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In this manuscript, we present the generalized hypergeometric function of the type r Fr , r > 2 and extension of the K Laguerre

polynomial for the K extended Laguerre polynomials fAðαÞ
r,n,kðxÞg. Additionally, we describe the K generating function, K

recurrence relations, and KS Rodrigues formula.

1. Introduction

Laguerre polynomials are utilized to investigate non-central
Chi-square distribution. Many works are existed in the liter-
ature with implementation to classical orthogonal polyno-
mials. There many extensions of Laguerre polynomials.

A large number of properties of Laguerre polynomials
have been described in classical works, e.g., Erdélyi et al.
[1] and Bell [2]; also we can refer to Wang and Guo [3]
and Mathai [4].

Chak [5] has given a representation for the Laguerre
polynomials. Carlitz [6] proved the recurrence relations
involving Laguerre polynomials. Al-Salam [7] proved several
results involving Laguerre polynomials. Prabhakar [8]
introduced that generating functions, integrals, and recur-
rence relations are obtained for the polynomials Zα

nðx ; kÞ
in xk:.

Andrews et al. [9], Chen and Srivastava [10], Trickovic
and Stankovic [11], Radulescu [12], and Doha et al. [13]
have done a lot of work for properties of Laguerre polyno-
mials. Akbary et al. [14] can be referred for other application
of Laguerre polynomials. Li [15], Aksoy et al. [16], Wang
[17], and Krasikov and Zarkh [18] studied problems of per-
mutation of polynomials; bijection that can induce polyno-
mials with integer coefficients is modulo m.

In this manuscript, we present the properties of the
extending Laguerre polynomial including r Fr , r > 2; we con-
sider

L αð Þ
n xð Þ = 1 + αð Þn

n! 1F1 −n ; 1 + α ; xð Þ: ð1Þ

Shively [19] extended the Laguerre polynomials as

Rn a, xð Þ = að Þ2n
n! að Þn 1F1 −n ; a + n ; xð Þ: ð2Þ

Habibullah [20] demonstrated the Rodrigues formula as

Rn a + 1, xð Þ = exx−α−n

n!
Dn xα+2ne−x
� �

,

L αð Þ
n xð Þ = exx−α

n!
Dn xα+ne−xð Þ:

ð3Þ

Erdélyi et al. [1] introduced

Dm xα+mL α+mð Þ
n xð Þ

h i
= Γ α +m + n + 1ð Þ

Γ α + n + 1ð Þ xαL αð Þ
n xð Þ,D = d

dx
:

ð4Þ
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Khan and Habibullah [21] introduced A2,nðxÞ = 2F2ð−n
/2, ð−n + 1/2Þ ; 1/2, 1 ; x2Þ:

Khan and Kalim [22] introduced

A αð Þ
3,m yð Þ = 1 + αð Þm

m! 3F3
−m
3 , −m + 1

3 , −m + 2
3 ; 1 + α

3 , 2 + α

3 , 3 + α

3 ; y3
� �

:

ð5Þ

Khan et al. [23] proposed extended Laguerre polyno-

mials A
ðαÞ
q, n

ðxÞ
( )

.

Parashar [24] presented a new set of Laguerre polyno-
mials Lðα,hÞn ðxÞ related to the Laguerre polynomials LðαÞn ðxÞ:
Sharma and Chongdar [25] proved an extension of bilateral
generating functions of the modified Laguerre polynomials.

Researchers [26–28] found additional properties of k
gamma and k beta functions. Then, Mubeen and Habibullah
[29] introduced k fractional integrals and discussed its appli-
cation. Mubeen and Habibullah [30] introduced an integral
representation of some k hypergeometric functions. Krasniqi
[31] derived some properties of the k gamma and k beta
function. Mubeen [32] proved the properties of confluent k
integrals by using k fractional integrals. There is a tremen-
dous scope to study k polynomials using k gamma, k beta,
and k hypergeometric functions. Kokologiannaki and Kras-
niqi [33] introduced k analogue of the Riemann Zeta func-
tion and also proved some inequities relating to Riemann
Zeta function and k gamma functions.

