Research Article

Periodic, Cross-Kink, and Interaction between Stripe and Periodic Wave Solutions for Generalized Hietarinta Equation: Prospects for Applications in Environmental Engineering

Guangping Li 1, Jalil Manafian 2,3, Mirmehdi Seyyedi 4, R. Sivaraman 5, and Subhiya M. Zeynalli 6

1 Cangzhou Preschool Teachers College, Cangzhou Hebei 062150, China
2 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
3 Natural Sciences Faculty, Lankaran State University, 50, H. Aslanov str., Lankaran, Azerbaijan
4 Department of Civil and Architectural Engineering, University of Wyoming, Laramie 82071, USA
5 Department of Mathematics, D. G. Vaishnav College, Chennai, India
6 Ganja State University, Haydar Aliyev ave., 429, Ganja, Azerbaijan

Correspondence should be addressed to Jalil Manafian; j_manafianheris@tabrizu.ac.ir

Received 18 October 2021; Accepted 9 February 2022; Published 27 March 2022

Academic Editor: Antonio Scarfone

Copyright © 2022 Guangping Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the current work, the modified (2 + 1)-dimensional Hietarinta model is considered by employing Hirota’s bilinear scheme. Likewise, the bilinear formalism is obtained for the considered model. In addition, the periodic-solitary, periodic wave, cross-kink wave, and interaction between stripe and periodic wave solutions of the mentioned equation by particular coefficients are offered. The obtained results may be used in the description of the model in fruitful way. Finally, by using the available situations, the physical demeanor of solutions is discussed in the given method. We demonstrated that these solutions validated the program using Maple and found them correct. Moreover, a lot of graphs in some sections to determine the analysis of obtained findings for the aforementioned equation are given. The achieved solutions are also verified by using the Maple software. These periodic wave solutions suggest that these three methods are useful, easy to use, and effective than other methods.

1. Introduction

Research in the field of nonlinear wave theory has been become very interesting due to its applications in sciences and engineering. Many physical phenomena are represented as models in the structure of nonlinear PDEs, mostly in the form of nonlinear integrable equations. These models clearly indicate the parameters that affect the phenomenon that are not seen directly by observing the phenomenon. Various models have been made in the field of science and engineering that are representing the different phenomenon. For example, mostly naturally occurring phenomenons are modeled as modified tan(φ/2)-expansion technique [1], the homotopy perturbation scheme [2], the csch-function method [3], the Lie symmetry analysis [4], the Bäcklund transformation method [5], the sine-Gordon expansion approach [6], a new nonlinear mathematical programming model for dynamic cell formation [7], the \((G'/G, 1/G)\), the modified \((G'/G^2)\) and \((1/G')\)-expansion schemes [8], and imperialist competitive algorithm [9]. Except of these methods, there are other powerful methods such as the multiple exp-function method [10–13], a new fuzzy classification algorithm [14], Hirota’s bilinear method [15–21], a deterministic mathematical mixed integer linear programming model [22], the coupled modified Korteweg-de Vries equation with nonzero boundary conditions at infinity [23], the high-order rogue wave of generalized non-linear Schrödinger equation with nonzero boundary [24], the supersymmetric constrained B type and C type KP hierarchies of Manin-Radul and Jacobian types [25], the \((3 + 1)\)-
dimensional extended Jimbo–Miwa equations [26], understanding by design model as useful tool for a meaningful and permanent learning [27], and the first integral method for constructing the exact solutions of the time-fractional Wu–Zhang system [28].

In Ref. [29], the authors suggested the fuzzy clustering to discover the optimal number of clusters as an innovation clustering algorithm in marketing to determine the best group of customers, similar items, and products. In a valuable research, the Bayer–Hanck cointegration test, wavelet coherence, Fourier Toda–Yamamoto, and Breitung–Candelon frequency-domain spectral causality tests were investigated the causal relationships among carbon emissions, economic growth, and life expectancy in [30]. Adinda et al. [31] studied students’ metacognitive awareness failures about solving absolute value problems (AVPs) in mathematics education, and they found that there was a significant failure, and three students were sampled from who had experienced different metacognitive awareness failures in solving AVPs. In [32], the residual power series method to solve the (3+1)-dimensional nonlinear conformal Schrödinger equation with cubic-quintic-septic nonlinearities along with three test applications was considered subject to different initial conditions. Two classes of lump and line rogue wave solutions for a new (2+1)-dimensional extension of the Hietarinta equation were obtained by means of the Hirota bilinear scheme by Manukure and Zhou [32]. In [33], the authors showed the existence of the three-periodic wave solutions numerically for the Hietarinta equation by using the direct method. Both Dirichlet and Neumann data on some part of the domain boundary for a family of quasilinear inverse problems to the Laplace equation coupled with a sequence of nonlinear scalar equations were recovered [34]. A novel integral transform involving the product of the Whittaker function and two Bessel functions of the first kind was employed to Bessel-Circular-Gaussian beam to generate a new laser beam called Exton-Gaussian beams [35]. The complete discrimination system method was used to construct the exact traveling wave solutions for fractional coupled Boussinesq equations in the sense of conformable fractional derivatives by Han and Li [36]. The periodic, cross-kink wave solutions were obtained by the authors of [37] by the help of Hirota bilinear operator, and also, the semi-inverse variational principle was utilized for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation. In [38], the effects of Mobile Ad Wearout on irritation, intrusiveness, engagement, and loyalty via social media outlets were studied. Author of [39] studied the mathematical models for global solar radiation intensity estimation at Shakardara area which is to estimate atmospheric transparency percentage. Fauzi and Respati [40] analyzed and studied the differences in students’ critical thinking skills utilizing the guided discovery learning model and the problem-based learning model including both theoretical and practical knowledge and skills, and also, they used quantitative methods through an experimental approach. The present research focuses on the Hirota bilinear scheme to getting the analytical solutions of nonlinear (2+1)-dimensional wave equation. In this considered scheme, the solutions are written as a combination of trigonometric and hyperbolic waves and also a combination of trigonometric and exponential waves so that the solutions can adapt easily made by symbolic estimations.

The fundamental work of this paper is to extract new analytical findings of (2+1)-D generalized Hietarinta model. For the purpose, determining the solutions of the shown model by powerful technique has been made. Many kinds of schemes have been used to determine the new kinds of solitons of this model, such as, two good papers in references [41, 42]. According to used algorithm in reference [41] the bilinear shape can be driven as follows

\[
(D_x^4 - D_x^2 D_y^2) + h_1 D_x^2 + h_2 D_x D_y + h_3 D_y^3 \phi \phi = 0,
\]

in which \(u = u(x, y, t) \) is a unfamiliar solution and \(h_i \) \((i = 1, 2, 3)\) are all free quantities. According to expansion and generalization of the Hietarinta-type model, [43] was studied with the below bilinear model form:

\[
(D_x^4 + D_y^2 D_z^2) + h_1 D_x^2 + h_2 D_x D_y + h_3 D_y^3 - D_y D_z \phi \phi = 0.
\]

In addition, by using the following relations

\[
u = \frac{2(\ln \phi)_x}{\nu = \frac{2(\ln \phi)_y}{\nu = \frac{2(\ln \phi)_z}}
\]

the following nonlinear equation will be arisen as

\[
6u_{xx}u_{xx} + u_{xxxx} + 3u_{xx}u_{tt} + 3u_{tx}v_{tt} + u_{tttt} + h_1 u_{xx} + h_2 u_{tx} + h_3 u_{tt} - u_{yy} = 0,
\]

in which \(v_x = u, \) and \(h_1, h_2, \) and \(h_3 \) are arbitrary quantities. Besides, a new (2+1)-D extension of equation (4) was proposed in [44]. On the basis of Hirota bilinear method, a few nonlinear models have been investigated as the valuable researches, for example, the coupled nonlinear Schrödinger equations [45]; the modified coupled Hirota equation by help of Riemann–Hilbert approach [46]; an extended (2+1)-dimensional Calogero-Bogoyavelskii-Schiff-like equation by using the generalized bilinear operators [47]; a generalized (3+1) shallow water-like equation through the Hirota bilinear method and the Cole–Hopf transformation [48]; a new (3+1)-dimensional weakly coupled B-type Kadomtsev–Petviashvili equation by constructing the symmetric positive semidefinite matrix technique [49]. Wave solutions have been used for different purposes as modeling of contaminant distribution or biodegradation in environmental engineering [50–52]. Specifically, Janssen et al. modeled the biodegradation of contaminants in heterogeneous aquifers using a semianalytical traveling wave solution for the one-dimensional reactive transport [50], and Wang et al. suggested a multimedia fate model to evaluate the fate of an organic contaminant by a one-dimensional network kinematic wave equation [51]. Moreover, wave equations have also been exploited in the analysis of transient flow in large distribution systems like groundwater [52]. In this regard, Jaradat et al. analyzed the risks from the intrusion of contaminants into the distribution system from pressure transients. In [53], the multiple-kink solutions and
singular-kink solutions for (2 + 1)-D coupled Burgers system with time variable coefficients were obtained by Jaradat and coworkers.

This paper investigates new the periodic-solitary, periodic wave, cross-kink wave, and interaction between stripe and periodic wave solutions for the generalized Hirota equation. We seek to explore two types of soliton solutions using two different formulas according to trigonometric, hyperbolic, and rational functions. In addition, we establish singular and dark soliton findings according to trigonometric and hyperbolic, respectively.

