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In this work, the initial-boundary value problems for one-dimensional linear time-dependent Schrödinger parabolic and
pseudoparabolic partial differential equations are studied. )e modified double Laplace decomposition method is applied to get
the semianalytic solutions and the explicit finite difference method to get the approximate solutions of the problems. )e von
Neumann stability analysis of the presented problems is also investigated.

1. Introduction

)e parabolic partial differential equations (PPDEs) take
place in several areas of applied mathematics, for instance in
the heat diffusion equation and in fluid mechanics [1].
Pseudoparabolic partial differential equations (PPPDEs)
arise in modelling various phenomena, such as diffusion,
heat conduction, thermoelectricity, chemical engineering,
subsurface water flow, population dynamics, and plasma
physics [2]. Several analytical approximation methods have
been structured to treat such problems. For instance, the
modified double Laplace decomposition method (MDLDM)
has been used to solve the singular one-dimensional PPPDE
with initial conditions by Gadain [3]. Ilhan et al. [4] con-
structed a family of travelling wave solutions to the non-
linear PPPDEs utilizing the modified exponential function
method. In [5], the authors employed the variational iter-
ation method with He’s polynomials to solve a coupled
PPPDE. A three-layer finite difference scheme (FDS) to a
linear PPPDE with a delay has been dealt by Amirali and
Gabil [6]. In [7], Yang has studied a finite volume element
approximation of PPPDEs in three spatial dimensions. Singh
et al. [8] solved approximately the two-dimensional diffu-
sion equation with Dirichlet boundary conditions using an
Euler matrix method. )e authors in [9] studied a nonlinear

PPPDE with initial and Dirichlet boundary conditions using
spectral discretization in space. Huntul et al. [10] solved the
inverse initial-Neumann boundary value problem for a
third-order PPPDE using the CB-spline collocation method.
In [11], the researcher used a finite time blow-up criterion to
solve a semilinear PPPDE. )e Jacobi pseudospectral
method has been used to solve numerically the two-di-
mensional linear heat diffusion equations subject to the
Neumann and Robin boundary conditions by Yang et al.
[12].

)e famous time-dependent one-dimensional linear
Schrödinger partial differential equation (SPDE) in quantum
physics is known as,

iζut(t, x) � −
ζ2

2m
uxx(t, x) + f(t, x)u(t, x), (1)

where i �
���
− 1

√
is the imaginary number, ζ is Planck’s

constant, and u(t, x) and f(t, x) represent the wave func-
tion and the potential function, respectively. Equation (1)
has been reformulated by the use of the path integral ap-
proach considering the Gaussian probability distribution by
Feynman and Hibbs [13].

In this work, an initial-boundary value problem for one-
dimensional time-dependent linear Schrödinger parabolic
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and pseudoparabolic partial differential equation in the
domain [0, T] × [0, L] is considered as follows:

iut(t, x) � αutxx(t, x) + uxx(t, x) + f(t, x), α≥ 0, 0<x< L, 0< t<T,

u(0, x) � ψ(x), 0≤x≤L,

u(t, 0) � u(t, L) � 0, 0≤ t≤T,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where f and ψ are known sufficiently smooth functions,
which may be complex-valued. Equation (2) is referred to as
a Schrödinger parabolic partial differential equation
(SPPDE) when α � 0, and as a Schrödinger pseudoparabolic
partial differential equation (SPPPDE) when α> 0.

)e MDLDM will be employed to find the semianalytic
solution of problem (2). Many researchers consider it to be
one of the best integral transforms. Jaradat et al. [14] used a
Laplace–Adomian decomposition method (LADM) to ob-
tain the semianalytical solution to the nonlinear SPDE with a
harmonic oscillator in one and two dimensions. A nonlinear
SPDE has been solved utilizing a double Laplace decom-
position method by Gündoğdu and Ömer F [15]. )e
combination of the double Laplace transform and the
Adomian decomposition method is called MDLDM.

