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In this paper, the combined double Sumudu transform with iterative method is successfully implemented to obtain the
approximate analytical solution of the one-dimensional coupled nonlinear sine-Gordon equation (NLSGE) subject to the
appropriate initial and boundary conditions which cannot be solved by applying double Sumudu transform only. The solution
of the nonlinear part of this equation was solved by a successive iterative method, the proposed technique has the advantage of
producing an exact solution, and it is easily applied to the given problems analytically. Two test problems from mathematical
physics were taken to show the liability, accuracy, convergence, and efficiency of the proposed method. Furthermore, the
results indicate that the introduced method is promising for solving other types of systems of NLPDEs.

1. Introduction

The system of coupled sine-Gordon equations in the form

utt − uxx = −δ2 sin u − vð Þ,
vtt − α2vxx = sin u − vð Þ,

(
 α > 0, δ > 0, ð1Þ

was introduced by Khusnutdinova and Pelinovsky [1]. The
coupled sine-Gordon equations generalize the Frenkel-
Kontorova dislocation model [2, 3]. System (1) with α = 1
was also proposed to describe the open states in the DNA
double helix model [4]. This type of equation has been
receiving an enormous amount of attention due to the pres-
ence of soliton solutions, and it has applications in the prop-
agation of fluxons in Josephson junctions between two
superconductors [5], the motion of a rigid pendulum
attached to a stretched wire [6], etc.

Recently, many researchers used various methods to get
the solution of system (1). Li et al. [7] presented a lattice
Boltzmann model for the two-component system of coupled
sine-Gordon equations by using the coupled mesoscopic

Boltzmann equations and the Chapman-Enskog multiscale
expansion, while the macroscopical governing evolution sys-
tem can be recovered correctly by selecting suitable discrete
equilibrium distribution functions and the amending func-
tions. In paper [8], the authors used a rational exponential
ansatz to derive the exact solutions of a coupled sine-
Gordon equation. The simplest equation method has been
used for finding the exact solutions of coupled sine-
Gordon equations by Zhao [9]. In papers [10–12], Zhao
et al. obtained some new solutions of coupled sine-Gordon
equations including Jacobi elliptic function solutions, hyper-
bolic function solutions, and trigonometric function solu-
tions by the Jacobi elliptic function expansion method, the
hyperbolic auxiliary function method, and the symbolic
computation method. Sadighi et al. [13] employed the
homotopy perturbation method (HPM) for solving both
sine-Gordon and coupled sine-Gordon equations. In paper
[14], the authors obtained numerical solution of inhomoge-
neous systems of sine-Gordon equation (1) by finite differ-
ence method with fixed-point iteration.

In 2018, the authors of [15] studied the coupled sine-
Gordon equations in nonlinear optics, which describe the
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propagation of an optical pulse in fiber waveguide, and
they derived the new exact solutions of the problem
through the use of the well-organized modified Kudrya-
shov method. For more related research about solving
the sine-Gordon equations, interested readers may refer
to [16–18].

Since many application problems in science and engi-
neering are formulated by nonlinear partial differential
equations, new techniques are required to solve those
problems efficiently. The Sumudu transform is an integral
transform similar to the Laplace transform, introduced in
the early 1990s by Watugala [19] to solve differential
equations and control engineering problems. Recently, this
method is used to solve differential equations like nonlin-
ear boundary value problems [20] and the Cauchy prob-
lem for the wave equation in one dimensional space
[21]. In [22], the Sumudu transform is applied to arbitrary
powers Dumont bimodular Jacobi elliptic functions for
arbitrary powers. Furthermore, Watugala [23] has
extended the Sumudu transform to two variables with
emphasis on solutions to partial differential equations.
Ahmeda et al. [24] studied the convergence properties of
double Sumudu transformation and used it to find the
exact solution of the Volterra integropartial differential
equation. In the paper [25], the authors’ applied the dou-
ble Sumudu transform linked with the Adomian decompo-
sition method or with variational iteration method to find
the analytical solution of nonlinear fractional partial differ-
ential equations. Kiwne and Sonawane [26] present the
proofs of some theorems of double Sumudu transform
with application in solving partial differential equations
like one-dimensional heat equation, Poisson equation,
and second-order hyperbolic equations of two variables.
The advantage of the double Sumudu transform is it gives
a rapid convergence of the exact solution without any
restrictive assumption of the solution compared to other
known methods (see [27]). Unfortunately, this transform
fails to solve nonlinear partial differential equations like
other integral transforms; to solve this problem, this trans-
form is often combined with other methods like the vari-
ational method [28], reduced differential transform
method [29], double integral transform (Laplace-Sumudu
transform) method [30], Adomian decomposition method
[25, 31], and homotopy perturbation method [20, 32].