The fundamental work of this paper is to extract new exact findings of equation (4), and the paper is organized as follows: in Section 2, the analysis of the governing system via bilinear form polynomials is formulated to the generalized (2 + 1)-dimensional nonlinear model. In Sections 3–6, we obtain the periodic-solitary, periodic wave, cross-kink wave, and interaction between stripe and periodic wave solutions, respectively, for the generalized (2 + 1)-dimensional Hirota equation. Some conclusions that be gained throughout the paper have been presented in Section 7.

\[\Sigma_{n_1, n_2, \ldots, n_j} (\mu_1, \mu_2) = Y_{n_1, n_2, \ldots, n_j} (\lambda) \]

We have the following conditions as

\[\Sigma_2 (\mu_1) = \mu_{1x}, \quad \Sigma_2 (\mu_1, \mu_2) = \mu_{2x} + \mu_1^2, \quad \Sigma_2 (\mu_1, \mu_2) = \mu_{2x} + \mu_1 \mu_{1t}, \ldots \]

Proposition 1. Let \(\mu_1 = \ln (\Omega_1 / \Omega_2), \mu_2 = \ln (\Omega_1 / \Omega_2) \), then the relations between binary Bell polynomials and Hirota-operator reads

\[\Sigma_{n_1, n_2, \ldots, n_j} (\mu_1, \mu_2) \big|_{\mu_1 = \ln (\Omega_1 / \Omega_2), \mu_2 = \ln (\Omega_1 / \Omega_2)} = (\Omega_1 \Omega_2)^{-1} D_{\xi_1}^{n_1} \cdots D_{\xi_j}^{n_j} \Omega_1 \Omega_2, \]

with Hirota operator

\[\prod_{i=1}^{j} D_{\xi_i}^{n_i} g = \prod_{i=1}^{j} \left(\frac{\partial}{\partial \xi_i} - \frac{\partial}{\partial x_i} \right)^{n_i} \Omega_1 (\xi_1, \ldots, \xi_j) \Omega_2, \]

\[\left(\xi_1, \ldots, \xi_j \right) \big|_{\xi_i = \xi_i' - \xi_i = \xi_j}' \]

\[(\Omega_1 \Omega_2)^{-1} D_{\xi_1}^{n_1} \cdots D_{\xi_j}^{n_j} \Omega_1 \Omega_2 = \Sigma_{n_1, n_2, \ldots, n_j} (\mu_1, \mu_2) \big|_{\mu_1 = \ln (\Omega_1 / \Omega_2), \mu_2 = \ln (\Omega_1 / \Omega_2)} = \Sigma_{n_1, n_2, \ldots, n_j} (\mu_1 + \mu_2) \big|_{\mu_1 = \ln (\Omega_1 / \Omega_2), \mu_2 = \ln (\Omega_1 / \Omega_2)} \]

\[= \Sigma_{n_1, n_2, \ldots, n_j} (\mu_1 + \mu_2) \big|_{\mu_1 = \ln (\Omega_1 / \Omega_2), \mu_2 = \ln (\Omega_1 / \Omega_2)} = \sum_{k_1}^{n_1} \cdots \sum_{k_j}^{n_j} \left(\frac{n_j}{k_j} \right) \Phi_{k_1, k_2, \ldots, k_j} (\sum_{k_i}^{n_i} \xi_i - k_i) Y_{n_1-k_1, \ldots, n_j-k_j} (\mu_1). \]

2. The Bilinear Formalism Equations

Through ref. [21], take \(\lambda = \lambda (x_1, x_2, \ldots, x_n) \) be a \(C^\infty \) function with multivariables as follows:

\[Y_{n_1, n_2, \ldots, n_j} (\lambda) = Y_{n_1, n_2, \ldots, n_j} (\lambda_{d_1, d_2, \ldots, d_j}) = e^{-\lambda \partial_{\xi_1}^{n_1} \cdots \partial_{\xi_j}^{n_j}} e^{\lambda}, \]

with the below formalism (BBPs [21])

\[\lambda_{d_1, d_2, \ldots, d_j} (\xi_1, \ldots, \xi_j) = \partial_{\xi_1}^{d_1} \cdots \partial_{\xi_j}^{d_j} \lambda_0, \quad \lambda_0 \equiv \lambda, \quad d_1 = 0, \ldots, n_1; \quad \ldots; \quad d_j = 0, \ldots, n_j, \]

and we have

\[Y_1 (\lambda) = \lambda_x, \quad Y_2 (\lambda) = \lambda_2 + \lambda_x^2, \quad Y_3 (\lambda) = \lambda_3 + 3 \lambda_x \lambda_2 + \lambda_x^3 + \ldots, \quad \lambda = \lambda (x, t), \]

\[Y_{x,t} (\lambda) = \lambda_{x,t} + \lambda_x \lambda_t, \quad Y_{xt} (\lambda) = \lambda_{2x} + \lambda_2 + 2 \lambda_x \lambda_x + \lambda_x^2 \lambda_t + \ldots. \]

The multidimensional binary Bell polynomial can be written as

\[Y_{\mu_1, \mu_2} (\lambda) \big|_{\mu_1 = \ln (\Omega_1 / \Omega_2), \mu_2 = \ln (\Omega_1 / \Omega_2)} = \sum_{\delta_1, \delta_2} \delta_1 Y_{n_{\delta_1}, n_{\delta_2}} (\mu_1, \mu_2) = 0, \]

\[\sum_{\delta_1} \delta_1 Y_{n_{\delta_1}, n_{\delta_2}} (\mu_1, \mu_2) = 0, \]

which need to satisfy

\[\mathfrak{R} (\gamma') = \mathfrak{R} (\gamma) - \mathfrak{R} (\mu_2 + \mu_1) - \mathfrak{R} (\mu_2 - \mu_1) = 0. \]

The generalized Bell polynomials \(Y_{n_1, n_2, \ldots, n_j} (\xi) \) is as
The Cole–Hopf relation is as follows:

\[
Y_{k_1, \ldots, k_j}(\mu_1 = \ln(\tau)) = \frac{\tau_{n_{k_1}, \ldots, n_{k_j}}}{\tau},
\]

\[
\left(\Omega_1 \Omega_2^{-1} D_{x_1}^{n_1} \ldots D_{x_j}^{n_j} \frac{\Omega_1}{\Omega_2} \right)_{\Omega_1=\exp(y/2)\Omega_2,\Omega_2=\tau} = r^{-\sum_{k_1} n_1 \ldots \sum_{k_j} j} \left(\frac{n_1}{k_1} \right) B_{k_1, \ldots, k_j}(y) (n_{k_1-1}) \ldots (n_{k_j-1}),
\]

with

\[
Y_\ell(\mu_1) = \frac{T_\ell}{r} Y_{2x}(\mu_1, \beta) = y_{2x} + \frac{T_{2x}}{r} y_{2x,y}(\mu_1, \mu_2).
\]

(15)

Also, based on the above writings, the bilinear frame to the aforementioned nonlinear model will be as

\[
(D_x^4 + D_x D_y^3 + h_1 D_x D_y + h_2 D_x + h_3 D_y) \phi \phi = 2[\phi_{xxx} \phi - 4\phi_{xx} \phi_x + 3\phi_x^2] + (\phi_{xxy} \phi - 4\phi_{xy} \phi_x + 6\phi_{xy} \phi_{xy} + 4\phi_{xy} \phi_{xx} + \phi_x \phi_{yx}) + \phi_{xy} (\phi_{xy} - \phi_{yx}) - (\phi_y \phi - \phi_y \phi_y) = 0.
\]

(16)

Also, based on the above writings, the bilinear frame to the aforementioned nonlinear model will be as

\[
(D_x^4 + D_x D_y^3 + h_1 D_x D_y + h_2 D_x + h_3 D_y) \phi \phi = 2[\phi_{xxx} \phi - 4\phi_{xx} \phi_x + 3\phi_x^2] + (\phi_{xxy} \phi - 4\phi_{xy} \phi_x + 6\phi_{xy} \phi_{xy} + 4\phi_{xy} \phi_{xx} + \phi_x \phi_{yx}) + \phi_{xy} (\phi_{xy} - \phi_{yx}) - (\phi_y \phi - \phi_y \phi_y) = 0.
\]

(17)

3. Periodic-Solitary Solutions

Here, we utilize to formulate the new exact solutions to the (2 + 1)-dimensional generalized Hietarinta equation. Consider the following function for studying the periodic-solitary solutions as

\[
\phi = \epsilon_4 \sin(\tau_1) + \epsilon_5 \sinh(\tau_2) + \epsilon_3 \tau_3 = \alpha_x + \beta_y + \delta t + \epsilon_x s, s = 1, 2.
\]

(18)

Afterwards, the values \(\alpha_x, \beta_y, \delta, \epsilon_s (s = 1, 5)\) will be found. By making use of equation (18) into equation (17) and taking the coefficients, each powers of \(\sin(x, y, t)\) and \(\sinh(x, y, t)\) to zero, a system of equations (algebraic) (these are not collected here for minimalist) for \(\alpha_x, \beta_y, \delta, \epsilon_s (s = 1, 5)\) is yielded. These algebraic equations by using the emblematic computation software like, Maple, give the following solutions with using \(u = 2(\ln(\phi))_x\) and \(v = 2(\ln(\phi))_y\).