Din et al. [34] understand the dynamical behavior such
diseases; they fitted a susceptible-infectious quarantined
model for human cases with constant proportions. Din
et al. [35] investigated a newly constructed system of equa-
tion for hepatitis B disease in sense of Atanganaa–Baleanu
Caputo (ABC) fractional order derivative. Din et al. [36]
developed the analysis of a non-integer-order model for hep-
atitis B (HBV) under singular type Caputo fractional order
derivative. They investigated proposed system for an
approximate or semi-analytical solution using Laplace trans-
form along with decomposition techniques by Adomian
polynomial of nonlinear terms and some perturbation tech-
niques of homotopy (HPM). Din [37] investigated the
spread of such contagion by using a delayed stochastic epi-
demic model with general incidence rate, time-delay trans-
mission, and the concept of cross immunity.

Ain et al. [38] impression of activated charcoal is shaped
by the fractional dynamics of the problem, which leads to
speedy and low-cost first aid. Ain et al. [39] presented an
impulsive differential equation system, which is useful in
examining the effectiveness of activated charcoal in detoxify-
ing the body with methanol poisoning. Din and Ain [40]
developed a model based on a stochastic process that could
be utilized to portray the effect of arbitrary-order derivatives.
A nonlinear perturbation is used to study the proposed sto-
chastic model with the help of white noises.

Rehman et al.’s [41] unsaturated porous media were ana-
lyzed by solving Burger’s equation using the variational iter-
ative modeling and homotopy perturbation method. Wang

and Wang [42] described two different types of plasma
models with variable coefficients by using the fractal deriva-
tive. Wang [43] investigated the fractal nonlinear dispersive
Boussineq-like equation by variational perspective for the
first time. The fractal variational principle of the fractal
Boussineq-like equation was established via fractal semi-
inverse method (FSM).

2. Extended Polynomials

Lemma 1.
If k, j ∈ℤ+ and n is any non-negative integer. Then, we

will get

−n
r

� �
kj

−n + 1
r

� �
kj

⋯
−n + r − 1

r

� �
kj

= −1ð Þrkj n!
rrkj n − rkjð Þ! :

ð6Þ

Proof.

−n
r

� �
kj

−n + 1
r

� �
kj

⋯
−n + r − 1

r

� �
kj

= −n
r

� � −n
r

+ 1
� � −n

r
+ 2

� �
⋯

−n
r

+ kj − 1
� � −n + 1

r

� �
−n + 1

r
+ 1

� �
−n + 1

r
+ 2

� �
⋯

−n + 1
r

+ kj − 1
� �

−n + r − 1
r

� �
−n + r − 1

r
+ 1

� �
−n + r − 1

r
+ 2

� �
⋯

−n + r − 1
r

+ kj − 1
� �

= −n
r

� � −n + r
r

� � −n + 2r
r

� �
⋯

−n + rkj − r
r

� �
−n + 1

r

� �
−n + r + 1

r

� �
−n + 2r + 1

r

� �
⋯

−n + rkj − r + 1
r

� �
−n + r − 1

r

� �
−n + 2r − 1

r

� �
−n + 3r − 1

r

� �
⋯

−n + rkj − 1
r

� �
:

ð7Þ

By simplification we get our desired result.

Lemma 2.
If k ∈ℤ+ and n is any non-negative integer, thus

αð Þkn = kkn
α

k

� �
n

α + 1
k

� �
n

⋯
α + k − 1

k

� �
n

: ð8Þ

Rainville [44] (p 22)).

Lemma 3.
Assume that k ∈ℤ+ and n is any non-negative integer.

Then, we reach

〠
∞

n=0
〠
n

k=0
B k, nð Þ = 〠

∞

n=0
〠
∞

k=0
B k, n + kð Þ: ð9Þ

Rainville [44] (p 57)).
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Lemma 4.
Assume that k ∈ℤ+ and n is any non-negative integer.

Thus, we have

〠
∞

n=0
〠
∞

k=0
B k, nð Þ = 〠

∞

n=0
〠
n

k=0
B k, n − kð Þ: ð10Þ

Rainville [44] (p 56)).

3. The K Extended Laguerre

Polynomials AðαÞ
r,n,kðxÞ

We describe the K extended Laguerre polynomial set f
AðαÞ
r,n,kðxÞg as

where α ∈ℝ,n, r, k ∈ℤ+.

Theorem 5.

If fAðαÞ
r,n,kðxÞg, are the K extended Laguerre polynomials.

Then

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k 〠

n/rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ! ,

ð12Þ

α ∈ℝ, n, r, k ∈ℤ+: ð13Þ
Proof.