On the other hand, the approximate solution of problem (2)
will be obtained using the explicit FDS. Ghafouri et al. [16] have
applied FDS to find the approximate solution of SPDE in a
nanoscale side-contacted field effect diode. For solving multi-
dimensional coupled damped Schrödinger systems in Bose-
–Einstein condensates, Oruç [17] used the radial basis function-
FDS approach.)e accuracy of FDS for the smooth solutions of
SPDEs has been proven by Li et al. [18]. In [19], linear SPDE has
been solved by the Sinc–Galerkin and Sinc collocationmethods.
)e approximate solution of the cubic nonlinear SPDE in one
and two dimensions has been achieved using the Haar wavelet
collocation method in combination with the Crank–Nicolson
scheme by Pervaiz and Imran [20]. Subaşi has proposed three
distinct FDSs for the numerical solution of two-dimensional
SPDE [21]. Fairweather and Khebchareon [22] have presented
numerical methods for solving linear and nonlinear SPDE in
one and various space variables. Lehtovaara et al. [23] have used
the imaginary time propagation method to obtain the eigen-
values and eigenvectors of large matrices originating from the
discretization of linear and nonlinear SPDEs. In [24], the authors
have solved the Schrödinger eigenvalue equation by the
imaginary time propagation technique using splitting methods
with complex coefficients.

)e paper is organized as follows. In Section 2, some
information about the double Laplace transform is given. In
Section 3, theMDLDM is explained with two examples to get
the semianalytic solution for problems of type (2). In Section
4, the explicit FDS for problem (2) is described and the
stability is proved. In Section 5, numerical examples are
presented. In Section 6, the paper ends with a brief
conclusion.

2. Preliminaries on Double Laplace Transform

Some important definitions and theorems of the double Laplace
transform are given which are used further in this work.

Definition 1. Let us assume u(t, x), a function of two var-
iables t and x. )e double Laplace transform of u(t, x) is
defined by the following double improper integral:

LtLx[u(t, x)] ≔ U(s, p) ≔ 
∞

0

∞

0
e

− (st+px)dtdx

≔ limn,m⟶∞ 
n

0


m

0
e

− (st+px)dxdt,

(3)

where s and p are complex numbers and Re(s)> 0 and
Re(p)> 0.

Definition 2. )e inverse double Laplace transform of
U(s, p) is defined as follows:

u(t, x) ≔ L
− 1
t L

− 1
x [U(s, p)]

≔
1
2iπ


σ+i∞

σ− i∞
e

stdt
1
2iπ


δ+i∞

δ− i∞
e

px
U(s, p)dp,

(4)

where σ and δ are large enough that U(s, p) is defined for the
real parts of s≤ σ and p≤ δ.

Definition 3. A function u(t, x) is said to be exponential
order α> 0 and β> 0 on 0≤ t, x<∞, if there exists a non-
negative constant M such that |u(t, x)|≤Meαt+βx.

Theorem 1. If u(t, x) is of an exponential order and a
piecewise continuous function on (0, T) and (0, X), then its
double Laplace transform exists for Re(s)> α and Re(p)> β.

Theorem 2. Let u ∈ C†(R+ × R+) and † � max k, n{ }, there
exist M, α, β> 0 such that

z
j+i

u(t, x)

zt
j
zx

i




≤Me

αt+βx
, j � 0, 1, . . . , k, i � 0, 1, . . . , n. (5)

)en, the following formulas yield:
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LtLx

z
n
u(t, x)

zx
n  � p

n
U(s, p) − 

n− 1

i�0
p

n− 1− i
Lt

z
i
u(0, t)

zx
i

 ,

LtLx

z
k
u(t, x)

zt
k

  � s
k
U(s, p) − 

k− 1

j�0
s

k− 1− j
Lx

z
j
u(x, 0)

zt
j

 ,

LtLx

z
k+n

u(t, x)

zt
k
zx

n
  � s

k
p

n
U(s, p) − 

k− 1

j�0
s

− 1− j
Lx

z
j
u(x, 0)

zt
j

 ⎡⎢⎢⎣

− 
n− 1

i�0
p

− 1− i
Lt

z
i
u(0, t)

zx
i

  + 
k− 1

j�0


n− 1

i�0
s

− 1− j
p

− 1− iz
j+i

u(0, 0)

zt
j
zx

i
⎤⎥⎥⎦.