The main aim of this work is to apply the double
Sumudu transform method coupled with the new iterative
method (NIT) proposed by Daftardar-Gejji and Jafari in
[33] to find an exact/approximate solution of the nonlinear
coupled sine-Gordon equation. The new iterative method
(NIM) has been extensively used by many researchers for
the treatment of linear and nonlinear ordinary and partial
differential equations of integer and fractional order (see
[33–37]). The method converges to the exact solution if it
exists through successive approximations. The nonlinear
term in the equation is expanded in terms of Daftardar-
Gejji and Jafari polynomials (see [38, 39]).

In the present study, we consider the nonlinear initial
boundary value problem (IBVP) for the one-dimensional
coupled sine-Gordon equation [14] in the following form:

utt − uxx = − sin u − vð Þ + f x, tð Þ,
vtt − vxx = sin u − vð Þ + h x, tð Þ,

(
ð2Þ

subject to the initial conditions

u x, 0ð Þ = φ1 xð Þ, ut x, 0ð Þ = φ2 xð Þ,
v x, 0ð Þ = φ3 xð Þ, vt x, 0ð Þ = φ4 xð Þ,

(
ð3Þ

and boundary conditions (Cauchy-type BCs)

u 0, tð Þ = g1 tð Þ, ux 0, tð Þ = g2 tð Þ,
u 0, tð Þ = g3 tð Þ, ux 0, tð Þ = g4 tð Þ,

(
ð4Þ

within the problem domain of Ω = fx : a ≤ x ≤ bg and t
> 0.

The remaining parts of this paper are structured as fol-
lows. In Section 2, we begin with some basic definitions,
properties, and theorems of the double Sumudu transform
method. Section 3 illustrates the details of the new iterative
method and its convergence. Section 4 presents how to
obtain an approximate analytical solution of the coupled
SGE using the DSTIM. In Section 5, we apply the proposed
method to two illustrative examples in order to show its lia-
bility, convergence, and efficiency. Finally, concluding
remarks are given in Section 6.

2. A Brief Introduction of Double Sumudu
Transform (DST)

Definition 1 (see [24, 40]). Sumudu transform of a function
f ðtÞ is defined for all real numbers t > 0 as the function Sð
pÞ, given by

St f tð Þ½ � = F pð Þ = 1
p

ð∞
0
e− t/pð Þ f tð Þdt = lim

j⟶∞

1
p

ð j
0
e− t/pð Þ f tð Þdt:

ð5Þ

Definition 2 (see [30]). The inverse Sumudu transform of a
function FðpÞ is denoted by the symbol S−1½FðpÞ� = f ðtÞ
and is defined by the Bromwich contour integral

St
−1 F pð Þ½ � = f tð Þ = lim

T⟶∞

1
2πi

ðγ+iT
γ−iT

et/pF pð Þdp: ð6Þ

Definition 3 (see [24, 40, 41]). Let f ðx, tÞ be a function that
can be expressed as a convergent infinite series and let ðx, t
Þ ∈ℝ+

n, then the double Sumudu transform of the function
f ðx, tÞ in the positive quadrant of the xt-plane is given by

SxSt f x, tð Þ½ � = F k, pð Þ = 1
kp

ð∞
0

ð∞
0
e− x/k+t/pð Þ f x, tð Þdpdk, ð7Þ

where x, t ≥ 0, and k, p are the transform variables for x and
t, respectively, whenever the improper integral is convergent.
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Definition 4 (see [42, 43]). The inverse double Sumudu
transform Sx

−1St
−1½Fðk, pÞ� = f ðx, tÞ is defined by the follow-

ing form:

Sx
−1St

−1 F k, kð Þ½ � = f x, tð Þ = 1
2πi

ðα+i∞
α−i∞

1
k
ex/k

1
2πi

ðγ+i∞
γ−i∞

1
p
et/pF k, pð Þdp

" #
dk:

ð8Þ

Remark 5 (see [26, 40]). If f ðx, tÞ is a continuous function
having a second partial derivative, then double Sumudu
transforms of partial derivative of the first and second are
defined as follows:

Double Sumudu transform for the first partial derivative
with respect to t is given by