Consider

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ! qFq,k

−n
r
, k

� �
, −n + k

r
, k

� �
,⋯, −n + rk + 1

r
, k

� �
;

;xr

α + rk
r

, k
� �

, α + rk + 1
r

, k
� �

,⋯, α + 2rk − 1
r

, k
� �

0
BBBBBBB@

1
CCCCCCCA
:

=
ex rk + αð Þn,k

n ; kð Þ! × 〠
n/rk½ �

j=0

−n/rð Þ, kð Þ j −n + k/rð Þ, kð Þj ⋯ −n + rk + 1/rð Þ, kð Þj
α + kq/rð Þ, kð Þ j α + qk + 1/rð Þ, kð Þj ⋯ α + 2rk − 1/rð Þ, kð Þj

( )
xð Þrkj

rkj ; kð Þ! :

ð14Þ

By using Lemma (1)

Table 1: .

The extended Laguerre polynomials A αð Þ
q,n xð Þ Khan et al. [23]

The K extended Laguerre polynomials A αð Þ
r,n,k xð Þ

A αð Þ
q,n xð Þ = ex q + αð Þn

n! qFq

−n
q , −n + 1

q ,⋯, −n + q − 1
q ;

q + α
q , q + 1 + α

q ,⋯, 2q + α − 1
q

; xq
0
@

1
A

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ! r Fr,k

−n
r , k
� �

, −n + k
r , k

� �
,⋯, −n + rk − 1

r , k
� �

;
α + kr

r , k
� �

, α + rk + 1
r , k

� �
,⋯, α + 2rk − 1

r , k
� � ; xr

 !
:

If we put k = 1 in our paper, then we get the result of Khan et al. [23].

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ! r Fr,k

−n
r
, k

� �
, −n + k

r
, k

� �
,⋯, −n + rk + 1

r
, k

� �
;

α + kr
r

, k
� �

, α + rk + 1
r

, k
� �

,⋯, α + 2rk − 1
r

, k
� � ; xr

0
BBB@

1
CCCA, ð11Þ

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ!

× 〠
n/rk½ �

j=0

−1ð Þrkj n ; kð Þ!
rr j n − rkj ; kð Þ! α + rk/rð Þ, kð Þj α + rk + 1/rð Þ, kð Þj ⋯ α + 2rk − 1/rð Þ, kð Þj

" #
xð Þrkj

rkj ; kð Þ! :
ð15Þ
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Now, by applying Lemma (2), we get our desired result.

4. K Generating Functions

Theorem 6.
Suppose that n, j, k ∈ℤ+. Thus, we reach

〠
∞

n=0
〠
n/rk½ �

j=0

−1ð Þrkjextn
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= exMk tð Þ0Fr,k −−; rk + α

r
; k

� �
, rk + 1 + α

r
; k

� �
,⋯, 2rk + α − 1

r
; k

� �
; −xt

r

� �r� �
:

ð16Þ

Proof.
We have

〠
∞

n=0
〠
n/rk½ �

j=0

−1ð Þrkjextn
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= 〠
∞

n=0
〠
∞

j=0

−1ð Þrkjextn+rkj
n ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= ex 〠
∞

n=0

tn

n ; kð Þ!

" #
〠
∞

j=0

−1ð Þrkjtrkj
rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

" #

= exMk tð Þ〠
∞

j=0

−xtð Þrkj
rk + αð Þrkj rkj ; kð Þ!

ð17Þ

By applying Lemma (2), we get

〠
∞

n=0
〠
n/rk½ �

j=0

−1ð Þrkjextn
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= exMk tð Þ

× 〠
∞

j=0

−xtð Þrkj
rrkj rk + α/rð Þ ; kð Þj rk + 1 + α/rð Þ ; kð Þj ⋯ 2rk + α − 1/rð Þ ; kð Þj rkj ; kð Þ! :

ð18Þ

After simplification, we get our result.

Corollary 7.
Suppose that α ∈ℝand n, r, j, k ∈ℤ+. Thus, we reach

〠
∞

n=0

A
αð Þ

r, n, k
xð Þtn

rk + αð Þn,k
= exMk tð Þ0Fr,k

−−;
−xt
r

� �r

rk + α

r
; k

� �
, rk + 1 + α

r
; k

� �
,⋯, 2rk + α − 1

r
; k

� �
;

0
BBBBBB@

1
CCCCCCA
:

ð19Þ

Proof.

