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The present research paper illustrates how noninteger derivative order analysis affects the reflection of partial thermal expansion
waves under the generalized theory of plane harmonic wave reflection from a semivacuum elastic solid material with both gravity
and magnetic field in the three-phase lag model (3PHL). The main goal for this study is investigating the fractional order impact
and the applications related to the orders, especially in biology, medicine, and bioinformatics, besides the integer order
considering an external effect, such as electromagnetic, gravity, and phase lags in a microstretch medium. The problem
fractional form was formulated, and the boundary conditions were applied. The results were displayed graphically, considering
the 3PHL model with magnetic field, gravity, and relaxation time. These findings were an explicit comparison of the effect of
the plane wave reflection amplitude with integer derivative order analysis and noninteger derivative order analysis. The
fractional order was compared to the correspondence integer order that indicated to the difference between them and
agreement with the applications in biology, medicine, and other related topics. This phenomenon has more applications in
relation to the biology and biomathematics problems.

1. Introduction

Recently, due attention has been made to study the interac-
tion between electromagnetic field, thermal field, gravity,
and the influence of microstretch due to its utilitarian fea-
tures within different domains, such as physics, geophysics,
geology, astronomy, and engineering. Choudhuri [1] pro-
posed the problem of thermoelasticity theory with 3PHL.
Kumar et al. [2] explored the plane strain problem within
microstretch elastic solid. Kumar and Partap [3] examined
the reflection of plane waves in a heat flux-dependent micro-
stretch thermoelastic solid half space. Lord and Shulman [4]
established generalized theories in which they replaced the
Fourier law of thermal conductivity by Maxwell-Cattaneo
law introducing a thermal relaxation time parameter within

Fourier’s law. Green and Lindsay [5] illustrated binary
relaxation parameters at the constitutive relationships
regarding the entropy and stress tensor. After some years,
Green and Naghdi [6–8] introduced new three models
known as GN-I, GN-II, and GN-III. They argued that the
linearized form of model-I agrees with the classical thermo-
elastic one. In model-II, the internal production rate of is
typically zero, suggesting no dissipation of thermal energy.
The model discloses undamped thermoelastic waves in a
thermoelastic material. It is primarily indicated as the theory
of thermoelasticity in the absence of the dissipation of
energy. The former models are combined in model-III as
special cases. The model discloses energy dissipation gener-
ally. Abbas and Kumar [9] discussed deformation because
of the heat source in micropolar generalized thermoelastic
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half-space using the finite element technique. The authors of
[10] explored the stabile solutions concerning the 3PHL
thermal conductivity. Utilizing the theory, Kar and Kanoria
[11] and Banik and Kanoria [12] resolved various issues.

The initial stresses in solids considerably affect the
mechanical response of the material from a primarily
stressed configuration. They are widely applied in soft
biological tissues’ performance, engineering structures, and
geophysics. Elsagheer and Abo-Dahab [13] discussed the
reflection of thermoelastic waves from insulated boundary
fiber-reinforced half-space affected by the magnetic field
and rotation. Abo-Dahab et al. [14] employed the Lord-
Shulman and dual-phase lag models to explore how rotation
and gravity affect an electro-magneto-thermoelastic medium
in the presence of diffusion and voids. Using three thermoelas-
tic theories, the authors of [15] discussed SV-waves occur-
rence at the interface between solid-liquid media under the
initial stress and electromagnetic field. Abo-Dahab et al. [16]
studied the impact of rotation and gravity on the reflection
of P-waves from thermo-magneto-microstretch medium
within the 3PHL model with initial stress.

Several definitions were introduced concerning frac-
tional derivatives. For instance, Riemann–Liouville’s defini-
tion is characterized by the fractional derivative of constant
is not zero and applied for the non-differentiable functions.
Caputo’s definition can be applied to differentiable func-
tions, and zero is the value of the fractional derivative of
constant [17].

The fractional differential equations’ theory and applica-
tions were studied by Kilbas et al. [18]. Hilfer [17] discussed
the uses of fractional calculus in physics. Katugampola [19]
used a novel method to a generalized fractional integral. The
authors of [20] discussed analytically solving the space-time
fractional nonlinear Schrödinger equation. Abdel-Salam and
Hassan [21] studied solving the class of linear and nonlinear
fractional differential equations. Abdel-Salam and Yousif
[22] discussed solving the nonlinear space-time fractional
differential equations by the fractional Riccati expansion
approach. The approximate solution to the fractional Lane-
Emden kind equations was studied by Nouh and Abdel-
Salam [23]. Examining the fractional derivative for natural
convection in a slanted cavity having porous media was dis-
cussed by Ahmed et al. [24]. The authors of [25] discussed
the impacts of the rotation, voids, magnetic field, and initial
stress on plane waves in generalized thermoelasticity. Marin
et al. [26] explained extending the domain of the influence the-
ory concerning the generalized thermoelasticity of anisotropic
material in the presence of voids. Saeed et al. [27] discussed the
GL model on the thermoelastic interaction in a poroelastic
material by the finite element approach. Abo-Dahab et al.
[28] discussed the impact of the electromagnetic field in the
fiber-reinforced micropolar thermoelastic medium in the con-
text of four models.