SxSt
∂f x, tð Þ

∂t
; k, p

� �
= 1
kp

lim
j⟶∞

ð j
0

ð j
0
e− x/k+t/pð Þ f x, tð Þdtdx

� �

= 1
p
F k, pð Þ − F k, 0ð Þ½ �:

ð9Þ

Double Sumudu transform for the first partial derivative
with respect to x is given by

SxSt
∂f x, tð Þ

∂x
; k, p

� �
= 1
kp

lim
j⟶∞

ð j
0

ð j
0
e− x/k+t/pð Þ f x, tð Þdtdx

� �

= 1
k
F k, pð Þ − F 0, pð Þ½ �:

ð10Þ

Double Sumudu transform for the second partial deriva-
tive with respect to t is given by

SxSt
∂2 f x, tð Þ

∂t2
; k, p

" #
=
ð∞
0

ð∞
0

∂2 f x, tð Þ
∂t2

e− x/kxk+t/pð Þ f x, tð Þdtdx

= 1
p2

F k, pð Þ − 1
p2

F 0, pð Þ − 1
p
∂F 0, pð Þ

∂x
:

ð11Þ

Double Sumudu transform for the second partial deriva-
tive with respect to x is given by

SxSt
∂2 f x, tð Þ

∂x2
; k, p

" #
=
ð∞
0

ð∞
0

∂2 f x, tð Þ
∂x2

e− x/k+t/pð Þ f x, tð Þdtdx

= 1
k2

F k, pð Þ − 1
k2

F k, 0ð Þ − 1
k
∂F k, 0ð Þ

∂t
:

ð12Þ

2.1. Convergence Theorem of Double Sumudu Transform

Lemma 6 (see [24]). Let f ðx, tÞ be a function of two variables
continuous in the positive quadrant of the xt-plane. If the
integral

1
kp

ð∞
0

ð∞
0
e− x/k+t/pð Þ f x, tð Þdtdx, ð13Þ

converges at k = k0, p = p0, then the integral converges for k
< k0, p < p0:

2.2. Existence and Uniqueness of the Double Sumudu
Transform. If f ðx, tÞ is an exponential order, then c and d
as x⟶∞,t⟶∞, and if there exists a positive constant
K such that for all x > X, t > T , then

f x, tð Þj j = Kecx+dt: ð14Þ

And we write f ðx, tÞ =Oecx+dt as ⟶∞, t⟶∞: Or,
equivalently,

lim
x⟶∞,t⟶∞

e− x/kð Þ−t/p f x, tð Þj j = K lim
x⟶∞,t⟶∞

e− x/k−cð Þx− t/p−dð Þt

= 0,  1
k
> c, 1

p
> d:

ð15Þ

And we write this as f ðx, tÞ = Oðeax+by+ctÞ as x⟶∞
and t⟶∞.

The function f ðx, tÞ is called an exponential order as x
⟶∞, t⟶∞, and clearly, it does not grow faster than
Kecx+dtx⟶∞, t⟶∞:

Theorem 7 (existence). If a function f ðx, tÞ is continuous in
every finite intervals ð0, XÞ and ð0, TÞ and of exponential
order ecx+dt , then the double Sumudu transform of f ðx, tÞ
exists for all 1/k and 1/p provided that Re ð1/kÞ > c and Re ð
1/pÞ > d.

For the proof, see [42, 43].

Theorem 8 (uniqueness). Let f ðx, tÞ and gðx, tÞ be continu-
ous functions defined for x, t ≥ 0 and having double Sumudu
transforms Fðk, pÞ and Gðk, pÞ, respectively. If Fðk, pÞ =Gðk
, pÞ, then f ðx, tÞ = gðx, tÞ:
2.3. Some Properties of Double Sumudu Transform

Property 9 (linearity of TLT, [42, 43]). If f ðx, tÞ and gðx, tÞ
are two functions of x and t such that SxStf f ðx, tÞg = Fðk,
pÞ and SxStfgðx, tÞg =Gðk, pÞ, then

SxSt αf x, tð Þ + βg x, tð Þf g = 1
kp

ð∞
0

ð∞
0
e− x/k+t/pð Þ αf x, tð Þ + βg x, tð Þ½ �dtdx

= 1
kp

ð∞
0

ð∞
0
e− x/k+t/pð Þαf x, tð Þdtdx + 1

kp

ð∞
0

ð∞
0
e− x/k+t/pð Þβg x, tð Þdtdx

= α

kp

ð∞
0

ð∞
0
e− x/k+t/pð Þ f x, tð Þdtdx + β

kp

ð∞
0

ð∞
0
e− x/k+t/pð Þg x, tð Þdtdx

= αSxSt f x, tð Þ + βSxStg x, tð Þ = αF k, pð Þ + βG k, pð Þ,
ð16Þ

where α and β are constants.
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Property 10 (change of scale property, [44]). If f ðx, tÞ and
gðx, tÞ are two functions of x and t such that SxStf f ðx, tÞg
= Fðk, pÞ and SxStfgðx, tÞg = Gðk, pÞ, then