3.1. Set I Solutions

\[
\beta_1 = \frac{3(\alpha_x^2 + \alpha_y^2)(\alpha_t^2 \epsilon_x - \alpha_y^2 \epsilon_y) + 3(\delta_1^2 + \delta_2^2)(\alpha_t^2 \epsilon_x - \alpha_y^2 \epsilon_y)(\alpha_t \delta_1 + \alpha_y \delta_2) + (\epsilon_x^2 + \epsilon_y^2)(\alpha_t \delta_1 - \alpha_y \delta_2)}{(\alpha_t \delta_2 - \alpha_y \delta_1)(\alpha_t \epsilon_x + \alpha_y \epsilon_y)}.
\]

(19)
Here, \(a_d, \delta_d, \) and \(\epsilon_k\) for \(d = 1: 2, k = 1: 4, \beta_2\) are the unknown parameters. By considering the necessary assumption:

\[
\alpha_2 (\epsilon_2^2 + \epsilon_3^2) (\alpha_1 \delta_2 - \alpha_2 \delta_1)^2 \neq 0,\tag{20}
\]

by substituting the received above parameters into equation (18), we obtain an analytical form of rational equation:

\[
u_2 = 2(\ln \phi_2)_x = 2 \frac{\epsilon_2 \cos (t \delta_1 + x \alpha_1 + y \beta_1 + \epsilon_1) \alpha_1 + \epsilon_4 \cosh (x \alpha_2 + y \beta_2 + \epsilon_2) \alpha_2}{\epsilon_3 \sin (t \delta_1 + x \alpha_1 + y \beta_1 + \epsilon_1) + \epsilon_4 \sinh (x \alpha_2 + y \beta_2 + \epsilon_2) + \epsilon_5},\tag{25}
\]

If \(t_2 \to \infty, \phi_1\) will be constant with any time Figure 1 shows the analysis of treatment of periodic and progress of soliton wave as hyperbolic function with graphs of \(\phi_1\) with the following selected parameters:

\[
\delta_1 = 1, \delta_2 = 0.5, \alpha_1 = 0.1, \alpha_2 = 0.5, \beta_2 = 1, h_3 = 2, \epsilon_1 = 1, \epsilon_2 = 2, \epsilon_3 = 4, \epsilon_4 = 2, t = 1,\tag{22}
\]

3.2. Set II Solutions

Here, \(a_d, \epsilon_k\) for \(d = 1: 2, k = 1: 4, \delta_1\) are the unknown parameters. By considering the necessary assumption,

\[
\alpha_2 (\epsilon_2^2 + \epsilon_3^2) \delta_1 \neq 0,\tag{24}
\]

by substituting the above parameters into equation (18), we obtain an analytical form of rational equation:

\[
\phi_1 = \epsilon_4 \sin (t \delta_1 + x \alpha_1 + y \beta_1 + \epsilon_1) + \epsilon_4 \sinh (t \delta_2 + x \alpha_2 + y \beta_2 + \epsilon_2)\tag{21}
\]

in equation (21).

If \(t_2 \to \infty, \) the periodic-solitary wave outputs \(u \to 2a_1\) at every time. Figure 2 shows the analysis of treatment of periodic and progress of soliton wave as hyperbolic function with graphs of \(\phi_2\) with the following selected parameters:

\[
\delta_1 = 1, \delta_2 = 0.5, \alpha_1 = 0.1, \alpha_2 = 0.5, \beta_2 = 1, h_2 = 1, h_3 = 2, \epsilon_1 = 1, \epsilon_2 = 2, \epsilon_3 = 4, \epsilon_4 = 2, t = 1,\tag{26}
\]

in equation (25).
\[\begin{align*}
\alpha_2 &= \varepsilon_3 = 0, \\
\beta_1 &= \frac{\alpha_1 \left(3\alpha_1^2 \delta_1 \varepsilon_2 + 3\delta_1^2 \varepsilon_2^2 + 4\delta_1^4 \varepsilon_2^4 + 4\delta_1 \varepsilon_2 + \delta_1^2 \varepsilon_2^2 \right)}{\delta_2 (\varepsilon_2^2 + \varepsilon_3^2) + \delta_1 (\varepsilon_2 + \varepsilon_3)} (\alpha_1 h_2 + \delta_1 h_3) \\
\beta_2 &= -\frac{\alpha_1 \varepsilon_2 (\alpha_1^3 + \delta_1^3 + \delta_1^3 \varepsilon_2 + \delta_1^3 h_1 (\varepsilon_2 + \varepsilon_3)) + \delta_2 (\varepsilon_2^2 + \varepsilon_3^2) + \delta_3 (\varepsilon_2 + \varepsilon_3) (\delta_1 \varepsilon_2^2 + 4\delta_1 \varepsilon_2^4 + \delta_1^3 \varepsilon_2^4 + \delta_1^2 \varepsilon_2^2)}{\delta_2 (\varepsilon_2^2 + \varepsilon_3^2)} \\
h_1 &= \frac{\alpha_1 \varepsilon_2^2 \left(3\delta_1 \varepsilon_2^2 + 4\delta_1^3 \varepsilon_2^4 + \delta_2 (3\delta_1 \varepsilon_2^2 + 4\delta_1^3 \varepsilon_2^4 + \delta_1^3 \varepsilon_2^4 + \delta_1^2 \varepsilon_2^2) \right)}{\delta_2 (\varepsilon_2^2 + \varepsilon_3^2)} \\
\varepsilon_4 &= \frac{\alpha_1 \varepsilon_2 (\alpha_1^3 + \delta_1^3 + \delta_1^3 \varepsilon_2 + \delta_1^3 h_1 (\varepsilon_2 + \varepsilon_3)) + \delta_2 (\varepsilon_2^2 + \varepsilon_3^2) + \delta_3 (\varepsilon_2 + \varepsilon_3) (\delta_1 \varepsilon_2^2 + 4\delta_1 \varepsilon_2^4 + \delta_1^3 \varepsilon_2^4 + \delta_1^2 \varepsilon_2^2)}{\delta_2 (\varepsilon_2^2 + \varepsilon_3^2)} \\
\varepsilon_5 &= \frac{\alpha_1 \varepsilon_2 (\alpha_1^3 + \delta_1^3 + \delta_1^3 \varepsilon_2 + \delta_1^3 h_1 (\varepsilon_2 + \varepsilon_3)) + \delta_2 (\varepsilon_2^2 + \varepsilon_3^2) + \delta_3 (\varepsilon_2 + \varepsilon_3) (\delta_1 \varepsilon_2^2 + 4\delta_1 \varepsilon_2^4 + \delta_1^3 \varepsilon_2^4 + \delta_1^2 \varepsilon_2^2)}{\delta_2 (\varepsilon_2^2 + \varepsilon_3^2)}
\end{align*} \]
Here, β and ϵ_k for $d = 1: 2, k = 1: 4$, α_1 are the unknown parameters. By considering the necessary assumption,
\[\alpha_1 \beta_1^2 (\epsilon_2 + \epsilon_3) \neq 0, \] (28)
and by substituting the above parameters into equation (18), we obtain an analytical form of rational equation:
\[u_3 = 2 \ln(\phi_3) = \frac{2 \epsilon_3 \cos(t \delta_1 + x \alpha_1 + y \beta_1 + \epsilon_1) \alpha_1}{\epsilon_3 \sin(t \delta_1 + x \alpha_1 + y \beta_1 + \epsilon_1) + \epsilon_3 \sinh(t \delta_2 + x \alpha_2 + y \beta_2 + \epsilon_2)}. \] (29)

If $\tau_3 \to \infty$, the periodic-solitary solution $u \to 0$ at every time.

3.4. Set IV Solutions

\[\begin{cases}
\alpha_1 = \frac{\epsilon_2 \lambda_1^2 - 3 \epsilon_2 \lambda_2^4 + 3 \epsilon_2 \lambda_2^4 - 3 \epsilon_2 \lambda_2^4}{\delta_1 \delta_2 \epsilon_3}, \\
h_2 = \frac{-2 \epsilon_2 \lambda_2^4 + 3 \epsilon_2 \lambda_2^4 + 3 \epsilon_2 \lambda_2^4 - 3 \epsilon_2 \lambda_2^4}{\delta_1 \delta_2 \epsilon_3}, \\
\epsilon_5 = 0.
\end{cases} \] (30)

Here, ϵ_k for $k = 1: 4$, and α_2 and δ_2 are the unknown parameters. By considering the necessary assumption,
\[\epsilon_2^2 \delta_2 \alpha_2 \neq 0, \] (31)
and by substituting the above parameters into equation (18), we obtain an analytical form of rational equation:
\[u_4 = 2 \ln(\phi_4) = \frac{-\epsilon_3 \cos(t \delta_1 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 + \epsilon_1) \alpha_4 \epsilon_4 + \epsilon_3 \cosh(t \delta_2 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 + \epsilon_1) + \epsilon_3 \sinh(t \delta_2 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 + \epsilon_1)}{\epsilon_3 \sin(t \delta_1 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 + \epsilon_1) + \epsilon_3 \sinh(t \delta_1 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 + \epsilon_1)}. \] (32)

If $\tau_2 \to \infty$, the periodic-solitary solution $u \to 2 \alpha_3$ at every time. Figure 3 offers the analysis of treatment of periodic and progress of soliton as hyperbolic function with graphs of ϕ_4 with the following selected parameters:
\[\delta_1 = 1, \delta_2 = 2, \alpha_1 = 0.1, \alpha_2 = 0.25, \beta_2 = 1, h_2 = 1, \] (33)
\[t = 1.5, e_1 = 1, e_2 = 2, e_3 = 4, e_4 = 2, i = 1, \]
in equation (31).

3.5. Collection V Findings

\[u_5 = 2 \ln(\phi_5) = \frac{-\epsilon_3 \cos(t \delta_1 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 \epsilon_2 + \epsilon_1) \delta_1 - \epsilon_4 \cosh(t \delta_2 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 \epsilon_2 + \epsilon_1) \delta_2}{\epsilon_3 \sin(t \delta_1 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 \epsilon_2 + \epsilon_1) + \epsilon_3 \sinh(t \delta_1 \epsilon_2 + x \alpha_2 \epsilon_2 + y \beta_2 \epsilon_2 + \epsilon_1)}. \] (36)

3.6. Set VI Solutions
Here, δ_d, ϵ_k for $d = 1,2, k = 1:5$ are the unknown parameters. By considering the necessary assumptions and by substituting the above parameters into equation (18), we obtain an analytical form of rational equation

$$u_6 = 2(\ln \phi_6)_x = 2\frac{-\epsilon_1 \cos(\zeta_1) - \epsilon_4 \cos(\zeta_2) + \epsilon_5 \cos(\zeta_3)}{\epsilon_1 \sin(\zeta_1) + \epsilon_4 \sin(\zeta_2) + \epsilon_5 \sin(\zeta_3)}$$

(38)

4. Periodic Wave Solutions

In this paragraph, we find out some advanced exact periodic wave soliton solutions to the (2 + 1)-dimensional generalised Hietarinta equation. Assume the stated function for studying the periodic wave solutions which is as follows:

$$\phi = \epsilon_1 e^{\tau_1} + \epsilon_4 e^{-\tau_1} + \epsilon_5 \cos(\tau_2), \ \tau_1 = \alpha x + \beta y + \delta z + \epsilon s, s = 1,2.$$

(39)

Afterwards, the values $\alpha, \beta, \delta, \epsilon (s = 1:5)$ will be found. By making use of equation (39) into equation (17) and taking the coefficients, each powers of $e^{\phi_1(x,y,t)}, e^{\phi_2(x,y,t)}, e^{\phi_3(x,y,t)}$, and trigonometric function $\cos(\phi(x,y,t))$ to zero yield a system of equations (algebraic) (these are not collected here for minimalist) for $\alpha, \beta, \delta, \epsilon (s = 1:5)$. These algebraic equations by using the emblematic computation software like, Maple, give the solutions as follows with using $u = 2(\ln \phi)_x$ and $v = 2(\ln \phi)$.