(6)

3. Modified Double Laplace
Decomposition Method

In this section, the MDLDM will be constructed to solve the
following initial-boundary value problem for one-dimen-
sional time-dependent linear SPPPDE in the domain
[0, T] × [0, L],

iut(t, x) � αuxxt(t, x) + uxx(t, x) + f(t, x),

(t, x) ∈ (0, T) ×(0, L), α> 0,
(7)

with the following initial and boundary conditions:

u(0, x) � ψ(x), x ∈ [0, L],

u(t, 0) � u(t, L) � 0, t ∈ [0, T].
(8)

Firstly, the double Laplace transform with respect to t

and x is applied to both sides of (7), and the following is
obtained:

LtLx iut(t, x)  � LtLx αuxxt(t, x) + uxx(t, x) + f(t, x) .

(9)

In the next step, using the linearity and the differenti-
ation properties of the double Laplace transform to equation
(9), we obtain,

LtLx[u(t, x)] �
G(p)

s
+
1
is

F(s, p) +
1
is

LtLx

αuxxt(t, x) + uxx(t, x) ,

(10)

where G(p) and F(s, p) symbolize the double Laplace
transforms of ψ(x) and f(t, x), respectively.

)e LADM is used to define the solution of one-di-
mensional time-dependent linear SPPPDE u(t, x) by the
infinite series as follows:

u(t, x) � 

∞

n�0
un(t, x). (11)

After this step, by applying the inverse double Laplace
transform to both sides of equation (10) and using equation
(11), as well as the linearity of the inverse transform, it holds,



∞

n�0
un(t, x) � ψ(x) − iL

− 1
t L

− 1
x

F(s, p)

s
  − iL

− 1
t L

− 1
x

1
s
LtLx α

z
3

zt zx
2 

∞

n�0
un(t, x) +

z
2

zx
2 

∞

n�0
un(t, x)⎡⎣ ⎤⎦⎡⎣ ⎤⎦. (12)

From equation (12), the following recursive relationship
can be acquired:

u0(t, x) � ψ(x) − iL
− 1
t L

− 1
x

F(s, p)

s
 , (13)

un+1(t, x) � − iL
− 1
t L

− 1
x

1
s
LtLx α

z
3

zt zx
2un(t, x) +

z
2

zx
2un(t, x)  , n≥ 0. (14)
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Finally, the resulting components u0, u1, u2, . . . are
substituted into the decomposition series for u(t, x), and
then the required solution u(t, x) is obtained. Equations (13)
and (14) are called the MDLDM of u(t, x).

3.1. Applications of the Method. We will now analyze some
examples to demonstrate the applicability of the MDLDM
for solving the one-dimensional time-dependent linear
SPPPDEs and SPPDEs.

Example 1. We consider the following initial-boundary
value problem for a one-dimensional linear time-dependent
SPPPDE:

iut(t, x) � αutxx(t, x) + uxx(t, x) + f(t, x), α> 0,

f(t, x) � [(i + α)cos t + sin t]sin x, 0< t, x< π,

u(0, x) � 0, 0≤x≤ π,

u(t, 0) � u(t, π) � 0, 0≤ t≤ π.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

On applying the double Laplace transform to system (15)
with respect to t and x, the following is obtained:

LtLx[u(t, x)] � − i
(i + α)

s
2

+ 1
+

1
s s

2
+ 1 

⎡⎢⎣ ⎤⎥⎦
1

p
2

+ 1

−
i

s
LtLx αutxx(t, x) + uxx(t, x) .