From Equation (12), we acquire

〠
∞

n=0

A
αð Þ

r, n, k
xð Þ

rk + αð Þn,k

2
6664

3
7775tn = 〠

∞

n=0
〠
n/rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! rk + αð Þrkj

" #
xð Þrkj

rkj ; kð Þ!

" #
tn:

ð20Þ

Then, we have our result.

Theorem 8.
If c ∈ℤ+, then

〠
∞

n=0

cð Þn,kA
αð Þ

r, n, k
xð Þtn

α + rkð Þn,k
= ex

1 − ktð Þc/kk

× r Fr,k

c
r
, k

� �
, c + k

r
, k

� �
,⋯, c + rk + 1

r
, k

� �
; −xt

1 − ktð Þ1/kk

 !r

α + rk
r

, k
� �

, α + rk + 1
r

, k
� �

,⋯, α + 2rk − 1
r

, k
� �

;

0
BBBBB@

1
CCCCCA:

ð21Þ

Proof.
From Equation (20), we note that

〠
∞

n=0
cð Þn

A
αð Þ

r, n, k
xð Þ

rk + αð Þn,k

2
6664

3
7775tn = 〠

∞

n=0
cð Þnex 〠

n/rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! rk + αð Þrkj

" #
xð Þrkj

rkj ; kð Þ!

" #
tn:

ð22Þ

We get

〠
∞

n=0

cð Þn,kA
αð Þ

r, n, k
xð Þtn

rk + αð Þn,k
= 〠

∞

n=0
〠
∞

j=0

cð Þn+rkj,kextn+rkj
n ; kð Þ!

−1ð Þr j xð Þrkj
rk + αð Þrkj,k rkjð Þ!

= 〠
∞

j=0
〠
∞

n=0

c + rkjð Þn,ktn
n ; kð Þ!

" #
cð Þr j,k

α + rkð Þr j,k

" #
ex −xtð Þrkj
rkj ; kð Þ! ,

ð23Þ

Since ðcÞn+rkj,k = ðc + rkjÞn,kðcÞr j,k, and ð1 − ktÞ−ðm/kÞ
k =

∑∞
n=0ðmÞn,ktn/ðn ; kÞ! it thus implies that

〠
∞

n=0

cð Þn,kA
αð Þ

r, n, k
xð Þtn

α + rkð Þn,k
= 〠

∞

j=0

cð Þrkj,k
1 − tð Þc+rkj

h i
α + rkð Þr j,k

2
4

3
5 ex −xtð Þrkj

rkj ; kð Þ!

= ex

1 − ktð Þc/kk
〠
∞

j=0

cð Þrkj,k
rk + αð Þr j,k

" # −xt/ 1 − ktð Þ1/kk

� �r jk
rjk ; kð Þ!

ð24Þ

Corollary 9.
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Assume that α ∈ℝ and n, r, j, k ∈ℤ+. Thus, we reach

〠
∞

n=0
A

αð Þ
r, n, k

xð Þtn = 1

1 − ktð Þ α+qkð Þ/k
k

exp
x − 2xt
1 − t

� �
: ð25Þ

Proof.
We choose c = r + α in Equation (21). We can reach the

desired results.

5. K Recurrence Relations

Theorem 10.

Assume that α ∈ℝ and n, j, k ∈ℤ+. Thus, we reach

xDA
αð Þ

r, n, k
xð Þ = n + xð ÞA

αð Þ
r, n, k

xð Þ − rk + α + n − 1ð ÞA
αð Þ

r, n − 1, k
xð Þ,D = d

dx
:

ð26Þ

Proof.
From Equation (16)

Let

σr,n,k xð Þ =
A

αð Þ
r, n, k

xð Þ

α + rkð Þn,k
:

ð28Þ

Suppose that

0Fr,k

−−; −xt
r

� �r

rk + α

r
; k

� �
, rk + 1 + α

r
; k

� �
,⋯, 2rk + α − 1

r
; k

� �
;

0
BBB@

1
CCCA = ψ

xrtr

r

� �
:

ð29Þ

Then

F = exMk tð Þψ xrtr

r

� �
= 〠

∞

n=0
σr,n,k xð Þtn: ð30Þ

By taking partial derivatives,

∂F
∂x

= exMk tð Þψ + xr−1trexMk tð Þψ′, ð31Þ

∂F
∂t

= exMk tð Þψ + xrtr−1exMk tð Þψ′, ð32Þ

x
∂F
∂x

− t
∂F
∂t

= xF − tF: ð33Þ

Since

F = 〠
∞

n=0
σr,n,k xð Þtn, ð34Þ

therefore ∂F/∂x =∑∞
n=0σr,n,k′ ðxÞtn, and tð∂F/∂tÞ =∑∞

n=0n
σr,n,kðxÞtn.