4.1. Set I Findings

$$\{ \alpha_l = -\delta_l, \beta_l = \delta_l (h_1 - h_2 + h_3), l = 1,2, \epsilon_3 = 0. \}$$

(40)

Here, δ_d, ϵ_k for $d = 1,2, k = 1:4$ are the unknown parameters and by substituting the above parameters into equation (39), we obtain an analytical form of rational equation:

$$u = 2(\ln \phi_1)_x = 2\frac{\epsilon_2 \cos(\zeta_1) + \epsilon_3 \cos(\zeta_2) - \epsilon_4 \cos(\zeta_3)}{\epsilon_2 \cos(\zeta_1) + \epsilon_3 \cos(\zeta_2) + \epsilon_4 \cos(\zeta_3)}$$

(41)

If $\tau_1 \rightarrow \infty$, the breather outputs $u \rightarrow 2\delta_1$ at every time.

4.2. Set II Solutions
Here, \(\alpha_d, \epsilon_k \) for \(d = 1, 2, k = 1: 5 \), and \(\delta_1 \) are the unknown parameters. By considering the necessary assumption,

\[
\beta_1 = -\frac{4\alpha_1\epsilon_4\epsilon_2(3\alpha_1^2 + 2\alpha_1^2 \alpha_2^2 + 3\alpha_1^2 \delta_1^2 - \alpha_1^4 - 4\alpha_2^2 \delta_1^2) + \alpha_1\epsilon_2^2 \epsilon_4^2(\alpha_1^3 - 2\alpha_1 \alpha_2^2 + \delta_3^2) - 3\alpha_1^6 \epsilon_2^2 - \alpha_2^2 \epsilon_2^4(4\epsilon_3 \epsilon_4 - \epsilon_5^2)(\alpha_1 h_2 + \delta_1 h_3)}{\alpha_2^2 \delta_1(4\epsilon_3 \epsilon_4 - \epsilon_5^2)}.
\]

\[
\beta_2 = -\frac{8\epsilon_3 \epsilon_4(3\alpha_1^2 + 4\alpha_2^2 \alpha_2^2 + 3\alpha_1^2 \delta_1^2 + \alpha_1^2 \alpha_2^2 - 2\alpha_2^2 \delta_1^2) + 4\alpha_2^2 \epsilon_2^2(\alpha_1^3 + \alpha_1 \alpha_2^2 + \delta_3^2) - \alpha_2^2 \delta_1 h_3(4\epsilon_3 \epsilon_4 - \epsilon_5^2)}{\alpha_2^2(4\epsilon_3 \epsilon_4 - \epsilon_5^2) \delta_1}.
\]

\[
\delta_2 = 0, h_1 = -\frac{4\alpha_1^4 \epsilon_4 + 6\alpha_1^2 \delta_1 \epsilon_3 \epsilon_4 + 3\alpha_1^3 \delta_3 \epsilon_4 - \alpha_2^4 \epsilon_4 + \alpha_2^4 \epsilon_4 \epsilon_5^2}{\alpha_2^2(4\epsilon_3 \epsilon_4 - \epsilon_5^2)}.
\]

(42)

and by substituting the above parameters into the equation (36), we obtain an analytical form of rational equation:

\[
\alpha_2 \left(4\epsilon_3 \epsilon_4 - \epsilon_5^2\right) \delta_1 \neq 0,
\]

in equation (41).

4.3. Collection III Outputs

If \(\tau_1 \rightarrow \infty \), the breather outputs \(u \rightarrow 2\alpha_1 \) at every time. Figure 4 shows the analysis of treatment of periodic and progress of breather-wave solutions as exponential and trigonometric functions with graphs of \(\phi_1 \) with the following selected parameters:

\[
\delta_1 = 1, \alpha_1 = 0.1, \alpha_2 = 0.5, h_2 = 1, h_3 = 2, \epsilon_1 = 1, \epsilon_2 = 2, \epsilon_3 = 4, \epsilon_4 = 2, \epsilon_5 = 3, t = 1.
\]

(45)

\[
\alpha_2 = 0, \beta_1 = -\frac{4\alpha_1 \epsilon_4 \epsilon_2(3\alpha_1^2 \delta_1 + 3\alpha_1^2 \delta_2^2 + 4\delta_2^2) - 4\alpha_1 \delta_2 \epsilon_2^2 - \delta_2^4(4\epsilon_3 \epsilon_4 - \epsilon_5^2)(\alpha_1 h_2 + \delta_1 h_3)}{\delta_2^2(4\epsilon_3 \epsilon_4 - \epsilon_5^2)}.
\]

\[
\beta_2 = -\frac{4\epsilon_3 \epsilon_4(3\alpha_1^2 + 3\alpha_1 \delta_1^2 + 3\alpha_1 \delta_2^2 + \delta_2^4 h_3) - \delta_2^2 h_3 \epsilon_2^2}{\delta_2(4\epsilon_3 \epsilon_4 - \epsilon_5^2)}.
\]

\[
h_1 = -\frac{4\epsilon_3 \epsilon_4(3\delta_1^2 + 4\delta_2^2)(\alpha_1^3 + \delta_1^3 + \delta_1 \delta_2^2) - \delta_2^4 \epsilon_2^2(\alpha_1^3 + \delta_1^3 + \delta_1 \delta_2^2)}{\alpha_1^2 \delta_2^2(4\epsilon_3 \epsilon_4 - \epsilon_5^2)}.
\]

(46)

and by substituting the above parameters into equation (39), we obtain an analytical form of rational equation:

\[
\alpha_1 \delta_2^2 \left(4\epsilon_3 \epsilon_4 - \epsilon_5^2\right) \neq 0,
\]

in equation (41).

\[
u_3 = 2(\ln \phi_3)_x = \frac{\epsilon_3 \alpha_1 e^{\epsilon_4 + \epsilon_5^2 \epsilon_1} - \epsilon_4 \alpha_1 e^{-\epsilon_4 + \epsilon_5^2 \epsilon_1} + \epsilon_4 e^{-\epsilon_4 + \epsilon_5^2 \epsilon_1} + \epsilon_5 \cos (t \delta_2 + x \alpha_2 + y \beta_2 + \epsilon_2)}{\epsilon_3 e^{\epsilon_4 + \epsilon_5^2 \epsilon_1} + \epsilon_4 e^{-\epsilon_4 + \epsilon_5^2 \epsilon_1} + \epsilon_5 \cos (t \delta_2 + x \alpha_2 + y \beta_2 + \epsilon_2)}.
\]

(48)
If $\tau_1 \to \infty$, the periodic outputs $u \to 2\alpha_1$ at any time.

Figure 5 shows the analysis of treatment of periodic and progress of periodic wave solutions as exponential and trigonometric functions with graphs of ϕ_3 with the following selected parameters:

$$\delta_1 = 1, \delta_2 = 2, \alpha_1 = 0.1, h_2 = 1, h_3 = 2, \varepsilon_1 = 1, \varepsilon_2 = 2, \varepsilon_3 = 4, \varepsilon_4 = 2, \varepsilon_5 = 3, t = 1,$$

$$\delta_1 = 1, \delta_2 = 2, \alpha_1 = 0.1, h_2 = 1, h_3 = 2, \varepsilon_1 = 1, \varepsilon_2 = 2, \varepsilon_3 = 4, \varepsilon_4 = 2, \varepsilon_5 = 3, t = 1,$$

in equation (48).

4.4. Set IV Solutions

In equation (48), we obtain an analytical form of rational equation:

$$u_4 = 2(\ln \phi_4)_t = 2 \frac{-1/4\delta_2^2 \alpha_3 \delta_1}{\delta_2} \sum e^{\delta_1 - t \alpha_3 \delta_1} \varepsilon + \varepsilon_5 \sin(t \delta_2 + \tau \alpha_3 + \varepsilon_2 \alpha_3) \phi_5.$$

If $\tau_1 \to \infty$, the breather outputs $u \to 2\alpha_2 \delta_1/\delta_2$ at every time. Figure 6 shows the analysis of treatment of periodic and progress of periodic wave solutions as exponential and trigonometric functions with graphs of ϕ_4 with the following selected parameters:

$$\delta_1 = 1, \delta_2 = 2, \alpha_1 = 0.5, \beta_2 = 0.2, h_1 = 1, h_3 = 2, \varepsilon_1 = 1, \varepsilon_2 = 0.1, \varepsilon_3 = 2, \varepsilon_5 = 3, t = 0.5,$$

in equation (48).
4.5. Collection V Outputs

\[\begin{align*}
\alpha_l &= -\delta_l, \quad l = 1, 2, \\
\beta_1 &= \frac{\beta_2 \delta_1}{\delta_2}, \\
h_2 &= \frac{-\delta_1 h_1 - \delta_2 h_3 + \beta_2}{\delta_2}.
\end{align*} \]

Here, \(\delta_d, \epsilon_k \) for \(d = 1, 2, k = 1, 5 \), and \(\beta_2 \) are the unknown parameters. By considering the necessary assumption, \(\delta_2 \neq 0 \).