(16)

When both sides of equation (16) are transformed with
the inverse double Laplace transform, the result is as follows:

u(t, x) � [(− αi + 1)sin t − i(1 − cos t)]sin x

− iL
− 1
t L

− 1
x

1
s
LtLx αutxx(t, x) + uxx(t, x)  .

(17)

Putting the expansion (11) into equation (17), it leads to
the following:



∞

n�0
un(t, x) � [(− αi + 1)sin t − i(1 − cos t)]sin x − iL

− 1
t L

− 1
x

1
s
LtLx α

z
3

zt zx
2 

∞

n�0
un(t, x) +

z
2

zx
2 

∞

n�0
un(t, x)⎡⎣ ⎤⎦⎡⎣ ⎤⎦. (18)

If both sides of equation (18) are compared, we get the
following recursive relation:

u0(t, x) � [(− αi + 1)sin t − i(1 − cos t)]sin x,

un+1(t, x) � − iL
− 1
t L

− 1
x

1
s
LtLx α

z
3

zt zx
2un(t, x) +

z
2

zx
2un(t, x)  , n≥ 0.

(19)

Using the above mentioned recursive relation, the other
components are given as follows:

u0(t, x) � [(− αi + 1)sin t − i(1 − cos t)]sin x,

u1(t, x) � [(αi − 1 + α)sin t +(2α + i)(1 − cos t) + t]sin x,

u2(t, x) � − α2 − 3αi + α2i + 1 sin t + 2α2i + αi − 2α − i (1 − cos t) +(3α − 1)t + i
t
2

2!
 sin x,

u3(t, x) � − α3i − α3 + α2 + α + 1 sin t + − 5α2 − 3αi − α + 1 t −
t
3

3!


+ − 2α3 − 3α2i − 2α2 + 4α + i (1 − cos t) − (4α + i)
t
2

2!
 sin x.

(20)
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)e noise terms ±αi sin t sin x and ±i(1 − cos t)sin x

between the components u0(t, x) and u1(t, x) can be taken
away, and system (15) is still satisfied by the remaining term
of u0(t, x). As a result, the required solution is given by,

u(t, x) � 
∞

n�0
un(t, x) � sin t sin x. (21)

For the SPPDE of system (15), that is, α � 0, the same
solution has been obtained.

Example 2. Consider the following initial-boundary value
problem for a one-dimensional linear time-dependent
SPPPDE:

iut(t, x) � αutxx(t, x) + uxx(t, x) + f(t, x), α> 0,

f(t, x) � 2it x
2

− x  − 4αt − 2 t
2

− 1 , 0<x, t< 1,

u(0, x) � x − x
2
, 0≤x≤ 1,

u(t, 0) � u(t, 1) � 0, 0≤ t≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

Using the steps mentioned in the previous example, the
following components are obtained:

u0(t, x) � x
2

− x  t
2

− 1  +
2
3

it t
2

+ 3αt − 3 ,

u1(t, x) � −
2
3

it t
2

+ 3αt − 3 ,

u2(t, x) � u3(t, x) � · · · � 0.

(23)

)us, the desired solution is as follows:

u(t, x) � 
1

n�0
un(t, x) � x

2
− x  t

2
− 1 . (24)

For the SPPDE of system (22), we obtain the same
solution.

4. Finite Difference Scheme and Its Stability

4.1. Construction of the FDS. Let Ω � (0, T) × (0, L). For
some nonnegative integers M and N, the uniformly grid
steps are introduced as,

Ωτ ≔ tk: tk � kτ, k � 1, . . . , N − 1 , τ �
T

N
,

Ωh ≔ xn: xn � nh, n � 1, . . . , M − 1 , h �
L

M
.