Many authors in [29–36] studied various applications of
fractional calculus in mathematical modeling with a
comparison to constant cases with physics properties. The
analysis of the fractional derivative order and temperature-
dependent characteristics on P- and SV-waves reflection
influenced by initial stress and 3PHL model were considered

by Abo-Dahab et al. [37]. Alotaibi et al. [38] studied the
fractional calculus of thermoelastic P-wave reflection influ-
enced by the electromagnetic fields and gravity. Hobiny
and Abbas [39] analytically solved the fractional order
photo-thermoelasticity within a nonhomogenous semicon-
ductor medium. Povstenko and Kyrylych [40] illustrated
the fractional thermoelasticity issue concerning a plane with
a line crack influenced by heat flux loading.

Many researchers in [41–47] investigated the effect of
several variables in thermoelasticity with different models
and archived all conditions to these models.

In this paper, the reflection of the plane waves from a
semivacuum elastic solid material with the electromagnetic
field and gravitational under the influence of relaxation times
was studied. The necessary comparisons were made to sim-
plify and explain the phenomenon at the fractional and non-
fractional differentiations. The reflection appeared in the
effect of the amplitude of the plane waves where the presence
of the fractional differential was evident in each of the different
results of the phenomenon. The fractional order was com-
pared to the correspondence integer order that indicated the
application and agreement with the applications in biology,
bioinformatics, medicine, and related topics.

1.1. Formulation of the Problem. We utilized the general-
ized fractional thermo-microstretch’s equations in a rect-
angular coordinate scheme ðx, y, zÞ with z-axis directed
into the media. We take the constant magnetic field
intensity H = ð0,H0, 0Þ to represent the y-axis direction.
We consider with linearized equations of electrodynamics
in the presence of displacement current due to motion as
(Ezzat [48])

J = curlα h − ε0D
α
t E, ∇α

=Dα
x i +Dα

y j +Dα
z k, curlαh

= ∇α × h =

i j k

Dα
x Dα

y Dα
z

0 h2 0

���������

���������
,

curlα E = −μ0D
α
t h, curlαE

= ∇α × E =

i j k

Dα
x Dα

y Dα
z

E1 0 E3

���������

���������
,

E = −μ0 Dα
t u ×Hð Þ,Dα

t u ×H = j
i jkDα

t u10Dα
t u30H00j,∇α ⋅ h = 0,Dα

t h2 = 0: ð1Þ

The fractional motion equation with gravitational and
Lorentz’s body forces as (Paria [49], Lord and Shulman [4])

Dα
ℓσℓi + Fi + Gi = ρDαα

t ui, ð2Þ

where

Fi = μ0 J ×Hð Þi,Gi = ρg Dα
xu3, 0,−Dα

z u1ð Þ: ð3Þ
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Using the previous equations, the following equations
are obtained:

E = μ0H0 Dα
t u3, 0,−Dα

t u1ð Þ, ð4Þ

h = 0, h2, 0ð Þ = 0, h, 0ð Þ = 0,−H0e, 0ð Þe =Dα
xu1 +Dα

z u3, ð5Þ

J = −Dα
z h − ε0μ0H0D

αα
t u3, 0,Dα

xh + ε0μ0H0D
αα
t u1ð Þ

=H0 −Dα
zD

α
xu1 −Dαα

z u3 − ε0μ0D
αα
t u3, 0,Dαα

x u1ð
+Dα

xD
α
z u3 + ε0μ0D

αα
t u1Þ:

ð6Þ

From equations (3) and (5), we obtain

F = Fα
1 , Fα

2 , Fα
3ð Þ

= μ0H
2
0D

α
xe − ε0μ

2
0H

2
0D

αα
t u1, 0, μ0H2

0D
α
z e − ε0μ

2
0H

2
0D

αα
t u3

� �
= μ0H

2
0 Dαα

x u1 +Dα
xD

α
z u3 − ε0μ0D

αα
t u1, 0,Dα

zD
α
xu1ð

+Dαα
z u3 − ε0μ0D

αα
t u3Þ:

ð7Þ

So, the displacement vector u = ðu1, u2, u3Þ has the
components u1 = u1ðx, z, tÞ, u2 = 0, u3 = u3ðx, z, tÞ:

