3( α3
e

tδ1−xα3+y 2δ3h3−β3( )+ε1 + 1/4ε26e
tδ1−xα3+y 2δ3h3−β3( )+ε1 + ε6cosh tδ3 + xα3 + yβ3 + ε3( 

. (100)

If τ3 > τ1⟶∞, the interaction of outputs u⟶ 2α3 at
any t, but if τ3 < τ1⟶∞, the the interaction of outputs
u⟶ 2α1 at any time.

6.5. Set V Solutions

α1 � −α3, β1 � −
4α43 + 4α3δ

3
3 + α23h1 + α3δ3h2 + δ23h3

δ3
,

β3 �
4α43 + 4α3δ

3
3 + α23h1 + α3δ3h2 + δ23h3

δ3
, δ1 � −δ3, ε5 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(101)

Here, αd, δd, ϵk for d � 1: 3, k � 1: 6, β2, and β3 are the
unknown parameters. By considering the necessary
assumption,

δ3 ≠ 0, (102)

and by substituting the above parameters into equation (89),
we obtain an analytical form of rational equation equation:

u5 � 2 lnϕ5( x � 2
−α1e

tδ3+xα3− yβ1− ε1 + ε4α1e
− tδ3− xα3+yβ1+ε1 + ε6sinh tδ3 + xα3 + yβ3 + ε3( α3

e
tδ3+xα3−yβ1−ε1 + ε4e

−tδ3−xα3+yβ1+ε1 + ε6cosh tδ3 + xα3 + yβ3 + ε3( 
. (103)

If τ3 > τ1⟶∞, the interaction of solution u⟶ 2α3 at
any t, but if τ3 < τ1⟶∞, the interaction of solution
u⟶ 2α1 at any time.

6.6. Set VI Solutions

α2 � ε6 � 0, β1 � −
−4α1δ

4
2ε

2
5 + 4α1ε4 3α31δ1 + 3δ41 + 3δ21δ

2
2 + 4δ42  − δ22 −ε25 + 4ε4  α1h2 + δ1h3( 

δ22 −ε25 + 4ε4 
,

β2 �
12α1ε4 α31 + δ31 + δ1δ

2
2  + δ22h3 −ε25 + 4ε4 

δ2 −ε25 + 4ε4 
,

h1 � −
−δ22ε

2
5 α31 + δ31 + δ1δ

2
2  + 4ε4 321 + 4δ22  α31 + δ31 + δ1δ

2
2 

α1δ
2
2 −ε25 + 4ε4 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(104)
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Here, δd, ϵk for d � 1: 3, k � 1: 6, α2, α3, and β3 are the
unknown parameters. By considering the necessary
assumption,

α1δ
2
2 −ε25 + 4ε4 ≠ 0, (105)

and by substituting the above parameters into equation (89),
we obtain an analytical form of rational equation:

u6 � 2 lnϕ6( x � 2
−α1e

− tδ1− xα1− yβ1− ε1 + ε4α1e
tδ1+xα1+yβ1+ε1

e
−tδ1−xα1−yβ1−ε1 + ε4e

tδ1+xα1+yβ1+ε1 + ε5 cos tδ2 + yβ2 + ε2( 
. (106)

If τ1⟶∞, the interaction between stripe and periodic
wave solution u⟶ 2α1 at any t. Figure 8 shows the analysis
of treatment of interaction of solutions as periodic and
hyperbolic functions with graphs of ϕ6 with the following
selected parameters:

δ1 � 0.3, δ2 � 2, δ3 � 1, α1 � 0.1, α3 � 0.5, β3 � 1, h2 � 2,

h3 � 3, ε1 � 1, ε2 � 2, ε3 � 4, ε4 � 2, ε5 � 1, t � 0.1,

(107)

in equation (102).

6.7. Set VII Solutions

α1 � θ, α2 � ε6 � 0, β1 � −
4θδ32 − θδ2h2 − 2δ1δ2h3 + β2δ1

δ2
,

h1 � −
−δ21δ2h3 − δ32h3 + β2δ

2
1 + β2δ

2
2

θ2δ2
, ε4 �

1
4
ε25.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(108)

Here, θ �
���
[3]

√
− δ31 − δ1δ

2
2, δd, ϵk for d � 1: 3, k � 1: 3,

α3, β2, and β3 are the unknown parameters. By considering
the necessary assumption,

δ2 ≠ 0, (109)

and by substituting the above parameters into equation (89),
we obtain an analytical form of rational equation:

u7 � 2 lnϕ7( x � 2
−α1e

− tδ1− x
��
[3]

√
− δ31− δ1δ

2
2− yβ1− ε1 + 1/4ε25α1e

tδ1+x
��
[3]

√
− δ31− δ1δ

2
2+yβ1+ε1

e
−tδ1−x

��
[3]

√
−δ31−δ1δ

2
2−yβ1−ε1 + 1/4ε25e

tδ1+x
��
[3]

√
−δ31−δ1δ

2
2+yβ1+ε1 + ε5 cos tδ2 + yβ2 + ε2( 

. (110)

If τ1⟶∞, the interaction between stripe and periodic
wave solution u⟶ 2α1 at any t. Figure 9 shows the analysis
of treatment of interaction of solutions as periodic and
hyperbolic functions with graphs of ϕ7 with the following
selected parameters:

δ1 � −1.2, δ2 � 1, δ3 � 1, α3 � 0.5, β3 � 1, h2 � 2, h3

� 3, ε1 � 1, ε2 � 0.2, ε3 � 4, ε5 � 1, t � 0.01,
(111)

in equation (106).