(25)

)e values of the function u(t, x) at the grid points are
represented as u(tk, xn) ≡ usk

n.
In order to construct an explicit FDS, (ut)

k
n is approx-

imated by the forward Euler scheme and the two derivatives
(uxx)k

nand (uxxt)
k
n by the backward Euler scheme. Because

the solution u(t, x) is assumed to be smooth enough, the
following three-layer explicit FDS at any point (tk, xn) ∈ Ω
can be written as follows:

α
h
2τ

u
k− 1
n+1 −

1
h
2 +

α
h
2τ

 u
k
n+1 +

2
h
2 −

2α
h
2τ

−
i

τ
 u

k
n +

2α
h
2τ

+
i

τ
 u

k+1
n +

α
h
2τ

u
k− 1
n− 1 −

1
h
2 +

α
h
2τ

 u
k
n− 1 ≈ f

k
n,

f
k
n � f tk, xn( , α> 0, tk, xn(  ∈ Ω,

u
0
n � ψ xn( , xn ∈ Ω

h
,

u
k
0 � u

k
M � 0, tk ∈ Ω

τ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Ignoring discretization errors of order (O(τ2, h2)), the
explicit FDS for the SPPPDE of problem (2) can be written
as,
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l
α

h
2τ

un + 1k− 1
−

1
h
2 +

α
h
2τ

 un + 1k
+

2
h
2 −

2α
h
2τ

−
i

τ
 un

k

l +
2α
h
2τ

+
i

τ
 un

k+1
+

α
h
2τ

un − 1k− 1
−

1
h
2 +

α
h
2τ

 un − 1k ≈ fn
k
,

lfn
k

� f tk, xn( , α> 0, tk, xn(  ∈ Ω,

lu
0
n � ψ xn( , xn ∈ Ω

h
,

lu
k
0 � u

k
M � 0, tk ∈ Ω

τ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

However, the explicit FDS for the SPPDE of problem (2)
can be obtained as,

−
1
h
2u

k
n+1 +

2
h
2 −

i

τ
 u

k
n +

i

τ
u

k+1
n −

1
h
2u

k
n− 1 ≈ f

k
n,

f
k
n � f tk, xn( , tk, xn(  ∈ Ω,

u
0
n � ψ xn( , xn ∈ Ω

h
,

u
k
0 � u

k
M � 0, tk ∈ Ω

τ
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

where Ωh ≔ x0, x1, . . . , xM  and Ωτ ≔ t0, t1, . . . , tN .

4.2. Stability and Convergence of the FDM. )e von Neu-
mann analysis will be used to investigate the stability of the
two explicit FDSs (27) and (28). We start with the following
usual assumption:

u
k
n � r

k
e

inθ
, − π < θ< π. (29)

Inserting (29) into scheme (27) with supposing k � 1and
n � 0, the following is obtained:

i
r
2

− r

τ
  �

α
τ

re
iθ

− 2r
2

+ re
− iθ

h
2 −

e
iθ

− 2r + e
− iθ

h
2 

+
re

iθ
− 2r + re

− iθ

h
2 .

(30)

After several transformations, equation (30) becomes
just a quadratic equation for the amplification factor r,
namely,

ih
2

+ 2α r
2

− ih
2

+ 4α cos2
θ
2

  − 4τ sin2
θ
2

  r

+ 2α cos θ � 0.

(31)

And we obtain,

r1r2
����

���� �
2α cos θ
ih

2
+ 2α




,

<
2α

�������
h
4

+ 4α2
 < 1,

(32)

r1 + r2
����

���� �
ih

2
+ 4α cos2(θ/2) − 4τ sin2(θ/2)

ih
2

+ 2α




,

<

����������

h
4

+ 16α2τ2

h
4

+ 4α2



< 1,

(33)

where r1 and r2 are the solutions of equation (31). It can be
concluded from inequalities (32) and (33) that |r1|< 1 and
|r2|< 1, and follows that explicit FDS (27) is unconditionally
stable.

In the same way, the stability of scheme (28) is verified,
and we obtain the following:

r1
����

���� � 0,

r2
����

���� �

��������������

1 + 16
τ2

h
4sin

4 θ
2

 



≥ 1.