(i) SxStf f ðcx, dtÞg = ð1/cdÞFðck, dpÞ,
(ii) SxStf f ðcxÞgðdtÞg = ð1/cdÞFðckÞGðdpÞ,

where c and d are nonzero constants.

Property 11 (first shifting property). If SxStf f ðx, tÞg = Fðu,
vÞ, then

SxSt ecx+dt f x, tð Þ
n o

= 1
1 − ckð Þ 1 − dpð Þ F

k
1 − ck

, p
1 − dp

� �
:

ð17Þ

Proof. from (7), we have

SxSt ecx+dt f x, tð Þ
h i

= 1
kp

ð∞
0

ð∞
0
e− x/k+t/pð Þecx+dt f x, tð Þdtdx,

= 1
k

ð∞
0
e− 1/k−cð Þx

ð∞
0

1
p
e− 1/p−dð Þt f x, tð Þdt

� �
dx,

= 1
k

ð∞
0
e− 1/k−cð Þx

ð∞
0

1
p
e− 1/p−dð Þt f x, tð Þdt

� �
dx:

ð18Þ

By using the integration by substitution method for the
integral inside the bracket and the integral outside the
bracket, we get

SxSt ecx+dt f x, tð Þ
n o

= 1
1 − ckð Þ 1 − dpð Þ F

k
1 − ck

, p
1 − dp

� �
:

ð19Þ

Similarly,

LxLyLt e−cx−dt
n o

f x, tð Þ = 1
1 + ckð Þ 1 + dpð Þ F

k
1 − ck

, p
1 − dp

� �
:

ð20Þ

☐

Property 12 (second shifting property, [42, 43]). If SxStf f ðx
, tÞg = Fðk, pÞ, then

SxSt f x − c, t − dð ÞH x − c, t − dð Þf g = e− c/kð Þ−d/pF k, pð Þ, ð21Þ

where Hðx, tÞ is the Heaviside unit step function defined by

H x − c, t − dð Þ =
1, x > c, t > d

0, otherwise

( )
: ð22Þ

3. The New Iterative Method

Daftardar-Gejji and Jafari [33] have considered the following
functional equation:

u =N uð Þ + f , ð23Þ

where N is a nonlinear operator in a Banach space such that
N : B⟶ B and f is a given element of the Banach space B.
Here, u is assumed to be the solution of equation (23) whose
series expansion is given by

u = 〠
∞

i=0
ui: ð24Þ

The nonlinear operation N can then be decomposed as

N 〠
∞

i=0
ui

 !
=N u0ð Þ + 〠

∞

i=1
N 〠

i

r=0
ur

 !
−N 〠

i−1

r=0
ur

 !( )
: ð25Þ

Using Equations (24) and (25), Equation (23) is equiva-
lent to

〠
∞

i=0
ui = f +N u0ð Þ + 〠

∞

i=1
N 〠

i

r=0
ur

 !
−N 〠

i−1

r=0
ur

 !( )
: ð26Þ

From Equation (26), we define the following recurrence
relation:

u0 = f , u1 =N u0ð Þ,
u2 =N u0 + u1ð Þ −N u0ð Þ,
u n+1ð Þ =N u0+⋯+unð Þ −N u0+⋯+u n−1ð Þ

� �
, n = 1, 2,⋯:

8>>><
>>>:

ð27Þ

Thus,

u1+⋯+u n+1ð Þ
� �

=N u0+⋯+u nð Þ
� �

, n = 1, 2,⋯, ð28Þ

and hence,

〠
∞

i=0
ui = f +N 〠

∞

i=0
ui

 !
: ð29Þ

Therefore, the nth term approximate solution of equation
(24) is given by

u = u0 + u1 + u2 + u3+⋯+un−1, n > 1: ð30Þ

3.1. Convergence of the New Iterative Method

Theorem 13. If N is a continuously differentiable functional
in a neighborhood of u0 and kNðnÞðu0Þk ≤M ≤ e−1 for all n,
then the series ∑∞

n=oun+1 is absolutely convergent [33].
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4. Double Sumudu Transform Coupled with
Iterative Method

To solve the system of sine-Gordon equation (2), first, we
decompose the source function f ðx, tÞ into f1ðx, tÞ and f2ðx,
tÞ. The part f1ðx, tÞwith the terms in equation (2) always leads
to the simple algebraic expression while applying the inverse
double Sumudu transform. The portion f2ðx, tÞ is combined
with the nonlinear term of equation (2) to avoid noise terms
in the iteration process. Similarly, hðx, tÞ = h1ðx, tÞ + h2ðx, tÞ.