\[(54) \]
and by substituting the above parameters into equation (39), we obtain an analytical form of rational equation:

$$u_5 = 2(\ln \phi_5)_x = 2 \frac{-\xi_2 \delta_1 e^{i\theta_1 x - i\delta_3 y} + \xi_2 \delta_1 e^{i\theta_1 x - i\delta_3 y} \gamma_k \delta_1 / \delta_2 - \epsilon_i + \epsilon_5 \sin(t \delta_3 x - \beta y_{2} + \epsilon_5 \delta_1 / \delta_2)}{\xi_2 e^{i\theta_1 x - i\delta_3 y} / \xi_2 e^{i\theta_1 x - i\delta_3 y}}$$

(56)

4.6. Set VI Solutions.

$$\alpha_1 = \delta_1, \alpha_2 = 0, \beta_1 = \frac{-4 \delta_1^2 - \delta_1 \delta_2 h_2 - 2 \delta_1 \delta_2 h_3 + \beta_2 \delta_1 h_1}{\delta_1},$$

$$= - \frac{-\delta_1^2 \delta_2 h_3 - \delta_1^2 h_2 + \beta_2 \delta_1^2 + \beta_2 \delta_1^2}{\delta_1^2}, \epsilon_3 = \frac{1}{4} \epsilon_4$$

(57)

$$u_6 = 2(\ln \phi_6)_x = 2 \frac{1/ \xi_4 e^{i\theta_1 x - i\delta_3 y} / \xi_4 - \xi_4 e^{i\theta_1 x - i\delta_3 y} / \xi_4}{1/ \xi_4 e^{i\theta_1 x - i\delta_3 y} / \xi_4 + \xi_4 e^{i\theta_1 x - i\delta_3 y} / \xi_4 + \epsilon_5 \cos(t \delta_3 y_{2} + \epsilon_5 \delta_1 / \delta_2)}$$

(59)

4.7. Set VII Solutions

$$\beta_1 = \frac{-8 \alpha_1^2 \alpha_2^2 + \alpha_1 \theta h_2 + \alpha_2^2 h_1 - \alpha_2^2 h_1}{\theta}, \beta_2 = \frac{-12 \alpha_1^2 \alpha_2^2 - 4 \alpha_2^2 + \alpha_1 \theta h_2 + 2 \alpha_2^2 h_1}{\alpha_1}$$

$$\delta_1 = \delta_2 = 0, \theta_5 = \frac{\sqrt{3}[\alpha_i^2 - \alpha_2^2 + \alpha_i^2 h_1 - \alpha_2^2 h_1]}{\alpha_1}, \epsilon_3 = \frac{1}{4} \epsilon_4$$

(60)

Here, α_i, ϵ_k for $d = 1, 2, k = 1: 5$ are the unknown parameters. By considering the necessary assumption, $\alpha_i \theta \neq 0$, we obtain an analytical form of rational equation:

$$u_7 = 2(\ln \phi_7)_x = 2 \frac{1/ \xi_4 e^{i\theta_1 x - i\delta_3 y} / \xi_4 - \xi_4 e^{i\theta_1 x - i\delta_3 y} / \xi_4 - \epsilon_5 \sin(x \alpha_2 + y \beta_2 + \epsilon_2 \alpha_5)}{1/ \xi_4 e^{i\theta_1 x - i\delta_3 y} / \xi_4 + \epsilon_5 \cos(x \alpha_2 + y \beta_2 + \epsilon_2)}$$

(62)

5. Cross-Kink Wave Solutions

In this segment, we utilize to formulate the new exact solutions to the $(2+1)$-dimensional generalized Hietarinta equation. Consider the following function for studying the cross-kink wave solutions as

$$\phi = e^{-\tau_1} + e^{\epsilon_1} + e_5 \sin(t \tau_2) + e_5 \sinh(t \tau_3), \tau_s = \alpha_i x + \beta_i y + \delta_1 t + \epsilon_1, s = 1: 3.$$

(63)

Afterwards, the values $\alpha_i, \beta_i, \delta_i, \epsilon_i (s = 1: 3)$ will be found. By making use of equation (63) into (17) and taking the coefficients, each powers of $e^{\theta (x, y, t)}$, $\sin(x, y, t)$, and $\sinh(x, y, t)$ to zero yield a system of equations (algebraic) (these are not collected here for minimalist) for $\alpha_i, \beta_i, \delta_i, \epsilon_i (s = 1: 3)$. These algebraic equations by using the emblematic computation software like, Maple, give the following solutions with using $u = 2(\ln \phi)_x$ and $v = 2(\ln \phi)$.
5.1. Set I Solutions

\[
\begin{align*}
\beta_1 &= \alpha_2^2 \varepsilon_0^2 (\alpha_1^4 + 2 \alpha_1^2 \alpha_2^2 + \alpha_1 \delta_1^4 - 3 \alpha_2^4) + 4 \alpha_1 \varepsilon_0 (3 \alpha_1^3 \delta_1 - 2 \alpha_1^3 \alpha_2^3 + 3 \alpha_1^2 \delta_1^3 - \alpha_1 \alpha_2^4 + 4 \alpha_2^3 \delta_1) + \alpha_2^3 \delta_1 (\varepsilon_0^2 + 4 \varepsilon_4) (\alpha_1 h_2 + \delta_1 h_3), \\
\beta_3 &= \frac{4 \alpha_2^2 \varepsilon_0^2 (\alpha_1^4 - \alpha_1 \alpha_2^3 + \delta_1^4) + 8 \varepsilon_4 (3 \alpha_1^3 - 4 \alpha_1^3 \alpha_2^3 + 3 \alpha_1^2 \delta_1^3 + \alpha_1 \alpha_2^4 + 2 \alpha_2^3 \delta_1^3) + \alpha_2^3 \delta_1 h_2 (\varepsilon_0^2 + 4 \varepsilon_4)}{\alpha_1 (\varepsilon_0^2 + 4 \varepsilon_4) \delta_1} \\
\delta_3 &= 0, h_1 = \frac{-3 \alpha_3^2 \varepsilon_0^2 + \varepsilon_4 (3 \alpha_1^4 - 6 \alpha_1^2 \alpha_2^3 + 3 \alpha_1 \delta_1^3 - \alpha_2^4)}{\alpha_1^3 (\varepsilon_0^2 + 4 \varepsilon_4)}, \varepsilon_5 = 0.
\end{align*}
\]

(64)

Here, \(\alpha_d, \varepsilon_k\) for \(d = 1: 2, k = 1: 6, \beta_2, \delta_1, \) and \(\delta_3\) are the unknown parameters. By considering the necessary assumption,

\[\alpha_3 \delta_1^2 (\varepsilon_0^2 + 4 \varepsilon_4) \neq 0,\]

and by substituting the above parameters into equation (63), we obtain an analytical form of rational equation:

\[u_1 = 2 (\ln \phi_1)_x = 2 \frac{-\alpha_1 e^{\xi_1} + \varepsilon_4 \alpha_1 \varepsilon_1 ^4 + \varepsilon_6 \cosh (x \alpha_1 + y \beta_3 + \varepsilon_3) \alpha_1}{e^{\xi_1} + \varepsilon_4 \varepsilon_1 ^4 + \varepsilon_6 \sinh (x \alpha_1 + y \beta_3 + \varepsilon_3)} \xi_1 = t \delta_1 + x \alpha_1 + y \beta_1 + \varepsilon_1.\]

(66)

If \(t_1 \rightarrow \infty\), the breather outputs \(u \rightarrow 2 \alpha_3\) at every time.

5.2. Set II Solutions

\[
\begin{align*}
\alpha_3 &= \varepsilon_5 = 0, \beta_1 = \frac{4 \alpha_1 \delta_1^2 \varepsilon_0^2 + 4 \alpha_1 \varepsilon_4 (3 \alpha_1^3 \delta_1 + 3 \delta_1^3 - 3 \delta_1^3 \delta_1^2 + 4 \delta_1^4) + \delta_3^2 (\varepsilon_0^2 + 4 \varepsilon_4) (\alpha_1 h_2 + \delta_1 h_3)}{\delta_3 (\varepsilon_0^2 + 4 \varepsilon_4)} \\
\beta_3 &= \frac{-12 \alpha_1 \varepsilon_4 (\alpha_1^4 + \delta_1^3 - \delta_1 \delta_1^2) - \delta_3^2 h_3 (\varepsilon_0^2 + 4 \varepsilon_4)}{\delta_3 (\varepsilon_0^2 + 4 \varepsilon_4)} \\
h_1 &= \frac{-\delta_3^2 \varepsilon_0^2 (\alpha_1^4 + \delta_1^3 - \delta_1 \delta_1^2) + 4 \varepsilon_4 (3 \delta_1^2 - 4 \delta_1^2) (\alpha_1^3 + \delta_1^3 - \delta_1 \delta_1^2)}{\varepsilon_4 \delta_3^2 (\varepsilon_0^2 + 4 \varepsilon_4)}.
\end{align*}
\]

(67)

Here, \(\delta_d, \varepsilon_k\) for \(d = 1: 3, k = 1: 6, \alpha_1, \alpha_2, \) and \(\beta_2\) are the unknown parameters. By considering the necessary assumption,

\[\alpha_3 \delta_1^2 (\varepsilon_0^2 + 4 \varepsilon_4) \neq 0,\]

and by substituting the above parameters into equation (63), we obtain an analytical form of rational equation:

\[u_2 = 2 (\ln \phi_2)_x = 2 \frac{-\alpha_1 e^{\xi_1} + \varepsilon_4 \alpha_1 \varepsilon_1 ^4 + \varepsilon_6 \sinh (t \delta_3 + y \beta_3 + \varepsilon_3)}{e^{\xi_1} + \varepsilon_4 \varepsilon_1 ^4 + \varepsilon_6 \sinh (t \delta_3 + y \beta_3 + \varepsilon_3)} \xi_1 = t \delta_1 + x \alpha_1 + y \beta_1 + \varepsilon_1.\]

(69)

5.3. Set III Solutions

\[
\begin{align*}
\beta_1 &= \frac{8 \alpha_1^4 + 8 \alpha_1 \delta_1^2 + 2 \alpha_1 \delta_1 h_1 + 2 \alpha_1 \delta_3 h_2 + 2 \delta_1 h_3 - \beta_1 \delta_3}{\delta_3} \\
\beta_1 &= -\frac{1}{e^{\xi_1}}, \varepsilon_5 = 0.
\end{align*}
\]

(70)
Here \(\alpha, \delta, \epsilon \) for \(d = 1: 3, k = 1: 6, \beta_3 \), and \(\beta_3 \) are the unknown parameters. By considering the necessary assumption,

\[\delta_3 \neq 0, \]

we obtain an analytical form of rational equation:

\[u_3 = 2(\ln \phi_3)_x = 2 \frac{-\alpha_1 e^{-\delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} + e_6 \cosh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3) \alpha_3}{e^{-\delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} - 1/4 \epsilon_6 e^{\delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} + e_6 \sinh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3)} \]

If \(\tau > r_1 \to \infty \), the cross-kink outputs \(u \to 2 \alpha_1 \) at every time, but if \(\tau < r_1 \to \infty \), the cross-kink outputs \(u \to 2 \alpha_1 \) at any \(t \).