(34)
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So, explicit FDS (28) is stable at ‖r1‖ � 0, unconditionally
unstable at ‖r2‖> 1, and marginally stable at ‖r2‖ � 1.

5. Numerical Experiments

In this part, the explicit FDM is applied to solve the algebraic
systems (15) and (22). MATLAB code is presented in the
Appendix. To analyze the error between the obtained ana-
lytical (u(t, x)) and approximate (uk

n) solutions, we use,

ε � max
k�0,1,...,N

n�0,1,...,M

u(t, x) − u
k
n



.
(35)

We have shown that the analytic solution of system (15)
is as follows:

u(t, x) � sin t sin x, (36)

and of system (22) is as follows:

u(t, x) � x
2

− x  t
2

− 1 . (37)

We ran multiple simulations with different input pa-
rameters to compare the approximate and analytical solu-
tions to quantitatively demonstrate the accuracy and
efficiency of our schemes. )e analytical solution was

Table 1: Error analysis for system (15) with τ � π/N and h � π/M.

N, M α ε

40, 50
0 0.1365

0.00001 0.1362
0.001 0.1147

65, 65
0 0.0857

0.00001 0.0853
0.001 0.0678

70, 90
0 0.0795

0.00001 0.0789
0.001 0.0900

150, 100
0 0.0386

0.00001 0.0382
0.001 0.0655

Table 2: Error analysis for system (22) with τ � 1/N and h � 1/M.

N, M α ε

50, 50
0 0.0231

0.00002 0.0231
0.00005 0.0230

70, 70
0 0.0173

0.00002 0.0171
0.00005 0.0169

120, 108
0 0.0106

0.00002 0.0103
0.00005 0.0098

250, 230
0 0.0053

0.00002 0.0052
0.00005 0.0063
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Figure 1: Profile evolution solution for system (15) atN� 70 andM� 90. (a) Approximate simulation for α � 0. (b) Approximate simulation
for α � 0.001. (c) Analytic solution.
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approximated using the MDLDM, while the approximate
solution was approximated using the explicit FDS. )e error
analysis (ε) between the two solutions for systems (15) and
(22) is shown in Tables 1 and 2, respectively.

Figures 1 and 2 show a comparison of the profile evo-
lution of the analytical and approximate solutions for sys-
tems (15) and (22), respectively.

Since the exact solutions obtained for the mentioned
systems did not contain the parameter (α), then the graph of
the analytic solution does not change as the value of (α)

changes.

6. Conclusion

In this study, the initial-boundary value problems for one-
dimensional linear time-dependent SPPPDE and SPPDE are
discussed. )e semianalytic and approximate solutions for
the SPPPDE and SPPDE of problem (2) were obtained using
MDLDM and explicit FDS, respectively. )e von Neumann
stability analysis of the submitted problems was investigated.
)e abovementioned tables and figures indicate that the
values of (α) have an impact on the solutions.

Appendix

MATLAB code

1 clc; clear all; close all;
2 % 1D time-dependent linear Schrodinger pseudo-
parabolic PDE in the domain [0, pi] x [0, pi]

3 % iut�Alpha ∗ utxx + uxx + f(t, x), 0t, x< pi
4 % f(t, x)� [(i+Alpha) cost + sint]sinx
5 % Initial condition u(0, x)� 0, 0≤ x<� pi
6 % Boundary conditions u(t, 0)� u(t, pi)� 0, 0≤ t<� pi
7 % Approximate solution by using explicit FDS
8 N� 70;
9 M� 90;
10 Alpha� 0.001;
11 h� pi/M;
12 tau� pi/N;
13 a� (Alpha/(tau ∗ (ĥ2)));
14 r� (− Alpha/(tau ∗ (ĥ2))− (1/(ĥ2)));

