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In this paper, we give regularity criteria in terms of the magnetic pressure in Lorentz spaces.

1. Introduction

We study the regularity issues for suitable weak solutions
ðu, b, πÞ: QT ⟶ℝ3

+ ×ℝ3
+ ×ℝ of 3D incompressible mag-

netohydrodynamic (MHD) equations

∂u
∂t

− Δu + u ⋅ ∇ð Þu − b ⋅ ∇ð Þb = −∇ p + b2
�� ��
2

 !
,

∂b
∂t

− Δb + u ⋅ ∇ð Þb − b ⋅ ∇ð Þu = 0 onΩT ≔ℝ3
ss+ × 0, Tð Þ,

div u = div b = 0,
u x, 0ð Þ = u0 xð Þ and b x, 0ð Þ = b0 xð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

Here, u is the fluid flow, b is the magnetic vector field,
and π = p + ðjbj2/2Þ is the total scalar pressure. We con-
sider equation (1) with boundary conditions defined as
follows: either

B1ð Þ u = 0, b ⋅ n = 0, ∇ × bð Þ × n = 0, ð2Þ

or

B2ð Þ u ⋅ n = 0, ∇ × uð Þ × n = 0, b ⋅ n = 0, ∇ × bð Þ × n = 0, ð3Þ

where n is the outward unit normal vector along
boundary ∂ℝ3

+.

In pioneering works [1, 2], it has been shown that
global-in time weak solutions to the MHD equations exist
in finite energy space and strong solutions can exist
locally-in time. In other words, the weak solutions exist
globally in time; however, if a weak solution ðu, bÞ are fur-
thermore in L∞ð0, T ;H1ðΩÞÞ, they become regular. The
regular solution means that kukL∞ðQT Þ + kbkL∞ðQT Þ <∞.
The uniqueness and regularity of weak solutions to (1) have
been left the question open. The authors in [3], very recently,
the existence of global weak solutions to the 3D MHD equa-
tions via new energy control methods are inspired of a recent
work [4]. On the other hand, for nonuniqueness, the author
in [5] nonunique weak solutions in Leray-Hopf class are
constructed for (1) in a whole space based on appreciated
convex integration framework developed in a recent work
of Buckmaster and Vicol [6]. In the regularity theory of weak
solutions to fluid equations, the role of the pressure is very
important (see [7, 8]); in particular, it is a more important
issue for the boundary value problems. In present paper, we
obtain the scaling invariant regularity criterion by focusing
on the (magnetic) pressure function.

Note that equation (1) has the following scale:

uλ = λu λx, λ2t
� �

,

bλ = λb λx, λ2t
� �

,

πλ = λ2π λx, λ2t
� �

,
λ > 0:

ð4Þ
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For the regularity conditions in Sobolev space, the results
in terms of magnetic pressure and the gradient of magnetic
pressure for (1) in ℝ3 were obtained by Zhou [9] with some
magnetic field condition (see also [10–15]). After that, Duan
[16] showed π ∈ Lpð0, T ; Lqðℝ3ÞÞ with 2/p + 3/q = 2, q > 3/2
or ∇π ∈ Lpð0, T ; Lqðℝ3ÞÞ with 2/p + 3/q = 3, q > 1.

On the other hand, for the regularity criteria in Lorentz
space, He and Wang [17] proved that a weak solution
ðu, bÞ for 3D MHD equations becomes regular under
the scaling invariant conditions, the so-called Serrin’s condi-
tions, u ∈ Lq,∞ð0, T ; Lp,∞ðℝ3ÞÞ with 3/p + 2/q ≤ 1 and p > 3
or ∇u ∈ Lq,∞ð0, T ; Lp,∞ðℝ3ÞÞ with 3/p + 2/q ≤ 2 and p > 3/2
(compared to [7, 18–26] for Navier-Stokes equations). In
particular, for the magnetic pressure, Suzuki [24, 25] proved
the regularity criteria to the Navier-Stokes equations in
the Lorentz space under the assumption for the pressure
via the truncation method introduced by [27]; namely,
if π ∈ Lp,∞ð0, T ; Lq,∞ðℝ3ÞÞ and kπkLp,∞ð0,T ;Lq,∞ðℝ3ÞÞ ≤ ε with

2/p + 3/q = 2, 5/2 < q <∞ or ∇π ∈ Lp,∞ð0, T ; Lq,∞ðℝ3ÞÞ and
k∇πkLp,∞ð0,T ;Lq,∞ðℝ3ÞÞ ≤ ε with 2/p + 3/q = 3, 5/3 ≤ q < 3, ðu, bÞ
is regular.