The basic governing equations become

λ + μð Þ Dαα
x u1 +Dα

xD
α
z u3ð Þ + μ + kð Þ Dαα

x u1 +Dαα
z u1ð Þ

− kDα
zφ2 + λ0D

α
xφ

∗ − bγ Dα
xT + F1 + ρgDα

xu3 = ρDαα
t u1,

ð8Þ

λ + μð Þ Dαα
x u3 +Dα

xD
α
z u1ð Þ + μ + kð Þ Dαα

x u3 +Dαα
z u3ð Þ

+ kDα
xφ2 + λ0D

α
zφ

∗ − bγ Dα
z T + F3 − ρgDα

z u1 = ρDαα
t u3,

ð9Þ

a + b + cð Þ∇α ∇α ⋅ φð Þ − c∇α × ∇α × φð Þ + k ∇α × uð Þ
− 2kφ = ρjDαα

t φ,
ð10Þ

α0∇
2
αφ

∗ −
1
3 b1φ

∗ −
1
3 b0 ∇α ⋅ uð Þ + 1

3 bγ1T = 3
2 ρ jD

αα
t φ∗,

ð11Þ

K∗ + τ∗νD
α
t + KτTD

αα
tð Þ∇2

αT = 1 + τqD
α
t +

τ2q
2 Dαα

t

 !
� ρCeD

αα
t T + bγT0D

αα
t e + bγ1T0D

αα
t φ∗½ �:

ð12Þ

Such that τ∗ν = K + K∗τν, ∇2
α =Dαα

x +Dαα
z :

σiℓ = b0φ
∗ + λDα

r urð Þδiℓ + μ + kð ÞDα
i uℓ + μDα

ℓui
− kεiℓrφr − bγTδiℓ,

miℓ = aDα
rφrδiℓ + bDα

ℓφi + cDα
i φℓ,

λi = a0D
α
i φ

∗: ð13Þ

The constitutive relations take the following form:

σxx = λ + 2μ + kð ÞDα
xu1 + λDα

z u3 + b0φ
∗ − bγT ,

σzz = λ + 2μ + kð ÞDα
z u3 + λDα

xu1 + b0φ
∗ − bγT ,

σxz = μDα
z u1 + μ + kð ÞDα

xu3 + kφ2, σzx

= μDα
xu3 + μ + kð ÞDα

z u1 − kφ2,

mxy = cDα
xφ2,mzy = cDα

zφ2,

λx = a0D
α
xφ

∗, λz = a0D
α
zφ

∗: ð14Þ

Moreover, we introduce these dimensionless quantities
to make the solution easier

xi′=
ω∗

c0
xi, ui ′ =

ρc0ω
∗bγ T0
ui,Θ′

= bγ
ρc20

T − T0ð Þ, t ′, τT ′, τν ′, τq ′
n o

= ω∗ t, τT , τν, τq
� �

, σij ′

=
σijbγT0

,mij′ =
ω∗

c0bγT0
mij, λi′=

ω∗

c0bγT0
λi, φ′

∗

= ρc20bγ T0
φ∗, φ2′ =

ρc20bγ T0
φ2, g′ =

g
c0ω∗ , ω

∗

= ρCec
2
0

k
, h′ = h

H0
,

ð15Þ

c20 =
λ + 2μ + k

ρ
, i, j = 1, 2, 3: ð16Þ

Utilizing Equation (16), the governing Equations
(8)–(12) recast in this form (after suppressing the primes)

μ + k
ρ c20

� �
∇2
αu1 +

μ + λ

ρ c20
+ RH

� �
Dα
xe −

k
ρ c20

Dα
zφ2 +

λ0
ρ c20

Dα
xφ

∗

−
ρ c20bγT0

Dα
xΘ + gDα

xu3 = β2Dαα
t u1,

ð17Þ

μ + k

ρ c20

� �
∇2
αu3 +

μ + λ

ρ c20
+ RH

� �
Dα
z e +

k

ρ c20
Dα
xφ2 +

λ0
ρ c20

Dα
zφ

∗

−
ρ c20bγT0

Dα
zΘ − gDα

xu1 = β2Dαα
t u3,

ð18Þ

∇2
αφ2 −

2kc20
c2ω∗2 φ2 +

kc20
c2ω∗2 Dα

z u1 −Dα
xu3ð Þ = ρjc20

c2
Dαα
t φ2,

ð19Þ

C2
1

c20
∇2
α −

C2
2

ω∗2 −Dαα
t

� �
φ∗ −

C2
3

ω∗2 e + C4Θ = 0, ð20Þ
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Ck + CνD
α
t + CTD