15 b� 0;
16 c� (− complex (0, 1)/tau + 2/(ĥ2)− 2 ∗ Alpha/(tau ∗

(ĥ2))); % complex (0, 1) represents the imaginary
number i

17 d� (complex (0, 1)/tau + 2 ∗ Alpha/(tau ∗ (ĥ2)));
18 for i� 2: N+ 1;
19 A (i, i− 1)� a;
20 A (i, i)� r;
21 end; A;
22 C�A;
23 for i� 2: N+ 1;
24 K (i, i− 1)� b;
25 end;
26 for i� 2: N+ 1;

27 K (i, i)� c;

28 end;
29 for i� 2: N;
30 K (i, i+ 1)� d;
31 end;
32 K (1, 1)� 1;
33 for i� 1: N+ 1;
34 D (i, i)� 1;
35 end;
36 D;
37 % Finding fii (j);
38 for j� 1: M+ 1;
39 x � (j− 1) ∗ h;
40 fii (1, j: j)� 0; % Initial condition of the given problem
41 for k� 2: N+ 1;
42 t� tau ∗ (k);
43 fii (k, j:j) � ((Alpha + complex (0, 1)) ∗

cos(t) + sin(t)) ∗ sin(x); % )e given function f(t, x)
44 end;
45 end;
46 alpha (N+ 1, N+ 1, 1 :1)� 0;
47 beta (N+ 1, 1 :1)� 0;

0
0.05
0.1
0.15
0.2
0.25

0 0.2 0.4 0.6 0.8 1
t x0
0.5

1

(a)

0
0.05
0.1
0.15
0.2
0.25

0 0.2 0.4 0.6 0.8 1
t x0
0.5

1

(b)

0
0.05
0.1
0.15
0.2
0.25

0 0.2 0.4 0.6 0.8 1
t x0
0.5

1

(c)

Figure 2: Profile evolution solution for system (22) at N� 120 and M� 108. (a) Approximate simulation for α � 0. (b) Approximate
simulation for α � 0.00005. (c) Analytic solution.
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48 for j� 1: M− 1;
49 alpha (:,:,j+ 1: j+ 1)� inv (K+C∗ alpha(:,:,j:j)) ∗

(− A);
50 beta (:,j+ 1: j+ 1)� inv (K+C∗ alpha(:,:,j:j)) ∗ (D ∗

fii(:,j:j)-C ∗ beta(:,j:j));
51 end;
52 U (N+ 1, 1, M :M)� 0;
53 for z�M− 1:− 1:1;
54 U (:,:, z:z)� alpha (:,:,z+ 1: z+ 1) ∗U (:,:,z+ 1:

z+ 1) + beta (:,z+ 1: z+ 1);
55 end;
56 for z� 1: M;
57 app (:, z+ 1: z+ 1)�U(:,:, z:z);
58 end;
59 % Analytic solution;
60 for j� 1: M+ 1;
61 for k� 1: N+ 1;
62 x� (j− 1) ∗ h;
63 t� tau ∗ (k− 1);
64 ex (k, j: j)� sin(t) ∗ sin(x);
65 end;
66 end;
67 ex;
68 % Absolute error analysis;

69 maxes�max (max (abs (ex)));

70 maxapp�max (max (abs (app)));

71 maxerror�max (max (abs (ex− app)));

72 relativeerror�maxerror/maxapp;
73 Answer� [maxes, maxapp, maxerror, relativeerror]
74 % Plotting exact and approximate solutions

separately;
75 [Xs, Ts]�meshgrid (0: h: pi, 0: tau: pi);
76 table� [ex; app];
77 table (1 : 2: end,:)� ex;
78 table (1 : 2: end,:)� app;
79 q�min (min (table));
80 w �max (max (table));
81 figure; surf (Xs, Ts, abs (ex)); title (‘Exact Solution’);
82 set (gca, ‘ZLim’, [q w]); rotate3d; xlabel (‘x’); ylabel

(‘t’);
83 figure; surf (Xs, Ts, abs (app)); title (‘Approximate

Solution’);
84 set (gca, ‘ZLim’, [q w]); rotate3d; xlabel (‘x’); ylabel

(‘t’)
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