5.4. Set IV Solutions

Here,

\[\theta = \sqrt[3]{3} - \delta_1^3 + \delta_1 \delta_2^2, \alpha_1, \delta_1, \epsilon \]

for \(d = 1: 3, k = 1: 6, \beta_3 \), and \(\beta_3 \) are the unknown parameters. By considering the necessary assumption,

\[\delta_3 \neq 0, \]

and by substituting the above parameters into equation (63), we obtain an analytical form of rational equation:

\[u_4 = 2(\ln \phi_4)_x = 2 \frac{-\alpha_1 e^{-\delta_3 x - \delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} + e_6 \cosh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3) \alpha_3}{e^{-\delta_3 x - \delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} - 1/4 \epsilon_6 e^{\delta_3 x - \delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} + e_6 \sinh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3)} \]

If \(\tau > r_1 \to \infty \), the cross-kink outputs \(u \to 2 \alpha_1 \) at every time, but if \(\tau < r_1 \to \infty \), the cross-kink outputs \(u \to 2 \alpha_1 \) at any \(t \).

5.5. Set V Solutions

Here,

\[\theta = \sqrt[3]{3} - \delta_1^3 + \delta_1 \delta_2^2, \alpha_1, \delta_1, \epsilon \]

for \(d = 1: 3, k = 1: 6, \beta_3 \), and \(\beta_3 \) are the unknown parameters. By considering the necessary assumption,

\[\delta_3 \neq 0, \]

and by substituting the above parameters into equation (63), we obtain an analytical form of rational equation:

\[u_5 = 2(\ln \phi_5)_x = 2 \frac{-\alpha_1 e^{-\delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} + e_6 \cosh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3) \alpha_3}{e^{-\delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} - 1/4 \epsilon_6 e^{\delta_3 x + x \alpha_1 + y \beta_3 + \epsilon_1} + e_6 \sinh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3)} \]

If \(\tau > r_1 \to \infty \), the cross-kink outputs \(u \to 2 \alpha_1 \) at every time, but if \(\tau < r_1 \to \infty \), the cross-kink outputs \(u \to 2 \alpha_1 \) at any \(t \). Figure 7 show the analysis of treatment of cross-kink wave as periodic and hyperbolic function with graphs of \(\phi_5 \) with the following selected parameters:
\[
\delta_1 = 1, \delta_2 = 0.5, \alpha_1 = 1, \alpha_2 = 2, \alpha_3 = 3, \beta_2 = 0.2, h_2 = 1, \]
\[
h_3 = 2, \epsilon_1 = 1, \epsilon_2 = 0.1, \epsilon_3 = 2, \epsilon_4 = 3, \epsilon_5 = 2, t = 0.5,
\]

in equation (74).

\[(79) \]

5.6. Set VI Solutions

\[
\begin{align*}
\alpha_2 &= \epsilon_6 = 0, \\
\beta_2 &= \frac{12\alpha_1 \epsilon_4 (\alpha_1^3 + \delta_3^3 + \delta_1 \delta_2^3) - \delta_2^3 h_3 \epsilon_5^2 + 4\delta_2^3 h_1 \epsilon_4}{\delta_2 (\epsilon_5^2 + 4\epsilon_4)}, \\
h_1 &= \frac{-\delta_2 \epsilon_5^2 (\alpha_1^3 + \delta_3^3 + \delta_1 \delta_2^3) + 4\epsilon_4 (3\delta_1^3 + 4\delta_2^3)(\alpha_1^3 + \delta_3^3 + \delta_1 \delta_2^3)}{\alpha_1 \delta_2^3 (\epsilon_5^2 + 4\epsilon_4)}. \\
\end{align*}
\]

Here, \(\delta_d, \epsilon_k \) for \(d = 1: 3, k = 1: 6 \), \(\alpha_1, \alpha_3 \), and \(\beta_3 \) are the unknown parameters. By considering the necessary assumption,

\[(80) \]

and by substituting the above parameters into equation (63), we obtain an analytical form of rational equation:

\[(81) \]

\[(82) \]
If \(\tau_2 > \tau_1 \to \infty \), the cross-kink outputs \(u \to 0 \) at every time, but if \(\tau_2 < \tau_1 \to \infty \), the cross-kink outputs \(u \to 2\alpha_1 \) at every time.

\[
\begin{align*}
\alpha_i &= \frac{\alpha_2 \delta_i}{\delta_2}, \beta_1 = \frac{-\delta_1(2\alpha_1^2 \delta_2^4 + 2\alpha_2^2 \delta_2^2 + 2\alpha_2^2 \delta_2^4 + 2\alpha_2^2 \delta_2^4 - \beta_2 \delta_2^4)}{\delta_2^4}, \\
h_2 &= \frac{3\alpha_2^2 \delta_2^4 - \alpha_2^2 \delta_2^4 + 3\alpha_2^2 \delta_2^2 - \alpha_2^2 \delta_2^4 + \alpha_2^2 \delta_2^4 h_1 + \delta_2^4 h_3 - \beta_2 \delta_2^4}{\alpha_2^2 \delta_2^4}.
\end{align*}
\]

(83)

Here \(\delta_i, e_k \) for \(d = 1: 3, k = 1: 6, \alpha_2, \alpha_3, \beta_2, \) and \(\delta_3 \) are the unknown parameters. By considering the necessary assumption,

\[
u_7 = 2(\ln f_7) = \frac{2\alpha_1 e^{-\theta_1-x_0 \delta_1 / \delta_2 - y_0 \delta_1 / \delta_2} - 1/4 \delta_2 e^2 \alpha_2 / \delta_2 e^2 \delta_1 + x_0 \delta_1 / \delta_2 + y_0 \delta_1 / \delta_2}{-1/4 \delta_2^2 e^2 / \delta_1 e^2 \delta_1 + x_0 \delta_1 / \delta_2 + y_0 \delta_1 / \delta_2} + \epsilon_5 \cos (t \delta_2 + x_0 \delta_2 + y \beta_2 + \epsilon_2) \alpha_2 - \epsilon_5 \sin (t \delta_2 + x_0 \delta_2 + y \beta_2 + \epsilon_2)\]

(85)

If \(\tau_1 \to \infty \), the cross-kink wave outputs \(u \to 2\alpha_1 \delta_1 / \delta_2 \) at any time.

5.7. Set VII Solutions

\[
\begin{align*}
\alpha_i &= -\delta_i, I = 1, 2, \beta_1 = \frac{\beta_2 \delta_2}{\delta_2}, h_2 = \frac{-\delta_2 h_1 - \delta_2 h_2 + \beta_2}{\delta_2}, \\
\epsilon_6 &= 0, \theta = \frac{\sqrt{3}(-\alpha_4^2 - 2\alpha_1^2 \alpha_2^2 - \alpha_3^2) \alpha_1^2}{\alpha_1}.
\end{align*}
\]

(86)

\[
u_8 = 2(\ln f_8) = \frac{2\alpha_1 e^{-\theta_1-x_0 \delta_1 / \delta_2 - y_0 \delta_1 / \delta_2} + 1/4 \delta_2 e^2 \alpha_2 e^{2 \theta_1-x_0 \delta_1 / \delta_2 + y_0 \delta_1 / \delta_2} + \epsilon_5 \cos (x_0 \delta_2 + y \beta_2 + \epsilon_2) \alpha_2}{1/4 \delta_2 e^2 \delta_2 e^2 \delta_1 + x_0 \delta_1 / \delta_2 + y_0 \delta_1 / \delta_2 + \epsilon_5 \sin (x_0 \delta_2 + y \beta_2 + \epsilon_2)}
\]

(88)

If \(\tau_1 \to \infty \), the cross-kink wave outputs \(u \to 2\alpha_1 \) at any time.