αα
tð Þ∇2

αΘ = 1 + τqD
α
t +

τ2q
2 Dαα

t

 !
� Dαα

t Θ + ε1D
αα
t e + ε2D

αα
t φ∗½ �,

ð21Þ

σxx = a1φ
∗ +Dα

xu1 + a2D
α
z u3 − a3Θ − 1, ð22Þ

σzz = a1φ
∗ +Dα

z u3 + a2D
α
xu1 − a3Θ − 1, ð23Þ

σxz = a4D
α
z u1 + a5D

α
xu3 + a6 φ2, ð24Þ

σzx = a4D
α
z u3 + a5D

α
xu1 − a6φ2, ð25Þ

mxy = a7D
α
xφ2, ð26Þ

mzy = a7D
α
zφ2, ð27Þ

λx = a8D
α
xφ

∗, ð28Þ
λz = a8D

α
zφ

∗, ð29Þ
where

RH = μ0H
2
0

ρc20
, b2 = 1 + ε0μ

2
0H

2
0

ρ

� �
, C2

1, C2
2, C2

3
� �

= 2
9ρ j 3a0, b1, b0ð Þ, C4 =

2ρ c40bγ1
9 jγ∧2 T0ω

∗2

c2 = 2a + 2b + cð Þ, C = 2 c20bγ1
9 jbγ ω∗2 , Ck, Cv , CTð Þ

= 1
ρc20Ce

Κ∗, τ∗v ,ΚτTω
∗ð Þ, ε1 =

γ∧3 T0
ρ3c40Ce

,

ε2 =
bγ1γ∧

2 T2
0

ρ3c40Ce
, a1, a2ð Þ = 1

ρc20
b0, λð Þ, a3

= ρc20bγ T , a4, a5, a6ð Þ = 1
ρc20

μ, μ + k, kð Þ,

a7, a8ð Þ = ω∗2

ρc40
c, a0ð Þ: ð30Þ

The components of the displacement u1ðx, z, tÞ and
u3ðx, z, tÞ take the following form concerning the potential
functions Φðx, z, tÞ and Ψðx, z, tÞ

u1 =Dα
xΦ +Dα

zΨ, u3 =Dα
zΦ −Dα

xΨ,Ψ
!
= 0,−Ψ, 0ð Þ: ð31Þ

Using Equation (31) in Equations (17)–(21), we get

∇2
α − ζ0D

αα
t

� �
Φ − ζ1D

α
xΨ − ζ2Θ + ζ3φ

∗ = 0, ð32Þ

ζ4D
α
xΦ + ∇2

α − ζ5D
αα
t

� �
Ψ − ζ6φ2 = 0, ð33Þ

kc20
cω∗2 ∇

2
αΨ + ∇2

α −
2kc20
cω∗2 −

jρc20
c

Dαα
t

� �
φ2 = 0, ð34Þ

C2
1

c20
∇2
α −

C2
2

ω∗2 −Dαα
t

� �
φ∗ −

C2
3

ω∗2 ∇
2
αΦ + a0Θ = 0, ð35Þ

Ck∇
2
αΘ + Cν∇

2
α Dα

tΘð Þ + CT∇
2
α Dαα

t Θð Þ = 1 + τqD
α
t +

τ2q
2 Dαα

t

 !
� Dαα

t Θ + ε1∇
2
α Dαα

t Φð Þ + ε2D
αα
t φ∗	 


,
ð36Þ

where

ζ0, ζ1, ζ2, ζ3ð Þ = 1
1 + RH

b2, g, ρc20bγT0
, b0
ρc20

� �
, ζ4, ζ5, ζ6ð Þ

= ρc20
μ + k

g, b2, k
ρc20

� �
:

ð37Þ

1.2. Solution of the Problem. In this section, solving Equa-
tions (32)–(36) is assumed as

Φ,Ψ,Θ, φ∗, φ2ð Þ = �Φ, �Ψ, �Θ, φ∗, φ2
� �

exp
� iξ xα sin θ + zα cos θð Þ − iωtα½ �:

ð38Þ

Substituting from Equation (38) into Equtions (32)–(36),
the result is

α2 −ξ2 + ζ0ω
2

� �
�Φ − iαζ1ξ sin θ�Ψ − ζ2 �Θ + ζ3φ

∗ = 0, ð39Þ

iαξζ4 sin θ�Φ + α2 −ξ2 + ω2ζ5
� �

�Ψ − ζ6φ2 = 0, ð40Þ

−
kα2ξ2c20
cω∗2

�Ψ + −α2ξ2 + jρc20ω
2α2

c
−
2kc20
cω∗2

 !
φ2 = 0, ð41Þ
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Figure 1: The various values of the amplitudes jz1j concerning the
angle of incidence θ for various values of the fractional parameter
of the diverse values of gravity g.
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α2ξ2C2
3

ω∗2
�Φ + a0 �Θ + −

α2ξ2C2
1

c20
−

C2
2

ω∗2 + α2ω2
 !

φ∗ = 0, ð42Þ

−ε1α
4ξ2ω2τ∗q �Φ + −Ck + iCναω + CTα

2ω2� �
α2ξ2 + α2ω2τ∗q

h i
�Θ

+ ε2α
2ω2τ∗q �φ

∗ = 0:
ð43Þ

where τ∗q = 1 − iαωτq − ððα2ω2τ2qÞ/2Þ.