Equation (33), then yields

x〠
∞

n=0
σr,n,k′ xð Þtn − 〠

∞

n=0
nσr,n,k xð Þtn

= x〠
∞

n=0
σr,n,k xð Þtn − 〠

∞

n=0
σr,n,k xð Þtn+1 = x〠

∞

n=0
σr,n,k xð Þtn

− 〠
∞

n=1
σr,n−1,k xð Þtn:

ð35Þ

We get σr,0′ ðxÞ = 0, and for n > 1, we get our result.

Theorem 11.
If α ∈ℝ and n ≥ 2, then

DA
αð Þ

r, n, k
xð Þ =DA

αð Þ
r, n − 1, k

xð Þ + A
αð Þ

r, n, k
xð Þ − 2A

αð Þ
r, n − 1, k

xð Þ:

ð36Þ

Proof.
By (25), we reach

1 − tð Þ−rk−αexp x
1 − 2t
1 − t

� �� 	
= 〠

∞

n=0
A

αð Þ
r, n, k

xð Þtn: ð37Þ

Let

F = A tð Þexp x
1 − 2t
1 − t

� �� 	
= 〠

∞

n=0
yr,n,k xð Þtn, ð38Þ

〠
∞

n=0

A
αð Þ

r, n, k
xð Þtn

rk + αð Þn,k
= exMk tð Þ0Fr,k

−−; −xt
r

� �r

rk + α

r
; k

� �
, rk + 1 + α

r
; k

� �
,⋯, 2rk + α − 1

r
; k

� �
;

0
BBB@

1
CCCA: ð27Þ
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∂F
∂x

= 1 − 2t
1 − t

� �
A tð Þexp x

1 − 2t
1 − t

� �� 	
, ð39Þ

1 − tð Þ ∂F∂x = 1 − 2tð ÞA tð Þexp x
1 − 2t
1 − t

� �� 	
: ð40Þ

By using Equation (38), we obtain

1 − tð Þ ∂F∂x = 1 − 2tð ÞF: ð41Þ

Since F = 〠
∞

n=0
yr,n,k xð Þtn, we reach ∂F∂x = 〠

∞

n=0
yr,n,k′ xð Þtn:

ð42Þ

Equation (41) can be expressed as

〠
∞

n=0
yr,n,k′ xð Þtn − 〠

∞

n=0
yr,n,k′ xð Þtn+1 = 〠

∞

n=0
yr,n,k xð Þtn − 2〠

∞

n=0
yr,n,k xð Þtn+1:

ð43Þ

We get yr,0,k′ ðxÞ = 0, yr,1,k′ ðxÞ = 0, and for n > 2, we get our
result.

Theorem 12.
If α ∈ℝ and n ≥ r, then

DA
αð Þ

r, n, k
xð Þ = A

αð Þ
r, n, k

xð Þ − 〠
n−1

j=0
A

αð Þ
r, j, k

xð Þ: ð44Þ

Proof.
We have

∂F
∂x

= 1 − t
1 − t

� 	
F: ð45Þ

Applying Equation (38) yields

∂F
∂x

= 1 − t
1 − t

� 	
〠
∞

n=0
yr,n,k xð Þtn: ð46Þ

By using Equation (42), we obtain

〠
∞

n=0
yr,n,k′ xð Þtn = 〠

∞

n=0
yr,n,k xð Þtn − 〠

∞

n=0
tn+1

" #
〠
∞

n=0
yr,n,k xð Þtn

" #

= 〠
∞

n=0
yr,n,k xð Þtn − 〠

∞

n=0
〠
∞

j=0
yr,j,k xð Þt jtn+1

ð47Þ

By using Lemma (4), we get

〠
∞

n=0
yr,n,k′ xð Þtn = 〠

∞

n=0
yr,n,k xð Þtn − 〠

∞

n=0
〠
n

j=0
yr,j,k xð Þtn+1

= 〠
∞

n=0
yr,n,k xð Þtn − 〠

∞

n=1
〠
n−1

j=0
yr,j,k xð Þtn

ð48Þ

Then, we have yr,0,k′ ðxÞ = 0, yr,1,k′ ðxÞ = 0, and for n > r,

yr,n,k′ xð Þ = yr,n,k xð Þ − 〠
n−1

j=0
yr,j,k xð Þ: ð49Þ

We get our desired result.