Applying the double Sumudu transform to both sides of
the system of equation (2) and by using Table 1 and Defini-
tion 4, we get

1
k2

�u k, pð Þ − 1
k2

�u k, 0ð Þ − 1
k
�ut k, 0ð Þ − 1

p2
�u k, pð Þ + 1

p2
�u 0, pð Þ + 1

p
�ux 0, pð Þ

= �f1 k, sð Þ − SxSt sin u − vð Þ − f2 x, tð Þð Þ,
1
k2

�v k, pð Þ − 1
k2

�v k, 0ð Þ − 1
k
�vt k, 0ð Þ − 1

p2
�v k, pð Þ + 1

p2
�v 0, pð Þ + 1

p
�vx 0, pð Þ

= �h1 k, pð Þ + SxSt sin u − vð Þ + h2 x, tð Þð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð31Þ

where �u, �ut , �ux,�v, �vt , �vx�f 1, and �h1 are Sumudu transforms of
functions of two variables.

Multiplying both sides of each equation in system (31)
by k2p2 yields

p2�u k, pð Þ − p2�u k, 0ð Þ − kp2�ut k, 0ð Þ − k2�u k, pð Þ + k2�u 0, pð Þ + pk2�ux 0, pð Þ
= k2p2 �f1 k, sð Þ − k2p2SxSt sin u − vð Þ − f2 x, tð Þð Þ,
p2�v k, pð Þ − p2�v k, 0ð Þ − kp2�vt k, 0ð Þ − k2�v k, pð Þ + k2�v 0, pð Þ + pk2�vx 0, pð Þ
= k2p2 �h1 k, pð Þ + k2p2SxSt sin u − vð Þ + h2 x, tð Þð Þ: 

8>>>>><
>>>>>:

ð32Þ

Next, applying a single Sumudu transform to the systems
of equations (3) and (4), we get

�u k, 0ð Þ = φ1 kð Þ, �ut k, 0ð Þ = φ2 kð Þ,
�v k, 0ð Þ = φ3 kð Þ, �vt k, 0ð Þ = φ4 kð Þ,

(
ð33Þ

�u 0, pð Þ = g1 pð Þ, �ut 0, sð Þ = g2 pð Þ,
�v 0, pð Þ = g3 pð Þ, �vt 0, sð Þ = g4 pð Þ:

(
ð34Þ

Here, φi and �gi (i = 1, 2, 3, 4) are Sumudu transforms of
functions of single variables.

By substituting the systems of equations (34) and (33)
into the systems of equation (32) and simplifying, we obtain

�u k, pð Þ = k2p2

k2 − p2
p2�u k, 0ð Þ + kp2�ut k, 0ð Þ − k2�u 0, pð Þ − pk2�ux 0, pð Þ − k2p2 �f1 k,pð Þ

= −k2p2SxSt sin u − vð Þ − f2 x, tð Þð Þf g

" #
,

�v k, pð Þ = k2p2

k2 − p2
p2�v k, 0ð Þ + kp2�vt k, 0ð Þ − k2�u 0, pð Þ − pk2�vx 0, pð Þ − k2p2 �h1 k, pð Þ

= k2p2SxSt sin u − vð Þ + h2 x, tð Þf g

" #
:

8>>>>><
>>>>>:

ð35Þ

Applying the inverse double Sumudu transform to the
system of equation (35), we obtain

u x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
p2�u k, 0ð Þ + kp2�ut k, 0ð Þ − k2�u 0, pð Þ − pk2�ux 0, pð Þ − k2p2 �f1 k,pð Þ

= −k2p2SxSt sin u − vð Þ − f2 x, tð Þð Þf g

" #( )
,

v x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
p2�v k, 0ð Þ + kp2�vt k, 0ð Þ − k2�u 0, pð Þ − pk2�vx 0, pð Þ − k2p2 �h1 k, pð Þ

= k2p2SxSt sin u − vð Þ + h2 x, tð Þf g

" #( )
:

8>>>>><
>>>>>:

ð36Þ

Now, we start an iterative process. We assume that

u x, tð Þ = 〠
∞

i=0
ui x, tð Þ,

v x, tð Þ = 〠
∞

i=0
vi x, tð Þ,

8>>>><
>>>>:

ð37Þ

is the solution of the coupled nonlinear sine-Gordon equa-
tion (2).