To help identify the nontrivial solution, we change from
Equation (39) into Equations (33)–(38) and get

which tends to

Lα10ξ10 +Mα8ξ8 +Nα6ξ6 +Oα4ξ4 + Pα2ξ2 +Q = 0: ð45Þ

where L, M, N , O, P, and Q are in the Appendix.
From Equation (45), we can identify five diverse veloci-

ties accompanying five waves.
After that, Φ,Ψ,Θ, φ∗, andφ2 are written as

Φ,Ψ,Θ, φ∗, φ2ð Þ = 1, η0, κ0, χ0, ϑ0ð ÞA0 exp
� iξ xα sin θ + zα cos θð Þ − iωtα½ �

〠
5

j=1
1, ηj, κj, χj, ϑj
� �

Aj exp iξj x
α sin θj − zα cos θj

� �
− iωtα

	 

:

ð46Þ

Based on Equations (40) and (41), the result is

ηj =
−ιξjζ4 sin θj ξ2j − jρc20α

2ω2� �
/bγ� �

+ 2kc20/cω∗2� �� �
ξ2j − α2ω2ζ5
� �

ξ2j − jρc20α2ω2� �
/bγ� �

+ 2kc20/cω∗2� �� �
− p∗ξ2j ζ6

, κj

=
ip∗ξ3j ζ4 sin θj

ξ2j − α2ω2ζ5
� �

ξ2j − jρc20α2ω2� �
/bγ� �

+ 2kc20/cω∗2� �� �
− p∗ξ2j ζ6

,

ð47Þ

where p∗ = kc20/γω∗2.
Also, from Equations (42) and (43), we get

χj =
−ε2α2ω2τ∗qξ

2
j C2

3/ω∗2� �
− ε1α

2ω2τ∗qξ
2
j − C2

1/c20
� �

ξ2j − C2
2/ω∗2� �

+ α2ω2
h i

a0ε2α2ω2τ∗q − −Ck − iαωCv + α2ω2CTð Þξ2j + ω2τ∗q

h i
− C2

1/c20
� �

ξ2j − C2
2/ω∗2� �

+ α2ω2
h i ,

ϑj =
a0ε1α

2ω2τ∗qξ
2
j + C2

3/ω∗2� �
ξ2j −Ck − iαωCv + α2ω2CT

� �
ξ2j + α2ω2τ∗q

h i
a0ε2α2ω2τ∗q − −Ck − iαωCv + α2ω2CTð Þξ2j + α2ω2τ∗q

h i
− C2

1/c20
� �

ξ2j − C2
2/ω∗2� �

+ α2ω2
h i :

ð48Þ

1.3. The Boundary Conditions. The problem’s boundary con-
ditions are written as follows:

σzz + τzz = 0, σxz + τxz = 0,Dα
zT = 0,myz = 0, λx = 0atz = 0,

ð49Þ

〠
5

j=1
a1ϑj − μeH

2
0ξ

2
j − a3ξ

2
j sin2θj +

ηj
2 sin 2θj

� �
− a2ξ

2
j cos2θj −

ηj
2 sin 2θj +

kj
ξ2j

 !" #
Aj

= a1ϑ1 − μeH
2
0ξ

2
1 − a3ξ

2
1 sin2θ0 +

η1
2 sin 2θ0

� �
− a2ξ

2
1 cos2θ0 −

η1
2 sin 2θ0 +

k1
ξ21

 !" #
A0,

ð50Þ

〠
5

j=1
a4 + a5ð Þ ξ

2
j

2 sin 2θj + a4ξ
2
j ηj cos2θ j − a5ξ

2
j η j sin2θj + a6ξj

" #
Aj

= − a4 + a5ð Þ ξ
2
1
2 sin 2θ0 + a4ξ

2
1η1 cos2θ0 − a5ξ

2
1η1 sin2θ0 + a6ξ1

" #
A0,

ð51Þ

〠
5

j=1
kjξj cos θjAj = k1ξ1 cos θ0A0, ð52Þ

〠
5

j=1
ζjξj cos θjAj = ζ1ξ1 cos θ0A0: ð53Þ

Finally,

〠
5

j=1
ϑjξj cos θjAj = −ϑ1ξ1 cos θ0A0: ð54Þ

α2 ζ0ω
2 − ξ2

� �
−iαζ1ξ sin θ −ζ2 ζ3 0

iαξζ4 sin θ α2 −ξ2 + ω2ζ5
� �

0 0 −ζ6

0 −
kα2ξ2c20
cω∗2 0 0 α2

jρc20ω
2

b
− ξ2

� �
−

2kc20
bω∗2

α2ξ2C2
3

ω∗2 0 a0 α2 ω2 −
C2
1ξ

2

C2
0

 !
−

C2
2

ω∗2 0

−ε1α
4ξ2ω2τ∗q 0 α2ξ2 iαωCv + α2ω2CT − Ck

� �
+ α2ω2τ∗q ε2α

2ω2τ∗q 0

����������������������

����������������������

= 0,

ð44Þ
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Based on Equations (50)–(54), the result is

1.4. Numerical Results and Discussion. In this section, some
numerical findings are discussed based on the illustration
of the results obtained in the former sections and a compar-
ison of such results in different cases.