6.8. Set VIII Solutions

αi � −δi, i � 1, 2, β1 �
β2δ1
δ2

, h2

� −
−δ2h1 − δ2h3 + β2

δ2
, ε6 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(112)

Here, δd, ϵk for d � 1: 3, k � 1: 5, α3, β2, and β3 are the
unknown parameters. By considering the necessary
assumption,

δ2 ≠ 0, (113)

and by substituting the above parameters into equation (89),
we obtain an analytical form of rational equation:
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u8 � 2 ln ϕ8( x � 2
δ1e

− tδ1+xδ1− yβ2δ1/δ2− ε1 − ε4δ1e
tδ1− xδ1+yβ2δ1/δ2+ε1 + ε5 sin tδ2 − xδ2 + yβ2 + ε2( δ2

e
−tδ1+xδ1−yβ2δ1/δ2−ε1 + ε4e

tδ1−xδ1+yβ2δ1/δ2+ε1 + ε5 cos tδ2 − xδ2 + yβ2 + ε2( 
. (114)
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Figure 8: Interaction between stripe and periodic wave solution (107) such that (a) 3D design of u(x, y, t) at t � 1 and (b) 2D plot of
u(x, y, t) at t � 1, x � −3, 0, 3.
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Figure 9: Interaction between stripe and periodic wave solution (111) such that (a) 3D design of u(x, y, t) at t � 1 and (b) 2D plot of
u(x, y, t) at t � 1, y � −1, 0, 1.
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6.9. Set IX Solutions

α2 � θ, β1 � −
4α63 + 4α33δ

3
3 + θ2 4α43 − 4α3δ

3
3 − α3δ3h2 − δ23h3 

θ2δ3
,

β2 � −
4α53 + 4α23δ

3
3 + θ2 4α33 − 4δ33 − δ3h2 

θδ3
,

β3 � −
4α63 + 4α33δ

3
3 + θ2 4α43 − 4α3δ

3
3 − α3δ3h2 − δ23h3 

θ2δ3
,

δ2 � 0, h1 � −4
α3 2α3θ

2
+ α33 + δ33 

θ2
, α1 � α3, δ1 � δ3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(115)

Here, ϵk for k � 1: 6, α3, and δ3 are free values. Also, θ
solves the θ4 + 2θ2α23 + α43 + α3δ

3
3 � 0. By considering the

necessary assumption,

θδ3 ≠ 0, (116)

and by substituting the above parameters into equation (89),
we obtain an analytical form of rational equation:

u9 � 2
−α3e

− tδ3− xα3− yβ1− ε1 + ε4α3e
tδ3+xα3+yβ1+ε1 − ε5 sin xθ + yβ2 + ε2( θ + ε6sinh tδ3 + xα3 + yβ3 + ε3( α3

e
−tδ3−xα3−yβ1−ε1 + ε4e

tδ3+xα3+yβ1+ε1 + ε5 cos xθ + yβ2 + ε2(  + ε6cosh tδ3 + xα3 + yβ3 + ε3( 
. (117)

If τ3 > τ1⟶∞, the the interaction between stripe and
periodic wave solution u⟶ 2α3 at any t, but if τ3 < τ1⟶
∞, the interaction between stripe and periodic wave solution

u⟶ 2α1 at any t. Figure 10 shows the analysis of treatment of
interaction of solutions as periodic and hyperbolic functions
with graphs of ϕ9 with the following selected parameters:
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Figure 10: Interaction between stripe and periodic wave solution (117) such that (a) 3D design of u(x, y, t) at t � 1 and (b) 2D plot of
u(x, y, t) at t � 1, x � −3, 0, 3.
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δ1 � −1.2, δ2 � 1, δ3 � 3, α3 � −0.5, β2
� 1, β3 � 1, h2 � 2, h3 � 3,

ε1 � 1, ε2 � 0.1, ε3 � 3, ε4
� 4, ε5 � 5, ε6 � 4, t � 1,

(118)

in equation (117).

7. Conclusion

.is article investigated the soliton and periodic solutions of
the generalized Hietarinta equation. .e Cole–Hopf algo-
rithm has been described by means of binary Bell polyno-
mials. .e governing equation is translated to nonlinear
ODE using Hirota transformation. Various types of soliton,
breather, and periodic solutions have been constructed in
terms of exponential, hyperbolic, trigonometric, and ra-
tional functions. .e dynamic features of different types of
traveling waves are analyzed in detail through numerical
simulation. Meanwhile, the profiles of the surface for the
deduced solutions have been depicted in 2D and 3D for the
obtained solutions. .e gained solutions may be applied to
explain the model in simple and straight forward way. At the
end, it is concluded that, to handle nonlinear partial dif-
ferential equations, Hirota bilinear technique suggested an
effective and well-built mathematical tools. .ese solutions
are also verified by using Maple software.
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