Substituting the systems of equation (37) into the sys-
tems of equation (36), we obtain

〠
∞

i=0
ui x, tð Þ = Sx

−1Sy
−1 k2p2

k2 − p2

p2�u k, 0ð Þ + kp2�ut k, 0ð Þ − k2�u 0, pð Þ − pk2�ux 0, pð Þ − k2p2 �f1 k, pð Þ

= k2p2SxSt f2 x, tð Þ − sin 〠
∞

i=0
ui x, tð Þ − vi x, tð Þ½ �

( )( )
2
664

3
775

8>><
>>:

9>>=
>>;,

〠
∞

i=0
vi x, tð Þ = Sx

−1Sy
−1 k2p2

k2 − p2

p2�v k, 0ð Þ + kp2�vt k, 0ð Þ − k2�u 0, pð Þ − pk2�vx 0, pð Þ − k2p2 �h1 k, pð Þ

= k2p2SxSt h2 x, tð Þ + sin 〠
∞

i=0
ui x, tð Þ − vi x, tð Þ½ �

( )( )
2
664

3
775

8>><
>>:

9>>=
>>;:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð38Þ
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Now, by (25), the nonlinear term sin ðuðx, tÞ − vðx, tÞÞ in
the systems of equation (38) is decomposed as

sin 〠
∞

i=0
ui x, tð Þ − vi x, tð Þð Þ

 !
= sin u0 x, tð Þ − v0 x, tð Þð Þ

+ 〠
∞

i=1
sin 〠

i

r=0
ur x, tð Þ − v x, tð Þð Þ

 !
− sin 〠

i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !( )
:

ð39Þ

Substituting the system of equation (38) into the systems
of equation (37), we get

Now, we define the recurrence relation from the systems
of equation (40) as follows:

〠
∞

i=0
ui x, tð Þ = Sx

−1Sy
−1 k2p2

k2 − p2

p2�u k, 0ð Þ + kp2�ut k, 0ð Þ − k2�u 0, pð Þ − pk2�ux 0, pð Þ − k2p2 �f1 k, pð Þ

= k2p2SxSt

f2 x, tð Þ − sin u0 x, tð Þ − v0 x, tð Þð Þ

−〠
∞

i=1

sin 〠
i

r=0
ur x, tð Þ − v x, tð Þð Þ

 !

−sin 〠
i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

2
666666666664

3
777777777775

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

,

〠
∞

i=0
vi x, tð Þ = Sx

−1Sy
−1 k2p2

k2 − p2

p2�v k, 0ð Þ + kp2�vt k, 0ð Þ − k2�u 0, pð Þ − pk2�vx 0, pð Þ − k2p2 �h1 k, pð Þ

= k2p2SxSt

h2 x, tð Þ + sin u0 x, tð Þ − v0 x, tð Þð Þ

+〠
∞

i=1

sin 〠
i

r=0
ur x, tð Þ − v x, tð Þð Þ

 !

−sin 〠
i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

2
666666666664

3
777777777775

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð40Þ

u0 x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
p2�u k, 0ð Þ + kp2�ut k, 0ð Þ − k2�u 0, pð Þ − pk2�ux 0, pð Þ − k2p2 �f1 k, pð Þ� 	( )

,

v0 x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
p2�v k, 0ð Þ + kp2�vt k, 0ð Þ − k2�u 0, pð Þ − pk2�vx 0, pð Þ − k2p2 �h1 k, pð Þ� 	( )

,

8>>>>><
>>>>>:

u1 x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
k2p2SxSt f2 x, tð Þ − sin u0 x, tð Þ − v0 x, tð Þð Þf g� 	( )

,

v1 x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
k2p2SxSt h2 x, tð Þ + sin u0 x, tð Þ − v0 x, tð Þð Þf g� 	( )

,

8>>>>><
>>>>>:

un+1u x, tð Þ = −Sx
−1Sy

−1 k2p2

k2 − p2
k2p2SxSt 〠

∞

i=1

sin 〠
i

r=0
ur x, tð Þ − v x, tð Þð Þ

 !