Therefore, we chose these materials:

i =
ffiffiffiffiffiffi
−1

p
, a0 = 0:779 × 10−4, b0 = 0:5 × 1011, b1 = 0:5 × 1011, j

= 0:2 × 10−15, ρ = 8954,

Ce = 383:1, k = 386, T0 = 293, λ = 7:76 × 1010, μ = 3:86 × 1010, c
= 0:779 × 10−4,

Κ∗ = 2:97 × 1013, μ0 = 0:1, ε0 = 0:1, ω = 0:034, τT = 0:2, τv
= 0:1, τq = 0:5:

ð56Þ

Figure 1 highlights the various values of the amplitudes
jz1j concerning the angle of incidence of the reflected
waves θ for various values of the fractional parameter of
two different values of gravity g. Clearly, the amplitudes
of incidence waves jz1j decline when rising the gravity
field. They decline then rise with the increase of θ to reach
the unit at θ = 90°.
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Figure 2: The various values of the amplitudes jz2j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of the values of gravityg.

aijZ j = Bi, i, j = 1, 2,⋯, 5ð Þ, Zj =
Aj

A0
,

a1 j = a1ϑj − ξ2j a3 sin2θj +
ηj
2 sin 2θ j

� �
− a2 cos2θj −

ηj
2 sin 2θj +

kj
ξ2j

 !
+ μeH

2
0

" #
,

a2 j = a4 + a5ð Þ ξ
2
j

2 sin 2θj + a4ξ
2
j ηj cos2θj − a5ξ

2
j η j sin2θj + a6ξj,

a3 j = kjξj cos θj, a4j = ζjξj cos θjAj, a5j = ϑjξj cos θj,

B1 = −a1ϑ1 + ξ2j a3 sin2θ0 +
η1
2 sin 2θ0

� �
− a2 cos2θ0 −

η1
2 sin 2θ0 +

kj
ξ2j

 !
+ μeH

2
0

" #
,

B2 = − a4 + a5ð Þ ξ
2
1
2 sin 2θ0 − a4ξ

2
1η1 cos2θ1 + a5ξ

2
1η1 sin2θ1 − a6ξ1,

B3 = k1ξ1 cos θ0, B4 = ζ1 ξ1 cos θ0, B5 = −ϑ1ξ1 cos θ0:

ð55Þ
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In the case of g = 0:1, the amplitude of the wave is
less than in the case of g = 0:25, indicating that the
greater the effect of gravity leads to an increase in the
wave’s amplitude.

Figure 2 displays the various values of amplitudes jz2j con-
cerning the angle of incidence of the reflected waves θ for var-
ious values of the fractional parameter for the two diverse
values of gravity g that shows the oscillatory performance in
the entire range of angle θ: Clearly, the amplitudes of reflec-
tion waves jz2j rise when rising the gravity field, which rises
then declines with increasing θ approaches zero at θ = 90°.

In the case of jz2j, the wave amplitude started to increase
significantly than jz1j at g = 0:1, and the effect of the
fractional differential appears more clearly in the case of
α = 0:90 or α = 0:94, both at g = 0:1 or g = 0:25.

Figure 3 highlights the various values of amplitudes jz3j
concerning the angle of incidence of the reflected waves θ
for various values of the fractional parameter for the two
values of gravity g that shows the oscillatory performance
in the entire range of angle θ: Clearly, the amplitudes of
reflection waves jz3j rise when rising the gravity field and
decline when rising θ until it equals zero at θ = 90°.
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Figure 4: The various values of the amplitudes jz4j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of gravity g.
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Figure 3: The various values of the amplitudes jz3j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of gravity g.
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In the case of jz3j, the effect of the wave amplitude shows
a slight change in 0 ≤ θ ≤ 10, and it is not affected by the
gravity at the lowest value of the fractional differential
parameter at α = 0:90, while the rest of the values for the
fractional differential parameter are clear.

Figures 4 and 5 display the various values of amplitudes
jz4j, jz5j concerning the angle of incidence of the reflected
waves θ regarding various values of the fractional parameter

for the two diverse values of gravity g that escalates in the
whole entire of angle θ: Clearly, the amplitudes of the reflec-
tion waves jz4j, jz5j increase with a higher gravity field. They
rise then decline when rising θ until it equals zero at θ = 90°.
In the wave amplitude jz4j, the effect of the fractional differen-
tial parameter at α = 0:90 takes the same behavior whether
gravitational g = 0:1 or g = 0:25. In the case of jz5j, the effect
of the wave amplitude shows a slight change in 10 ≤ θ ≤ 20,
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Figure 6: The various values of the amplitudes jz1j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of the magnetic field H0.
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Figure 5: The various values of the amplitudes jz5j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of gravity g.
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and it is not affected by the gravity at the lowest value of the
fractional differential parameter at α = 0:90, while the rest of
the values for the fractional differential parameter are clear.