Theorem 13.
Suppose that α ∈ℝand n ≥ r + 1. Thus, we get

nA
αð Þ

r, n, k
xð Þ = 3x − rk − αð ÞA

αð Þ
r, n − 1, k

xð Þ − rk + α + n − 2ð ÞA
αð Þ

r, n − 2, k
xð Þ:

ð50Þ

Proof.
We have

0 = nA
αð Þ

r, n, k
xð Þ − xDA

αð Þ
r, n − 1, k

xð Þ + 2x − rk − α − n + 1ð ÞA
αð Þ

r, n − 1, k
xð Þ, nA

αð Þ
r, n, k

xð Þ = xDA
αð Þ

r, n − 1, k
xð Þ − 2x − rk − α − n + 1ð ÞA

αð Þ
r, n − 1, k

xð Þ:

ð51Þ

Then, after simplification, we get our result.

Theorem 14.
Assume that α ∈ℝand n, r, j, k ∈ℤ+. Thus, we obtain

A
1 + αð Þ

r, n − 1, k
xð Þ + A

αð Þ
r, n, k

xð Þ = A
1 + αð Þ
r, n, k

xð Þ: ð52Þ

Proof.
From Equation (12), we obtain

A
1 + αð Þ

r, n − 1, k
xð Þ = ex rk + 1 + αð Þn−1,k

〠
n−1ð Þ/rk½ �

j=0

−1ð Þrkj
n − 1 − rkj ; kð Þ! r + 1 + αð Þrkj

xrkj

rkj ; kð Þ! , ð53Þ

so
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that-

A
ðαÞ
r, n, k

ðxÞ = exðrk + αÞn,k∑½n/rk�
j=0 ðð−1Þrkj/ðn − rkj ; kÞ!

ðrk + αÞrkjÞððxÞrkj/ðrkj ; kÞ!Þ:

Then, we acquire

6. K Differential Equation

Theorem 15.
Assume that α ∈ℝ and n ≥ q. Thus, we reach

xD2A
αð Þ

r, n, k
xð Þ + rk + α − 3xð ÞDA αð Þ

r,n,k xð Þ + 2x + n − rk − αð ÞA αð Þ
r,n,k xð Þ = 0:

ð55Þ

Proof.
We have

xD2A αð Þ
r,n,k xð Þ +DA αð Þ

r,n,k xð Þ = n + xð ÞDA αð Þ
r,n,k xð Þ + A αð Þ

r,n,k xð Þ − rk + α + n − 1ð ÞDA αð Þ
r,n−1,k xð Þ:

ð56Þ

By using Equation (36), we get

xD2A αð Þ
r,n,k xð Þ +DA αð Þ

r,n,k xð Þ = n + xð ÞDA αð Þ
r,n,k xð Þ + A αð Þ

r,n,k xð Þ
− rk + α + n − 1ð Þ DA αð Þ

r,n,k xð Þ − A αð Þ
r,n,k xð Þ + 2A αð Þ

r,n−1,k xð Þ
h i

,

ð57Þ

or

xD2A αð Þ
r,n,k xð Þ + rk + α − xð ÞDA αð Þ

r,n,k xð Þ = rk + α + nð ÞA
αð Þ

r, n, k
xð Þ − 2 rk + α + n − 1ð ÞA αð Þ

r,n−1,k xð Þ:

ð58Þ

By using Equation (26), we have

xD2A αð Þ
r,n,k xð Þ + rk + α − xð ÞDA αð Þ

r,n,k xð Þ
= rk + α + nð ÞA αð Þ

r,n,k xð Þ + 2xDA αð Þ
r,n,k xð Þ

� − 2 n + xð ÞDA αð Þ
r,n,k xð Þ,

ð59Þ

or

xD2A αð Þ
r,n,k xð Þ + rk + α − 3xð ÞDA αð Þ

r,n,k xð Þ + 2x + n − rk − αð ÞA αð Þ
r,n,k xð Þ = 0:

ð60Þ

7. K Rodrigues Formula

Theorem 16.
Assume that α ∈ℝ and n, j, k ∈ℤ+. Thus, we reach

A αð Þ
r,n,k xð Þ = x− rk−1ð Þ−αe2x

n ; kð Þ! Dn
k x rk−1ð Þ+α+nke−x
� �

: ð61Þ

Proof.
We take into consideration the K extended Laguerre

polynomials involving

A
1 + αð Þ

r, n − 1, k
xð Þ +A

αð Þ
r, n, k

xð Þ = ex rk + 1 + αð Þn−1,k 〠
n−1
rk½ �

j=0

−1ð Þrkj
n − 1 − rkj ; kð Þ! r + 1 + αð Þrkj

xrkj

rkj ; kð Þ! e
x rk + αð Þn,k 〠

n
rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! rk + αð Þrkj

xð Þrkj
rkj ; kð Þ!

= ex 〠
n−1
rk½ �

j=0

rk + α + n − 1ð Þ! −1ð Þrkj
n − 1 − rkj ; kð Þ! r + α + rkjð Þ!

xrkj

rkj ; kð Þ! + 〠
n
rk½ �

k=0

rk + α + n − 1ð Þ! −1ð Þrkj
n − rkj ; kð Þ! r + α + rkj − 1ð Þ!

xrkj

rkj ; kð Þ!

2
4

3
5

= ex 〠
n−1
rk½ �

j=0

rk + α + n − 1ð Þ! −1ð Þrkj
n − 1 − rkj ; kð Þ! r + α + rkjð Þ!

xrkj

rkj ; kð Þ! + 〠
n−1
rk½ �

k=0

rk + α + n − 1ð Þ! −1ð Þrkj
n − rkj ; kð Þ! r + α + rkj − 1ð Þ!

xrkj

rkj ; kð Þ! +
xrkn

rkn ; kð Þ!

2
4

3
5

= ex
〠
n−1
rk½ �

j=0

r + α + n − 1ð Þ!xrkj −1ð Þrkj
rkj ; kð Þ!

1
n − 1 − rkj ; kð Þ! r + α + rkjð Þ! +

1
n − rkj ; kð Þ! r + α + rkj − 1ð Þ!


 �
+ xrkn

rkn ; kð Þ!

2
6666664

3
7777775

= ex 〠
n−1
rk½ �

j=0

r + α + n − 1ð Þ! −1ð Þrkj
n − rkj ; kð Þ! r + α + rkjð Þ! r + α + nf g xrkj

rkj ; kð Þ! +
xrkn

rkn ; kð Þ!

2
4

3
5 = ex 〠

n−1
rk½ �

j=0

r + α + nð Þ! −1ð Þrkj
n − rkj ; kð Þ! r + α + rkjð Þ!

xrkj

rkj ; kð Þ! +
xrkn

rkn ; kð Þ!

2
4

3
5

= ex r + 1 + αð Þn,k 〠
n−1
rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! r + 1 + αð Þr j,k

xrkj

rkj ; kð Þ! +
xrkn

rkn ; kð Þ!

2
4

3
5 = ex r + 1 + αð Þn,k 〠

n
rk½ �

j=0

−1ð Þrkj
n − rkj ; kð Þ! r + 1 + αð Þr j,k

xrkj

rkj ; kð Þ! = A
1 + αð Þ
r, n, k

xð Þ:

ð54Þ
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r > 22F2, r > 2,

A αð Þ
r,n,k xð Þ = ex rk + αð Þn,k

n ; kð Þ! r Fr,k

−n
r
, k

� �
, −n + k

r
, k

� �
,⋯, −n + rk + 1

r
, k

� �
;

α + rk
r

, k
� �

, α + rk + 1
r

, k
� �

,⋯, α + 2rk − 1
r

, k
� � ; xr

0
BBB@

1
CCCA:

ð62Þ

By Theorem (12), we have

A αð Þ
r,n,k xð Þ = ex

n ; kð Þ! 〠
n/rk½ �

j=0

n ; kð Þ!
n − rkj ; kð Þ! rkj ; kð Þ!

� 	
rk + αð Þn,kxrkj
rk + αð Þr j,k

= exx− rk−1ð Þ−α

n ; kð Þ! 〠
n/r½ �

j=0

−1ð Þrkj n ; kð Þ!
n − rkjð Þ! rkj ; kð Þ!