−sin 〠
i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

vn+1u x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
k2p2SxSt 〠

∞

i=1

sin 〠
i

r=0
ur x, tð Þ − v x, tð Þð Þ

 !

−sin 〠
i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

  n > 1:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð41Þ
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Therefore, the solution of the systems of SGE equations
(2)–(4) in series form is given by

u x, tð Þ = u0 x, tð Þ + u1 x, tð Þ + u2 x, tð Þ+⋯+un x, tð Þ+⋯,
v x, tð Þ = v0 x, tð Þ + v1 x, tð Þ + v2 x, tð Þ+⋯+vn x, tð Þ+⋯:

(
:

ð42Þ

Finally, Theorem 13 will be applied to demonstrate the
series solution obtained from the new iterative method
which is convergent.

5. Illustrative Examples

In order to show the validity and effectiveness of the method
under consideration, some examples are presented here.

Example 1. Consider the following IBVP for one-
dimensional coupled sine-Gordon equation on Ω = ½0, π�, t
> 0:

utt − uxx = − sin u − vð Þ + sin t sin x − e−t sin x

 �

+ t sin x,

vtt − vxx = sin u − vð Þ − sin t sin x − e−t sin x

 �

+ 2e−t sin x,

(

ð43Þ

with initial condition

u x, 0ð Þ = 0, ut x, 0ð Þ = sin x,
v x, 0ð Þ = sin x, vt x, 0ð Þ = − sin x,

(
ð44Þ

and boundary condition

u 0, tð Þ = 0, ux 0, tð Þ = t,
u 0, tð Þ = 0, ux 0, tð Þ = e−t:

(
ð45Þ

Solution. Applying the properties of double Sumudu trans-
form to both sides of the system of equation (43), we get

1
k2

�u k, pð Þ − 1
k2

�u k, 0ð Þ − 1
k
�ut k, 0ð Þ − 1

p2
�u k, pð Þ + 1

p2
�u 0, pð Þ + 1

p
�ux 0, pð Þ + SxSt sin u − vð Þð Þ

= pk

1 + k2
+ SxSt sin t sin x − e−t sin x


 �
 �
,

1
k2
�v k, pð Þ − 1

k2
�v k, 0ð Þ − 1

k
�vt k, 0ð Þ − 1

p2
�v k, pð Þ + 1

p2
�v 0, pð Þ + 1

p
�vx 0, pð Þ − SxSt sin u − vð Þð Þ

= 2
1 + pð Þ 1 + k2


 � − SxSt sin t sin x − e−t sin x

 �
 �

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð46Þ

Multiplying both sides of each equation in the system

Table 1: Double Sumudu transforms of some functions of two variables [30, 41, 45, 46].

Functions f x, tð Þ Double Sumudu transform F k, pð Þ
ab ab

xt kp

xmtn m!n!knpm

e−ax−bt
1

1 + akð Þ 1 + bpð Þ

eax+bt
1

1 − akð Þ 1 − bpð Þ

cos axð Þ cos btð Þ
1

1 + a2k2

 �

1 + b2p2

 �

sin axð Þ sin btð Þ
abkp

1 + a2k2

 �

1 + b2p2

 �

cos h axð Þ cos h btð Þ
1

1 − a2k2

 �

1 − b2p2

 �

sin h axð Þ sin h btð Þ
abkp

1 − a2k2

 �

1 − b2p2

 �

sin ax + btð Þ ak + bp

1 + a2k2

 �

1 + b2p2

 �

cos ax + btð Þ
abkp

1 + a2k2

 �

1 + b2p2

 �

cos h ax + btð Þ 1/2 1/ 1 − akð Þ 1 − bpð Þð Þ + 1/ 1 + akð Þ 1 + bpð Þð Þ½ �

sin h ax + btð Þ 1
2

1
1 − akð Þ 1 − bpð Þ −

1
1 + akð Þ 1 + bpð Þ

� �
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(46) by k2p2, we obtain

p2�u k, pð Þ − p2�u k, 0ð Þ − kp2�ut k, 0ð Þ − k2�u k, pð Þ + k2�u 0, pð Þ + pk2�ux 0, pð Þ

= p3k3

1 + k2
− k2p2SxSt sin u − vð Þ − sin t sin x − e−t sin x


 �
 �
,

p2�v k, pð Þ − p2�v k, 0ð Þ − kp2�vt k, 0ð Þ − k2�v k, pð Þ + k2�v 0, pð Þ + pk2�vx 0, pð Þ