Figure 6 illustrates the magnitude of amplitude ratios jz1j
concerning the angle of incidence of the reflected waves θ
regarding various values of the fractional parameter α of
two diverse values of the magnetic field H0. The amplitudes
of incidence waves jz1j are lower when rising the magnetic

field H0 that decline then grows with rising θ to reach the
unit at θ = 90°. It appears that the amplitude of the wave is
lower in the case of the fractional differential parameter at
α = 0:90 along 0 ≤ θ ≤ 90, while it increases with an increase
of α = 0:94 and is more amplitude in the case of α = 1.

Figures 7–10 display the various values of amplitudes
ðjz2j, jz3j, jz4j, jz5jÞ concerning the angle of incidence of the
reflected waves θ for various values of the fractional
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Figure 7: The various values of the amplitudes jz2j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of the magnetic field H0.
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Figure 8: The various values of the amplitudes jz3j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of the magnetic field H0.
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parameter α of the two different values of the magnetic field
H0, which escalates in the entire range of angle θ: Obviously,
the amplitude reflection waves ðjz2j, jz3j, jz4j, jz5jÞ decrease
with an increase of the magnetic field H0 and decrease with
an increase of θ until equal zero at θ = 90°. In the case of
amplitudes ðjz2j, jz3j, jz5jÞ, the behavior of the waves appears
to be the same in all cases for different alpha values. At the
same time, the effect of the fractal calculus parameter is less
amplitude than the absence of fractional differential parame-
ter. In the case of jz4j, the impact of the magnetic field,

whether H0 = 8 × 106 or H0 = 8:5 × 106 is not affected by
the wave amplitude, as we see the effect of fractional differen-
tiation in all the fractional differential parameter values.

In sum, the method of the fractional derivative technique
applies to other relevant issues in geology, geophysics, phys-
ics, astronomy, and engineering, agreeing with the integer
derivative if α = 1.

If the fractional order considers only an integer without
an electric field, the results obtained are deduced to the
results given in Othman et al. [46].
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Figure 9: The various values of the amplitudes jz4j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of the magnetic field H0.
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Figure 10: The various values of the amplitudes jz5j concerning the angle of incidence θ for various values of the fractional parameter of the
diverse values of the magnetic field H0.
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2. Conclusion

The plane harmonic waves’ reflection from a semi-infinite
elastic solid of thermo-microstretch was studied in this arti-
cle under the thermoelasticity theory with three-phase lag.
Expressing the reflection coefficients that represent the rela-
tionships of the amplitudes of the reflected waves to the
amplitude of the incidence waves obtained the reflection
coefficient ratio variations with the angle of incidence with
changing the dielectric constant, magnetic field, and gravity
field. The results were compared in the cases of the existence
and negligence of the parameter fractional.

Due to their practical issues, we recommend utilizing the
research findings in other fields, such as geophysics, engi-
neering, geology, volcanoes, earthquakes, and structures.
Future works will consider taking into account the effect of
radiation, rotation, and other external parameters related
to the phenomenon topics applicable in the environment.

Appendix
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h iC2
1

c20

� �
+ A
ω∗2 ζ6

kC2
1

c
− C2

2 + ζ3C
2
3

� �
+ AB

C2
1

c20
,

N = α2ω2 A
ω∗2 C2

2 ζ0 + ζ5ð Þ − ζ6k
c

c20 − ζ0C
2
1

� �
− ζ3ζ5C

2
3

� ��
− AB C2

1ζ5 − 1 − ζ0
C2
1

c20

� �
+ τ∗qB

C2
1

c20
1 + ζ2ε1ð Þ

+α4ω4 τ∗q 1 + ζ2ε1½ � − A ζ6 + ζ0½ � + τ∗q
C2
1

c20
ζ5 + ζ0 + ζ2ζ5ε1 − ζ0ζ5

A
τ∗q

" # !