In this respect, the main results in the present paper are
stated as follows.

Theorem 1. Suppose that ðu, b, πÞ is a weak solution to (1)
with the divergence-free initial data u0, b0 ∈H2ðℝ3

+Þ ∩W1,q

ðℝ3
+Þ, q > 3. Then, there exists a constant ε > 0 such that

uðx, tÞ is a regular solution on ð0, T� provided that one of
the following two conditions holds:

(A) Under the boundary condition (B2), π ∈ Lp,∞ð0, T ;
Lq,∞ðℝ3

+ÞÞ and

πk kLp,∞ 0,T ;Lq,∞ ℝ3
+ð Þð Þ ≤ ε,with 2/p + 3/q = 2, 3/2 < q <∞

ð5Þ

(B) Under the boundary conditions (B1) or (B2),

∇π ∈ Lp 0, T ; Lq,∞ ℝ3
+

� �� �
with 2/p + 3/q = 3, 1 < q <∞

ð6Þ

Remark 2. Theorem 1 is worth to extend the results of
Theorem 4.1 in [28] to the Lorentz space in ℝ3

+. The result
of Theorem 1 is naturally expandable for the n-dimen-
sional half space with aid of Sobolev embedding and
Calderon-Zygmund inequalities.

Remark 3. Unlike the results in [29], Theorem 1 is valuable
as a result of considering boundary conditions.

Remark 4. In light of the approach in [30], under the bound-
ary conditions (B2), we can show the regularity condition of

weak solutions to (1) with one component of the gradient of
pressure, namely,

∂x3π ∈ Lp 0, T ; Lq,∞ ℝ3
+

� �� �
with 2/p + 3/q ≤ 2, 1 < q <∞:

ð7Þ

Remark 5. In part (B) of Theorem 1, unfortunately, it does
not obtain a similar result as (A) due to the difficulty of con-
trolling the pressure function from the complexity of mixed
term for w+ and w− (see Remark 11).

For the Navier-Stokes equations with boundary data
(B1) or (B2), Theorem 1 immediately implies.

Corollary 6. Suppose that ðu, pÞ is a weak solution to the
Navier-Stokes equations. Then, there exists a constant ε > 0
such that uðx, tÞ is a regular solution on ð0, T� provided that
one of the following two conditions holds:

(A) Under the boundary condition (B2), π ∈ Lp,∞ð0, T ;
Lq,∞ðℝ3

+ÞÞ and

πk kLp,∞ 0,T ;Lq,∞ ℝ3
+ð Þð Þ ≤ ε,with 2/p + 3/q = 2, 3/2 < q <∞

ð8Þ

(B) Under the boundary conditions (B1) or (B2), ∇π ∈
Lp,∞ð0, T ; Lq,∞ðℝ3

+ÞÞ and

∇πk kLp,∞ 0,T ;Lq,∞ ℝ3
+ð Þð Þ ≤ ε,with 2/p + 3/q = 3, 1 < q <∞

ð9Þ

The proof of Corollary 6 is same to that in [31] and thus
it is omitted.

2. Notations and Some Auxiliary Lemmas

For p ∈ ½1,∞�, the notation Lpð0, T ; XÞ stands for the set of
measurable functions f ðx, tÞ on the interval ð0, TÞ with
values in X and k f ð⋅ ,tÞkX belonging to Lpð0, TÞ. The space
Wk,2ðΩÞ is denoted the standard Sobolev space. For a func-
tion f ðx, tÞ, Ω ⊂ℝ3, we denote k f kLp,qx,t ðΩ×IÞ = k f kLqt ðI;LpxðΩÞÞ =
kk f kLpxðΩÞkLqt ðIÞ. C is a generic constant.

We recall first the definition of weak solutions.