" #
α + rkð Þn,kxrkj+α+ rk−1ð Þ

α + rkð Þr j,k
:

ð63Þ

Since Dnk−r jkðxn+α+ðr−1ÞÞ = ðα + rkÞn,kxrj+α+ðr−1Þ/

ðα + rkÞr j,k, we get

A αð Þ
r,n,k xð Þ = x− r−1ð Þ−αe2x

n ; kð Þ! 〠
n/rk½ �

j=0

n ; kð Þ!
n − rjk ; kð Þ! rjð Þ!

� 	
−1ð Þrkje−x

h i
Dnk−rkj xn+α+ rk−1ð Þ

� �h i

= x− r−1ð Þ−αe2x

n ; kð Þ! 〠
n/rk½ �

j=0

n

Crjk;kD
nk−rkj xn+α+ rk−1ð Þ

� �
Drkj e−xð Þ

ð64Þ

Then, we get our desired result.

8. Special Properties

Theorem 17.
Suppose that α, β ∈ℝ and n, j, r, k ∈ℤ+. Thus, we acquire

A αð Þ
r,n,k xð Þ = 〠

n/rk½ �

j=0

α − βð ÞrkjA
βð Þ
r,n−rkj xð Þ

rkj ; kð Þ! : ð65Þ

Proof.
From Equation (25),

〠
∞

n=0
A αð Þ
r,n,k xð Þtn = 1

1 − tð Þrk+α
exp x − 2xt

1 − t

� �
: ð66Þ

Also, consider

By using Lemma (4) yields

〠
∞

n=0
A αð Þ
r,n,k xð Þtn = 〠

∞

n=0
〠
n/rk½ �

j=0

α − βð ÞrkjtrkjA
βð Þ
r,n−rkj,k xð Þtn−rkj

rkj ; kð Þ! = 〠
∞

n=0
〠
n/rk½ �

j=0

α − βð ÞrkjA
βð Þ
r,n−rkj,k xð Þtn

rkj ; kð Þ! :

ð68Þ

Then, we get our result.

Theorem 18.
If α ∈ℝ and n, j, k ∈ℤ+, then

A α+β+qkð Þ
r,n,k x + yð Þ = 〠

n/rk½ �

j=0
A βð Þ
r,n−rkj,k yð ÞA αð Þ

r,rkj,k xð Þ: ð69Þ

Proof.

Consider

1 − tð Þ−rk−αexp x
1 − 2t
1 − t

� �� �
1 − tð Þ−rk−βexp y

1 − 2t
1 − t

� �� �

= 1 − tð Þ−rk− α+β+rkð Þexp x + yð Þ 1 − 2t
1 − t

� �
 �
:

ð70Þ

Then, we get

〠
∞

n=0
A

αð Þ
r, n, k

xð Þtn 〠
∞

n=0
A

βð Þ
r, n, k

yð Þtn = 〠
∞

n=0
A

α + β + qð Þ
r, n, k

x + yð Þtn:

ð71Þ

1
1 − tð Þrk+α

exp x
1 − 2t
1 − t

� �� �
= 1 − tð Þ− α−βð Þ 1 − tð Þ−rk−βexp x

1 − 2t
1 − t

� �� �
,

〠
∞

n=0
A αð Þ
r,n,k xð Þtn = 1 − tð Þ− α−βð Þ 〠

∞

n=0
A βð Þ
r,n,k xð Þtn = 〠

∞

n=0

α − βð Þrntrn
rn ; kð Þ! 〠

∞

n=0
A βð Þ
r,n,k xð Þtn = 〠

∞

n=0
〠
∞

j=0

α − βð ÞrkjtrkjA
βð Þ
r,n,k xð Þtn

rkj ; kð Þ! :

ð67Þ
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By using Lemma (4), we acquire

〠
∞

n=0
A

α + β + qkð Þ
r, n, k

x + yð Þtn = 〠
∞

n=0
〠
n/rk½ �

j=0
A

βð Þ
r, n − rkj, k

yð ÞA
αð Þ

r, rkj, k
xð Þtn:

ð72Þ

On comparing the coefficients of tn, we acquire our
result.

9. Conclusion

We constructed the K extended Laguerre polynomials f
AðαÞ
r,n,kðxÞg relied on the r Fr , r > 2. We acquired K generating

functions, K recurrence relations and K Rodrigues formula
for these K extended Laguerre polynomials. We will use
the integral transformations on the results of K extended
Laguerre polynomials in our future works (Table 1). We
can also apply Laplace transformation on our results.
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