+ A
ω∗2 BC2

2 − ζ3bC
2
3

� �
+ ζ6A

kc20
cω∗4 C2

2 − ζ3C
2
3

� �
− ζ1ζ4A sin2θC

2
1

c20
,

Q = ζ0ζ5α
6ω6τ∗qB a0ε2 +

C2
2

ω∗2

� �
− ζ1ζ4α

4ω4τ∗qB sin2θ

+ α2ω2ζ1ζ4τ
∗
qB sin2θ a0ε2 +

C2
2

ω∗2

� �
,

A = −Ck + iαωCv + α2ω2CT , B = jρc20α
2ω2

c
−
2kc20
cω∗2 ,

O = α6ω6 ζ0ζ5 A − τ∗q
C2
1

c20

� �
− τ∗q ζ5 + ζ0½ � − ζ2ζ5ε1τ

∗
q

� �
+ α4ω4 τ∗q a0 ζ5ε2 − ζ0ε2 − ζ3ζ5ε1½ � + τ∗q

C2
2

ω∗2 ζ5 + ζ0½ �
�

+ ζ0
A
ω∗2 ζ6

kc20
c

− ζ5C
2
2

" #

+AB ζ5 + ζ0 + ζ0ζ5
C2
1

c20

� �
− τ∗qB

C2
1

c20
ζ0 + ζ5 + ζ2ζ5ε1½ � − τ∗qB ζ2ε1 + 1½ �

− ζ6τ
∗
q
kc20
cω∗2 1 − ζ2ε1½ � − τ∗q

cω∗2 ζ0ζ6kC
2
1 − ζ2ζ5ε1cC

2
2

	 

−ζ5ε2τ

∗
q
C2
3

ω∗2 ζ2ε2 + ζ3½ �
�

+α2ω2 τ∗qB
C2
2

ω∗2

�
1 + ζ2ε1½ � − τ∗qB

C2
3

ω∗2 ζ3 + ζ2ε2½ � + a0τ
∗
qB ε2 − ζ3ε1½ �

− AB
C2
2

ω∗2 ζ5 + ζ0½ �

−ζ6
kc20
cω∗4 ζ0AC

2
2 − a0ε2τ

∗
qω

∗2 + ζ2ε1τ
∗
qC

2
2 − ζ2ε2τ

∗
qC

2
3

h i
− ζ1ζ4 sin2θ τ∗q

C2
1

c20
− A

� �
+ζ3ζ5Ab

C2
3

ω∗2 − ζ3ζ6a0ε1τ
∗
q

�
+ ζ1ζ4A sin2θ B

C2
1

c20
−

C2
2

ω∗2

� �
:

P = ζ0ζ5α
8ω8τ∗q + α6ω6 ζ5τ

∗
q ζ0a0ε2 + ζ2ε1B½ � + τ∗qB ζ5 + ζ0½ �

�
+ ζ0ζ5B τ∗q

C2
1

c20
− A

� �
− ζ0

τ∗q
ω∗2 ζ5C

2
2 − ζ6

kc20
c

" #!

+α4ω4 ζ5τ
∗
qB

C2
3

ω∗2 ζ2ε2 + ζ3½ � − τ∗qB
C2
2

ω∗2 ζ5 + ζ0 + ζ2ζ5ε1½ �
�

− a0τ
∗
qB ζ5ε2 + ζ0ε2 − ζ3ζ5ε1½ �−ζ0ζ6τ∗q

kc20
cω∗2 a0ε2 +

C2
2

ω∗2

� �
+ ζ0ζ5AB

C2
2

ω∗2 + ζ1ζ4τ
∗
q sin2θ

�

+α2ω2 ζ1ζ4B sin2θ τ∗q
C2
1

c20
− A

� �
− ζ1ζ4τ

∗
q sin2θ a0ε2 +

C2
2

ω∗2

� ��
− ζ3ζ6τ

∗
q
kc20C

2
3

cω∗4

!
+ ζ1ζ4AB sin2θ C2

2
ω∗2 ,

ðA:1Þ

Nomenclature

B
!
: Magnetic induction vector

Ce: Specific heat per unit mass

E
!
: Electrical density vector

eij: Strain tensor

Fi
!
: Body force vector of Lorentz

g: Gravitational constant

H
!
: Magnetic vector

h
!
: Perturbed magnetic vector

H
!

0:
Elementary constant magnetic field vector

i:
ffiffiffiffiffiffi
−1

p
j: Microinertia moment

J
*
: Electric current density vector

K , K∗: Thermal conduction coefficients
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mij: Coupled stress tensor
t: Time
T0: The reference temperature
T : The temperature distribution
u: Displacement vector
a0, b0, b1: Microstretch constants
αt1 , αt2 : Coefficient of linear thermal expansion
δij: Kronecker delta
ε0: Electric permeability
φ: Rotation vector
φ∗: Scalar microstretch
k, a, b, c: Micropolar constants
λ, μ: Lame’ constants
µ0: Magnetic permeability
v = ω/ξ: Velocity of the coupled waves
ρ: Mass density
σij: Stress tensor
τij: Stress tensor of Maxwell
τq: The phase-lag of the temperature influx
τT : The phase-lag of the heat tendency
τv: Thermal displacement phase lag
ω: Complex frequency
ξ: Wave numberbγ : ð3λ + 2μ + kÞαt1bγ1: ð3λ + 2μ + kÞαt2 .
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