Definition 7 (weak solutions). The vector-valued function
ðu, bÞ is called a weak solution of (1) on ð0, TÞ ×ℝ3

+ if it
satisfies the following conditions:

(1) ðu, bÞ ∈ L∞ð0, T ; L2ðℝ3
+ÞÞ ∩ L2ð0, T ;H1ðℝ3

+ÞÞ
(2) div u = div b = 0 in the sense of distribution

(3) For any function ψðt, xÞ ∈ C∞
0 ðð0, TÞ ×ℝ3

+Þ with
div ψ = 0, there hold
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ðT
0

ð
ℝ3

+

u ⋅ ψt−∇u ⋅ ∇ψ+∇ψ : u ⊗ u − b ⊗ bð Þf gdxdt = 0,

ðT
0

ð
ℝ3

+

b ⋅ ψt−∇b ⋅ ∇ψ+∇ψ : u ⊗ b − b ⊗ uð Þf gdxdt = 0

ð10Þ

Next, we give some basic facts. For p, q ∈ ½1,∞�, we
define

fk kLp,q ℝ3
+ð Þ

=
p
ð∞
0
αq x ∈Ω : f xð Þj j > αf gj jq/p dα

α

� �1/q
, q <∞,

sup
α>0

α x ∈ℝ3
+ : f xð Þj j > α

� ��� ��1/p, q =∞:

8>>><
>>>:

ð11Þ

And thus,

Lp,q ℝ3
+

� �
= f : f is ameasurable function
n

onℝ3
+ and fk kLp,q ℝ3

+ð Þ<∞
o
:

ð12Þ

Followed in [32], the Lorentz space Lp,qðℝ3
+Þ may be

defined by real interpolation methods

Lp,q ℝ3
+

� �
= Lp1 ℝ3

+
� �

, Lp2 ℝ3
+

� �� �
α,q, ð13Þ

with

1
p
= 1 − α

p1
+ α

p2
, 1 ≤ p1 < p < p2 ≤∞, ð14Þ

that is,

L2p/ p−1ð Þ,2 ℝ3
+

� �
= L2 ℝ3

+
� �

, L6 ℝ3
+

� �� �
3/2p,2: ð15Þ

We list some lemmas for our analysis.

Lemma 8. ([33]). Assume 1 ≤ p1, p2 ≤∞, 1 ≤ q1, q2 ≤∞,
u ∈ Lp1 ,q1ðΩÞ, and v ∈ Lp2 ,q2ðΩÞ. Then, uv ∈ Lp3 ,q3ðΩÞ with
1/p3 = ð1/p1Þ + ð1/p2Þ and 1/q3 ≤ ð1/q1Þ + ð1/q2Þ, and the
inequality

uvk kLp3 ,q3 Ωð Þ ≤ C uk kLp1 ,q1 Ωð Þ vk kLp2 ,q2 Ωð Þ ð16Þ

is valid.

Lemma 9 ([20, 34, 35]). Let T > 0 and ϕ ∈ Llocð½0, TÞÞ be
nonnegative function. Assume further that

ϕ tð Þ ≤ C0 + C1

ðt
0
μ sð Þϕ sð Þ ds

+ κ
ðt
0
λ sð Þ1−εϕ sð Þ1+A εð Þ ds, ∀0 < ε < ε0,

ð17Þ

where κ, ε0 > 0 are constants, μ ∈ L1ð0, TÞ, and AðεÞ > 0
satisfies limε⟶0AðεÞ/ε = c0 > 0. Then ϕ is bounded on ½0, T�
if kλkL1,∞ð0,TÞ < c−10 κ−1.

Lemma 10 ([31]). Assume that the pair ðp, qÞ satisfies
ð2/pÞ + ð3/qÞ = a with a, q ≥ 1 and p > 0. Then, for every
κ ∈ ½0, 1� and given b, c0 ≥ 1, there exist pκ > 0 and
min fq, bg ≤ qκ ≤max fq, bg such that

2
pκ

+ 3
qκ

= a,

pκ
qκ

= p 1 − κð Þ
q

+ c0κ
b

:

8>>><
>>>:

ð18Þ

3. Proof of Theorems: Half Space Case

Proof of Theorem 1. We rewrite equation (1) with w+ = u
+ b and w− = u − b:

w+
t − Δw+ + w− ⋅ ∇ð Þw+ = ∇π, div w+ = 0,

w−
t − Δw− + w+ ⋅ ∇ð Þw− = ∇π, div w− = 0,

w+ x, 0ð Þ =w+
0 andw− x, 0ð Þ =w−

0 :

8>><
>>:

ð19Þ

Part (A): multiplying both side of (19) by w+jw+j2,
integrating by parts with the divergence-free condition,
we conclude that

1
4
d
dt

ð
ℝ3

+

w+j j4dx +
ð
ℝ3

+

∇w+j j2 w+j j2dx + 1
2

ð
ℝ3

+

∇j jw+ 2�� ��2dx
= −
ð
ℝ3

+

w+ ⋅ ∇π w+j j2dx = I:

ð20Þ

Using the integration by parts and Hölder inequality,
we have

I =
ð
ℝ3

+

πw+ ⋅ ∇ w+j j2dx

≤ C
ð
ℝ3

+

π2 w+j j2dx + 1
8

ð
ℝ3

+

∇w+j j2 w+j j2dx:
ð21Þ
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By means of the Hölder, interpolation, and Sobolev
embedding inequalities in the Lorentz spaces,

w+j j2
			 			

L2q/ q−1ð Þ,2 ℝ3
+ð Þ ≤ w+j j2

			 			1− 3/2qð Þ

L2 ℝ3
+ð Þ w+j j2
			 			3/q

L6,2 ℝ3
+ð Þ

≤ C w+j j2
			 			1− 3/2qð Þ

L2 ℝ3
+ð Þ ∇ w+j j2
			 			3/2q

L2 ℝ3
+ð Þ:

ð22Þ

On the other hand, for a magnetic pressure, following
the approach of Theorem 2.1 in [36], it is easy to check
that

πk kLp ℝ3
+ð Þ ≤ C w+k k2L2p ℝ3

+ð ÞÞ + w−k k2L2p ℝ3
+ð ÞÞ


 �
, 1 < p <∞:

ð23Þ

With the help of the Hölder inequality with estimates
(22) and (23), we infer that

ð
3
þℝ

π2 w+j j2dx ≤ πk kLq,∞ ℝ3
+ð Þ πk kL2q/ q−1ð Þ,2 ℝ3

+ð Þ w+j j2
			 			

L2q/ q−1ð Þ,2 ℝ3
+ð Þ

≤ C πk kLq,∞ ℝ3
+ð Þ w+j j2
			 			

L2q/ q−1ð Þ,2 ℝ3
+ð Þ

�

+ w−j j2		 		
L2q/ q−1ð Þ,2 ℝ3

+ð Þ
�

w+j j2
			 			

L2q/ q−1ð Þ,2 ℝ3
+ð Þ

≤ C πk k2q/ 2q−3ð Þ
Lq,∞ ℝ3

+ð Þ w+j j2
			 			2

L2 ℝ3
+ð Þ + w−j j2		 		2

L2 ℝ3
+ð Þ

� �

+ 1
8 w+j j ∇w+j jk k2L2 ℝ3

+ð Þ + w−j j ∇w−j jk k2L2 ℝ3
+ð Þ


 �
:

ð24Þ

And thus, estimate (20) becomes

1
4
d
dt

ð
ℝ3

+

w+j j4dx +
ð
ℝ3

+

∇w+j j2 w+j j2dx

≤ C πk k2q/ 2q−3ð Þ
Lq,∞ ℝ3

+ð Þ w+j j2
			 			2

L2 ℝ3
+ð Þ + w−j j2		 		2

L2 ℝ3
+ð Þ

� �

+ 1
8 w+j j ∇w+j jk k2L2 ℝ3

+ð Þ + w−j j ∇w−j jk k2L2 ℝ3
+ð Þ


 �
:

ð25Þ

Similarly, we have

1
4
d
dt

ð
ℝ3

+

w−j j4dx +
ð
ℝ3

+

∇w−j j2 w−j j2dx

≤ C πk k2q/ 2q−3ð Þ
Lq,∞ ℝ3

+ð Þ w+j j2
			 			2

L2 ℝ3
+ð Þ + w−j j2		 		2

L2 ℝ3
+ð Þ

� �

+ 1
8 w+j j ∇w+j jk k2L2 ℝ3

+ð Þ + w−j j ∇w−j jk k2L2 ℝ3
+ð Þ


 �
:

ð26Þ

Summing (39) and (40), we obtain

d
dt

ð
ℝ3

+

w+j j4 + w−j j4

 �

dx + 1
2

ð
ℝ3

+

∇w+j j2 w+j j2 + ∇w−j j2 w−j j2

 �

dx

≤ C πk k2q/ 2q−3ð Þ
Lq,∞ ℝ3

+ð Þ w+j j2
			 			2

L2 ℝ3
+ð Þ + w−j j2		 		2

L2 ℝ3
+ð Þ

� �
:

ð27Þ

Let NðtÞ≔ kw+k4L4ðℝ3
+Þ + kw−k4L4ðℝ3

+Þ, and thus, (27)
becomes

d
dt

N tð Þ ≤ C πk kp
Lq,∞ ℝ3

+ð ÞN tð Þ, p = 2q
2q − 3 : ð28Þ

Applying Lemma 10 (with a = b = 2, c0 = 4), we have

πk kpκ
Lqκ ,∞ ℝ3

+ð Þ ≤ πk kp 1−κð Þ
Lq,∞ ℝ3

+ð Þ πk k4κL2,∞ ≤ C πk kp 1−κð Þ
Lq,∞ ℝ3

+ð Þ πk k4κL2 ℝ3
+ð Þ

≤ C πk kp 1−κð Þ
Lq,∞ ℝ3

+ð Þ uj j2		 		4κ
L2 ℝ3

+ð Þ,
ð29Þ

where we use the following estimate in [37]:

fk kLp,q2 ℝ3
+ð Þ ≤

q1
p

� � 1/q1ð Þ− 1/q2ð Þ

� fk kLp,q1 ℝ3
+ð Þ, 1 ≤ p ≤∞, 1 ≤ q1 < q2 ≤∞:

ð30Þ

Since the pair ðpκ, qκÞ also meets 2/pκ + 3/qκ = 2, using
estimate (29), (28) becomes

d
dt

N tð Þ ≤ C πk kpκ
Lqκ ,∞ ℝ3

+ð Þ uj j2		 		2
L2 ℝ3

+ð Þ ≤ C πk kp 1−κð Þ
Lq,∞ ℝ3

+ð ÞY tð Þ1+2κ:
ð31Þ

And then integrating with respect to time, we get

N tð Þ ≤ CN 0ð Þ + C
ðt
0
πk kp 1−κð Þ

Lq,∞ ℝ3
+ð ÞN tð Þ1+2κ ds, ð32Þ

or equivalently,

w+ tð Þk k4L4 ℝ3
+ð Þ + w− tð Þk k4L4 ℝ3

+ð Þ
≤ C w+

0k k4L4 ℝ3
+ð Þ + w−

0k k4L4 ℝ3
+ð Þ + C

ðt
0
πk kp 1−κð Þ

Lq,∞ ℝ3
+ð Þ

� w+k k4L4 ℝ3
+ð Þ + w−k k4 1+2ð Þκ

L4 ℝ3
+ð Þ

� �
ds:

ð33Þ

Due to Lemma 9, we complete the Proof of Theorem
1 under the assumption (A) in Theorem 1.

Part (B): for this, we use the argument in [16], which
seems like simple method to deal with the pressure term.
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Multiplying both side of (19) by w+jw+j3r−4, we conclude
that for r ≥ 1,

1
3r − 2

d
dt

ð
ℝ3

+

w+j j3r−2dx + 4 3r − 4ð Þ
3r − 2ð Þ2

ð
ℝ3

+

∇j jw+ 3r−2ð Þ/2
��� ���2dx

+
ð
ℝ3

+

∇w+j j2 w+j j3r−4dx

= −
ð
ℝ3

+

∇π ⋅w+ w+j j3r−4 dx≔ II:

ð34Þ

On the other hand,

II ≤ 3r − 4ð Þ
ð
ℝ3

+

πj j ∇j jw+j w+j j3r−4dx

≤
2 3r − 4ð Þ
3r − 2ð Þ

ð
ℝ3

+

πj j2 w+j j3r−4 dx
 !1/2

�
ð
ℝ3

+

∇j jw+j 3r−2ð Þ/2 dxj
 !1/2

:

ð35Þ

Note that 0 ≤ I ≤ a and 0 ≤ I ≤ b; then, I ≤
ffiffiffiffiffi
ab

p
. Combin-

ing (34) and (35), we get

II ≤ C
ð
ℝ3

+

∇π ⋅w+ w+j j3r−4 dx
 !1/2 ð

ℝ3
+

pj j2
					
3r−3

dx

 !1/4

�
ð
ℝ3

+

∇ w+j j 3r−2ð Þ/2
��� ��� dx

 !1/4

≤ C
ð
ℝ3

+

∇πj jð w+j j2 + w−j j2 dx

 � 3r−3ð Þ/2

 !2/3

�
ð
ℝ3

+

πj jð w+j j2 + w−j j2 dx

 � 3r−4ð Þ/2

 !1/4

+ 3r − 4
3r − 2ð Þ2

ð
ℝ3

+

∇ w+j j 3r−2ð Þ/2
��� ���2dx

 !
:

ð36Þ

Due to

ð
ℝ3

+

πj j w+j j2 + w−j j 3r−4ð Þ/2

 �

dx ≤ πk k2L3r/2 w+j j + w−j jk k 3r−4ð Þ/2
L3r/2 ,

ð
ℝ3

+

∇πj j w+j j2 + w−j j 3r−3ð Þ/2

 �

dx ≤ ∇πk kLr w+j j + w−j jk k 3r−3ð Þ/2
L3r/2 ,

ð37Þ

we can know that

d
dt

ð
ℝ3

+

w+j j3r−2dx +
ð
ℝ3

+

∇ w+j j 3r−2ð Þ/2
��� ���2dx +

ð
ℝ3

+

∇w+j j2 w+j j3r−4dx

≤ ∇πk k2/3Lr w+j j + w−j jk k 3r−2ð Þ/2
L3r/2 :

ð38Þ

In a similar fashion, if you do it for equation (20), we
have

d
dt

ð
ℝ3

+

w−j j3r−2dx +
ð
ℝ3

+

∇ w−j j 3r−2ð Þ/2
��� ���2 dx +

ð
ℝ3

+

∇w+j j2 w+j j3r−4dx

≤ ∇πk k2/3Lr w+j j + w−j jk k 3r−2ð Þ/2
L3r/2

:

ð39Þ

After summing up (38) and (39), using the Sobolev
embedding and Young’s inequality, we obtain

d
dt

ð
ℝ3

+

w+j j3r−2 + w−j j3r−2

 �

dx

+
ð
ℝ3

+

∇ w+j j 3r−2ð Þ/2
��� ���2 + ∇ w−j j 3r−2ð Þ/2

��� ���2
� �

dx

+
ð
ℝ3

+

∇w+j j2 w+j j3r−4dx +
ð
ℝ3

+

∇w−j j2 w−j j3r−4dx

≤ C ∇πk k2/3Lr,∞ w+j j 3r−2ð Þ/2
			 			2

L6r/ 3r−2ð Þ ,1
+ w−j j 3r−2ð Þ/2
			 			2

L6r/ 3r−2ð Þ ,1

� �

≤ C ∇πk k2/3Lr,∞ w+j j 3r−2ð Þ/2
			 			 1− 1/rð Þð Þ

L2
∇ w+j j 3r−2ð Þ/2
			 			2/r

L2

�

+ w−j j 3r−2ð Þ/2
			 			 1− 1/rð Þð Þ

L2
∇ w−j j 3r−2ð Þ/2
			 			2/r

L2

�

≤ C ∇πk k2r/ 3r−3ð Þ
Lr,∞ w+j j 3r−2ð Þ/2 + w−j j 3r−2ð Þ/2

			 			2
L2

� �

+ 1
8

ð
ℝ3

+

∇ w+j j 3r−2ð Þ/2
��� ���2 + ∇ w−j j 3r−2ð Þ/2

��� ���2
� �

dx

≤ C ∇πk k2r/ 3r−3ð Þ
Lr,∞ w+k k3r−2L3r−2 ℝ3

+ð Þ + w−k k3r−2L3r−2


 �

+ 1
8

ð
ℝ3

+

∇ w+j j 3r−2ð Þ/2
��� ���2 + ∇ w−j j 3r−2ð Þ/2

��� ���2
� �

dx:

ð40Þ

Let NðtÞ≔ kw+k3r−2L3r−2ðℝ3
+Þ + kw−k3r−2L3r−2ðℝ3

+Þ, and then, (40)
becomes

N tð Þ ≤ C ∇πk k2q/ 3q−3ð Þ
Lq,∞ ℝ3

+ð ÞN tð Þ: ð41Þ

As the previous way, it allows us to finish the Proof of
Theorem 1.
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Remark 11. In part (B) of Theorem 1, adding the following
conditions

uj j ∇uj j, bj j ∇bj j ∈ L2 0, T ; L2 ℝ3
+

� �� �
, ð42Þ

we also can obtain ∇π ∈ Lp,∞ð0, T ; Lq,∞ðℝ3
+ÞÞ and

∇πk kLp,∞ 0,T ;Lq,∞ ℝ3
+ð Þð Þ ≤ ε, with 2/p + 3/q = 3, 1 < q <∞

ð43Þ

(see [31] for a detailed proof). Condition (42) is too strong
because it is regular condition of weak solutions to (1) (see,
e.g., Lemma 7 in [38] or [39]).
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