6. Interaction between Stripe and Periodic Wave Solutions

In this paragraph, we find out some advanced exact interaction between stripe and periodic wave solutions to the \((2+1)-dimensional generalized Hietarinta equation. Assume the stated function for studying the interaction of solutions as

Afterwards, the values \(\alpha_i, \beta_i, \delta_i, e_i (s = 1: 3) \) will be found. By making use of equation (18) into (17) and taking the coefficients, each powers of \(\cos(x, y, t) \) and \(\cos(x, y, t) \) and exponential function to zero yield a system of equations (algebraic) (these are not collected here for minimalist) for \(\alpha_i, \beta_i, \delta_i, e_i (s = 1: 3) \). These algebraic equations by using the emblematic computation software like, Maple, give the following solutions with using \(u = 2(\ln \phi)_x \) and \(\nu = 2(\ln \phi) \).
6.1. Set I Solutions

\[
\beta_1 = \frac{-\alpha_1^2 \epsilon_2^2 (\alpha_1^3 + 2 \alpha_1^2 \alpha_3^2 + \alpha_1 \delta_1^3 - 3 \alpha_3^4) + 4 \alpha_1 \epsilon_2 (3 \alpha_5^2 - 3 \alpha_1^3 \alpha_2^2 + 3 \alpha_5^2 \delta_1^3 - \alpha_1 \alpha_4^2 + 4 \alpha_2^3 \delta_1^3)}{\alpha_3^2 \delta_1 (-\epsilon_6^2 + 4 \epsilon_4)} (\alpha_1 h_2 + \delta_1 h_3),
\]
\[
\beta_3 = \frac{-4 \alpha_3^2 \epsilon_2^2 (\alpha_3^3 - \alpha_1 \alpha_5^2 + \delta_1^3) + 8 \epsilon_1 (3 \alpha_5^2 - 4 \alpha_3^2 \alpha_2^2 + 3 \alpha_5^2 \delta_1^3 + \alpha_1 \alpha_4^2 + 2 \alpha_2^3 \delta_1^3)}{\alpha_3^2 \delta_1 (-\epsilon_6^2 + 4 \epsilon_4) \delta_1} h_2 (-\epsilon_6^2 + 4 \epsilon_4),
\]
\[
\delta_3 = 0, h_1 = 4 \frac{\alpha_3^4 \epsilon_6^2 + 3 \alpha_1^2 \epsilon_4^2 - 6 \alpha_1^2 \alpha_5^2 \epsilon_4 + 3 \alpha_1 \delta_1^3 \epsilon_4 - \alpha_3^4 \epsilon_4}{\alpha_3^2 (-\epsilon_6^2 + 4 \epsilon_4)}, \quad \epsilon_5 = 0.
\]

Here, \(\alpha_\xi, \epsilon_\xi\) for \(d = 1: 2, k = 1: 6, \beta_3, \delta_1, \) and \(\delta_2\) are the unknown parameters. By considering the necessary assumption,

\[
\alpha_3^2 \delta_1 (-\epsilon_6^2 + 4 \epsilon_4) \neq 0,
\]
and by substituting the above parameters into equation (89), we obtain an analytical form of rational equation:

\[
u_1 = 2 (\ln \phi_1)_{x} = 2 \frac{-\alpha_1 e^{-\xi_1} + \epsilon_1 \alpha_1 e^{\xi_1} + \epsilon_6 \sinh (x \alpha_5 + y \beta_1 + \epsilon_1) \alpha_5}{e^{\xi_1} + \epsilon_6 e^{\xi_1} + \epsilon_6 \cosh (x \alpha_5 + y \beta_3 + \epsilon_3)} , \quad \xi_1 = t \delta_1 + x \alpha_1 + y \beta_1 + \epsilon_1.
\]

If \(t_1 \to \infty\), the breather outputs \(u \to 2 \alpha_1\) at every time.

6.2. Set II Solutions

\[
\alpha_3 = \epsilon_3 = 0, \quad \beta_1 = \frac{-4 \alpha_1 \delta_1^2 \epsilon_6^2 + 4 \alpha_1 \epsilon_2 (3 \alpha_5^2 \delta_1 + 3 \alpha_5^2 \delta_1^3 + 4 \delta_1^4)}{(-\epsilon_6^2 + 4 \epsilon_4) \delta_3^2} (\alpha_1 h_2 + \delta_1 h_3),
\]
\[
\beta_3 = \frac{-12 \alpha_1^3 \epsilon_4 + 12 \alpha_1 \delta_1^2 \epsilon_4 - 12 \alpha_1 \delta_1 \epsilon_4 + \delta_1^3 h_2^2 - 4 \delta_1^4 h_3 \epsilon_4}{\delta_3 (-\epsilon_6^2 + 4 \epsilon_4)},
\]
\[
\delta_3 = 0, h_1 = \frac{\alpha_1^2 \delta_1^2 (\alpha_3^3 + \delta_1^3 - \delta_1 \delta_3^2) + 4 \epsilon_2 (3 \alpha_5^2 - 4 \delta_1^2) (\alpha_4^3 + \delta_1^3 - \delta_1 \delta_3^2)}{\alpha_1 \delta_3^2 (-\epsilon_6^2 + 4 \epsilon_4)}.
\]

Here \(\delta_\mu, \epsilon_\mu\) for \(d = 1: 3, k = 1: 6, \alpha_\xi, \beta_\xi, \beta_\xi\) are the unknown parameters. By considering the necessary assumption,

\[
\alpha_3^2 \delta_1 (-\epsilon_6^2 + 4 \epsilon_4) \neq 0,
\]
and by substituting the above parameters into equation (89), we obtain an analytical form of rational equation:

\[
u_2 = 2 (\ln \phi_2)_{x} = 2 \frac{-\alpha_1 e^{-\xi_1} + \epsilon_1 \alpha_1 e^{\xi_1}}{e^{\xi_1} + \epsilon_6 e^{\xi_1} + \epsilon_6 \cosh (t \delta_3 + x \alpha_5 + y \beta_3 + \epsilon_3)} \xi_1 , \quad \xi_1 = t \delta_1 + x \alpha_1 + y \beta_3 + \epsilon_1.
\]

If \(t_3 > t_1 \to \infty\), the interaction between stripe and periodic wave outputs \(u \to 0\) at every time, but if \(t_3 < t_1 \to \infty\), the cross-kink outputs \(u \to 2 \alpha_1\) at every time.

6.3. Set III Solutions

\[
\beta_1 = \frac{4 \alpha_1^2 + 4 \alpha_1 \delta_3^3 + \alpha_3 \beta_3}{\delta_3},
\]
\[
\beta_3 = \frac{4 \alpha_1^2 + 4 \alpha_1 \delta_3^3 + \alpha_3 \beta_3}{\delta_3} h_1 + \alpha_3 \delta_3 h_2 + \delta_3^3 h_3, \quad \epsilon_3 = 0.
\]
Here, \(a_d, \delta_d, \epsilon_k \) for \(d = 1: 3, k = 1: 6, \beta_2, \) and \(\beta_3 \) are the unknown parameters. By considering the necessary assumption,

\[
\delta_3 \neq 0, \quad (97)
\]
and by substituting the above parameters into equation (89), we obtain an analytical form of rational equation:

\[
u_3 = 2(\ln \phi_t) = \frac{-\alpha_1 e^{-\frac{t}{\alpha_3}} + \epsilon_1 e^{\frac{t}{\alpha_3}} + \epsilon_2 \sinh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3) \alpha_3}{e^{-\frac{t}{\alpha_3}} - \alpha_3 e^{\frac{t}{\alpha_3}} + \epsilon_1 e^{\frac{t}{\alpha_3}} + \epsilon_2 \cosh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3)} \quad (98)
\]

If \(\tau_3 > \tau_1 \rightarrow \infty \), the interaction of outputs \(u \rightarrow 2\alpha_3 \) at any \(t \), but if \(\tau_3 < \tau_1 \rightarrow \infty \), the interaction of outputs \(u \rightarrow 2\alpha_1 \) at any time.

6.4. Set IV Solutions

\[
\begin{align*}
\alpha_1 &= -\alpha_3, \beta_1 = 2\delta_3 - \beta_3, h_4 = -4\alpha_3^2, \epsilon_4 = \frac{1}{4} \epsilon_5, \epsilon_5 = 0.
\end{align*}
\]

6.5. Set V Solutions

\[
\begin{align*}
\alpha_1 &= -\alpha_3, \beta_1 = \frac{-4\alpha_3^4 + 4\alpha_3 \delta_3^3 + \alpha_3^2 \delta_3 h_2 + \delta_3^2 h_3}{\delta_3}, \\
\beta_3 &= \frac{4\alpha_3^4 + 4\alpha_3 \delta_3^3 + \alpha_3^2 \delta_3 h_2 + \delta_3^2 h_3}{\delta_3}, \delta_1 = -\delta_3, \epsilon_5 = 0.
\end{align*}
\]

6.6. Set VI Solutions

If \(\tau_3 > \tau_1 \rightarrow \infty \), the cross-kink outputs \(u \rightarrow 2\alpha_3 \) at every time, but if \(\tau_3 < \tau_1 \rightarrow \infty \), the cross-kink outputs \(u \rightarrow 2\alpha_1 \) at any time.

\[
\begin{align*}
\alpha_2 &= \epsilon_0 = 0, \beta_1 = \frac{-4\alpha_3 \delta_3^2 \epsilon_2^2 + 4\alpha_3 \epsilon_4 (3\alpha_3^2 \delta_3 + 3\delta_3^2 \epsilon_2 \delta_3 + 4\delta_3^4) - \delta_3^2 (\epsilon_2^2 + 4\epsilon_4) (\alpha_1 h_2 + \delta_3 h_3)}{\delta_3 (-\epsilon_2^2 + 4\epsilon_4)}, \\
\beta_2 &= \frac{12\alpha_3 \epsilon_4 (\alpha_3^3 + \delta_3 \delta_3^2 + \delta_3^2 h_3 (-\epsilon_2^2 + 4\epsilon_4))}{\delta_3 (-\epsilon_2^2 + 4\epsilon_4)}, \\
h_1 &= \frac{-\delta_3^2 \epsilon_2^2 (\alpha_3^3 + \delta_3 \delta_3^2 + \delta_3^2 h_3 (-\epsilon_2^2 + 4\epsilon_4))}{\alpha_1 \delta_3^2 (-\epsilon_2^2 + 4\epsilon_4)}, \\
h_2 &= \frac{12\alpha_3^2 \epsilon_4 (\alpha_3^3 + \delta_3 \delta_3^2 + \delta_3^2 h_3 (-\epsilon_2^2 + 4\epsilon_4))}{\delta_3 (-\epsilon_2^2 + 4\epsilon_4)}.
\end{align*}
\]
Here, δ_i, ϵ_k for $d = 1: 3, k = 1: 6, \alpha_3, \beta_3,$ and β_3 are the unknown parameters. By considering the necessary assumption,

$$\alpha_1 \delta^2 \left(-\epsilon^2 + 4\epsilon_4 \right) \neq 0,$$ \hspace{1cm} (105) \hfill

and by substituting the above parameters into equation (89), we obtain an analytical form of rational equation:

$$u_6 = 2\left(\ln \phi_6\right)_x = 2 \frac{-\alpha_1 e^{-\Delta_1 - x\alpha_1 - y\beta_1 - \epsilon_1} + \epsilon_4 \alpha_1 e^{\Delta_1 + x\alpha_1 + y\beta_1 + \epsilon_1}}{e^{-\Delta_1 - x\alpha_1 - y\beta_1 - \epsilon_1} + \epsilon_4 e^{\Delta_1 + x\alpha_1 + y\beta_1 + \epsilon_1} + \epsilon_5 \cos \left(t\delta_2 + y\beta_2 + \epsilon_2 \right)}$$ \hspace{1cm} (106) \hfill

If $\tau_1 \to \infty$, the interaction between stripe and periodic wave solution $u \to 2\alpha_1$ at any t. Figure 8 shows the analysis of treatment of interaction of solutions as periodic and hyperbolic functions with graphs of ϕ_6 with the following selected parameters:

$$\delta_1 = 0.3, \delta_2 = 2, \delta_3 = 1, \alpha_1 = 0.1, \alpha_3 = 0.5, \beta_3 = 1, h_2 = 2, h_3 = 3, \epsilon_1 = 1, \epsilon_2 = 2, \epsilon_3 = 4, \epsilon_4 = 2, \epsilon_5 = 1, t = 0.1,$$

in equation (102).

6.7. Set VII Solutions

$$\begin{aligned}
\begin{cases}
\alpha_1 = 0, \alpha_2 = \epsilon_6 = 0, \beta_1 = \frac{4\delta^2_3 - \theta \delta_2 h_2 - 2\delta_3 \delta_2 h_3 + \beta_2 \delta_1}{\delta^2_2}, \\
\theta_1 = -\delta_2 \delta_2 h_3 - \delta_3 h_3 + \beta_2 \delta_1 + \beta_2 \delta_2^2, \epsilon_4 = \frac{1}{4} \delta^2_5.
\end{cases}
\end{aligned}$$ \hspace{1cm} (108) \hfill

$$u_7 = 2\left(\ln \phi_7\right)_x = 2 \frac{-\alpha_1 e^{-\Delta_1 - x\sqrt{3} - \delta_3 - \delta_2 - y\beta_1 - \epsilon_1} + 1/4 \epsilon_4 \alpha_1 e^{\Delta_1 + x\sqrt{3} - \delta_3 - \delta_2 + y\beta_1 + \epsilon_1} + \epsilon_5 \cos \left(t\delta_2 + y\beta_2 + \epsilon_2 \right)}{e^{-\Delta_1 - x\sqrt{3} - \delta_3 - \delta_2 - y\beta_1 - \epsilon_1} + 1/4 \epsilon_4 e^{\Delta_1 + x\sqrt{3} - \delta_3 - \delta_2 + y\beta_1 + \epsilon_1} + \epsilon_5 \cos \left(t\delta_2 + y\beta_2 + \epsilon_2 \right)}$$ \hspace{1cm} (110) \hfill

If $\tau_1 \to \infty$, the interaction between stripe and periodic wave solution $u \to 2\alpha_1$ at any t. Figure 9 shows the analysis of treatment of interaction of solutions as periodic and hyperbolic functions with graphs of ϕ_7 with the following selected parameters:

$$\delta_1 = -1.2, \delta_2 = 1, \delta_3 = 1, \alpha_3 = 0.5, \beta_3 = 1, h_2 = 2, h_3 = 3, \epsilon_1 = 1, \epsilon_2 = 0.2, \epsilon_3 = 4, \epsilon_4 = 1, t = 0.01,$$

in equation (106).

6.8. Set VIII Solutions

$$\begin{aligned}
\begin{cases}
\alpha_1 = -\delta_3, i = 1, 2, \beta_1 = \frac{\beta_2 \delta_3}{\delta^2_2} \delta_2, \\
\delta_2 = -\delta_2 h_1 - \delta_2 h_3 + \beta_2 \epsilon_6 = 0.
\end{cases}
\end{aligned}$$ \hspace{1cm} (112) \hfill

Here, δ_3, ϵ_4 for $d = 1: 3, k = 1: 5, \alpha_3, \beta_2,$ and β_3 are the unknown parameters. By considering the necessary assumption,

$$\delta_2 \neq 0,$$ \hspace{1cm} (113) \hfill

and by substituting the above parameters into equation (89), we obtain an analytical form of rational equation:
Figure 8: Interaction between stripe and periodic wave solution (107) such that (a) 3D design of $u(x, y, t)$ at $t = 1$ and (b) 2D plot of $u(x, y, t)$ at $t = 1, x = -3, 0, 3$.

Figure 9: Interaction between stripe and periodic wave solution (111) such that (a) 3D design of $u(x, y, t)$ at $t = 1$ and (b) 2D plot of $u(x, y, t)$ at $t = 1, y = -1, 0, 1$.

$$u_{6} = 2 (\ln \phi)_{x} = 2 \frac{\delta_{1} e^{-t \delta_{1} - x \delta_{1} - y \beta_{2} \delta_{2} - \varepsilon_{1} - e_{4} \delta_{1} e^{-t \delta_{1} + y \beta_{2} \delta_{2} + \varepsilon_{1}} + e_{5} \sin (t \delta_{2} - x \delta_{2} + y \beta_{2} + \varepsilon_{2}) \delta_{2}}}{e^{-t \delta_{1} - x \delta_{1} - y \beta_{2} \delta_{2} - \varepsilon_{1}} + e_{4} e^{-t \delta_{1} - x \delta_{1} + y \beta_{2} \delta_{2} + \varepsilon_{1}} + e_{5} \cos (t \delta_{2} - x \delta_{2} + y \beta_{2} + \varepsilon_{2})}$$

(114)
6.9. Set IX Solutions

\[
\begin{align*}
\alpha_2 &= \theta, \\
\beta_2 &= 0, \\
\beta_3 &= \theta, \\
\delta_2 &= 0, \\
\delta_3 &= \frac{4\alpha_3^5 + 4\alpha_3^3\beta_3 + \theta^2(4\alpha_3^4 - 4\alpha_3\beta_3 - \alpha_3\delta_3 - \delta_3^3)}{\theta^2\delta_3}, \\
\delta_3 &= 0, h_1 = -4 \frac{\alpha_1 + \alpha_3 + \delta_3^3}{\theta}, \alpha_1 = \alpha_3, \delta_1 = \delta_3.
\end{align*}
\]

(115)

Here, \(\epsilon_k \) for \(k = 1: 6, \alpha_3, \) and \(\delta_3 \) are free values. Also, \(\theta \) solves the \(\theta^4 + 2\theta^2\alpha_3^2 + \alpha_3^4 + \alpha_3\delta_3^3 = 0. \) By considering the necessary assumption, and by substituting the above parameters into equation (89), we obtain an analytical form of rational equation:

\[
\begin{align*}
\theta\delta_3 &\neq 0, \\
u_9 &= 2 \frac{-\alpha_3 e^{-t\delta_3 - x \alpha_3 - y \beta_3 - \epsilon_1} + \epsilon_4 e^{(t \delta_3 + x \alpha_3 + y \beta_3) t} - \epsilon_2 \sin(x \theta + y \beta_2 + \epsilon_2) \theta + \epsilon_6 \sinh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3) \alpha_3}{e^{-t\delta_3 - x \alpha_3 - y \beta_3 - \epsilon_1} + \epsilon_4 e^{(t \delta_3 + x \alpha_3 + y \beta_3) t} + \epsilon_5 \cos(x \theta + y \beta_2 + \epsilon_2) + \epsilon_6 \cosh(t \delta_3 + x \alpha_3 + y \beta_3 + \epsilon_3)},
\end{align*}
\]

(117)

If \(t_3 > t_1 \rightarrow \infty, \) the the interaction between stripe and periodic wave solution \(u \rightarrow 2\alpha_3 \) at any \(t, \) but if \(t_3 < t_1 \rightarrow \infty, \) the interaction between stripe and periodic wave solution \(u \rightarrow 2\alpha_3 \) at any \(t. \) Figure 10 shows the analysis of treatment of interaction of solutions as periodic and hyperbolic functions with graphs of \(\phi_9 \) with the following selected parameters.
\[\delta_1 = -1.2, \delta_2 = 1, \delta_3 = 3, \alpha_3 = -0.5, \beta_2 = 1, \beta_3 = 1, h_2 = 2, h_3 = 3, \]
\[\epsilon_1 = 1, \epsilon_2 = 0.1, \epsilon_3 = 3, \epsilon_4 = 4, \epsilon_5 = 5, \epsilon_6 = 4, t = 1, \]

(118)
in equation (117).

7. Conclusion

This article investigated the soliton and periodic solutions of the generalized Hietarinta equation. The Cole-Hopf algorithm has been described by means of binary Bell polynomials. The governing equation is translated to nonlinear ODE using Hirota transformation. Various types of soliton, breather, and periodic solutions have been constructed in terms of exponential, hyperbolic, trigonometric, and rational functions. The dynamic features of different types of traveling waves are analyzed in detail through numerical simulation. Meanwhile, the profiles of the surface for the deduced solutions have been depicted in 2D and 3D for the obtained solutions. The gained solutions may be applied to explain the model in simple and straightforward way. At the end, it is concluded that, to handle nonlinear partial differential equations, Hirota bilinear technique suggested an effective and well-built mathematical tools. These solutions are also verified by using Maple software.

Data Availability

The datasets supporting the conclusions of this article are included in the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

Advances in Mathematical Physics, vol. 23, Article ID 1164838, 26 pages, 2021.