= 2k2p2
1 + pð Þ 1 + k2


 � + k2p2SxSt sin u − vð Þ − sin t sin x − e−t sin x

 �
 �

:

8>>>>>>>>>><
>>>>>>>>>>:

ð47Þ

Next, applying the single Sumudu transform to the sys-
tems of equations (44) and (45), we get

�u k, 0ð Þ = 0, �ut k, 0ð Þ = k

1 + k2
,

�v k, 0ð Þ = k

1 + k2
, �vt k, 0ð Þ = −

k

1 + k2
,

8>><
>>: ð48Þ

�u 0, pð Þ = 0, �ux 0, pð Þ = p,

�v 0, pð Þ = k

1 + k2
, �vx 0, pð Þ = 1

1 + p
:

8><
>: ð49Þ

By substituting the system of equations (49) and (48)
into the system of equation (47) and simplifying, we obtain

�u k, pð Þ = pk

1 + k2
−

k2p2

k2 − p2
SxSt sin u − vð Þ − sin t sin x − e−t sin x


 �� � 	
,

�v k, pð Þ = 2k
1 + pð Þ 1 + k2


 � + k2p2

k2 − p2
SxSt sin u − vð Þ − sin t sin x − e−t sin x


 �� � 	
:

8>>>><
>>>>:

ð50Þ

Applying the inverse double Sumudu transform to (50),
we get

u x, tð Þ = tsinx − Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u − vð Þ − sin t sin x − e−t sin x


 �� � 	" #
,

v x, tð Þ = e−t sinx + Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u − vð Þ − sin tsinx − e−t sinx


 �� � 	" #
:

8>>>>><
>>>>>:

ð51Þ

Now, applying the new iterative method to a system of
equations (51), we obtain the components of the solution
as follows:

u0 x, tð Þ = t sin x,
v0 x, tð Þ = e−t sin x,

(

u1 x, tð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u0 x, tð Þ − v0 x, tð Þð Þ − sin t sin x − e−t sin x


 ��� � 	" #
,

v1 x, tð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u0 x, tð Þ − v0 x, tð Þð Þ − sin t sin x − e−t sin x


 �� � 	" #
,

8>>>>><
>>>>>:

⟹

u1 x, tð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt sin t sin x − e−t sin x


 �
− sin t sin x − e−t sin x


 �� � 	
= 0

" #
,

v1 x, tð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt sin t sin x − e−t sin x


 �
− sin t sin x − e−t sin x


 �� � 	
= 0

" #
,

8>>>>><
>>>>>:

un+1u x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
SxSt 〠

∞

i=1

sin 〠
i

r=0
ur x, tð Þ − vr x, tð Þð Þ

 !

−sin 〠
i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

vn+1u x, tð Þ = −Sx
−1Sy

−1 k2p2

k2 − p2
SxSt 〠

∞

i=1

sin 〠
i

r=0
ur x, tð Þ − vr x, tð Þð Þ

 !

−sin 〠
i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

 n > 1:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð52Þ
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For n = 1,

u2 x, tð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt

sin u0 x, tð Þ − v0 x, tð Þð Þ + u1 x, tð Þ − v1 x, tð Þð Þð Þ
−sin u0 x, tð Þ − v0 x, tð Þð Þ

( )" #
= 0

" #
,

v2 x, tð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt

sin u0 x, tð Þ − v0 x, tð Þð Þ + u1 x, tð Þ − v1 x, tð Þð Þð Þ
−sin u0 x, tð Þ − v0 x, tð Þð Þ

( )" #
= 0

" #
,

8>>>>><
>>>>>:

ð53Þ

in the same way, we obtain

u3 x, tð Þ = 0,
v3 x, tð Þ = 0,

(
u4 x, tð Þ = 0,
v4 x, tð Þ = 0,

(
ð54Þ

and so on.
Therefore, the solution of Example 1 in the sense of (42)

is

u x, tð Þ = t sin x,
v x, tð Þ = e−t sin x,

(
ð55Þ

which is the same as the result obtained by Yildirim et al.
[14].

Let us now test the convergence of the obtained series
solution. From the system of equation (51), we have

u0 x, tð Þ = t sin x,
v0 x, tð Þ = e−t sin x,

(

N u x, tð Þð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u − vð Þ − sin t sin x − e−t sin x


 �� � 	" #
,

N v x, tð Þð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u − vð Þ − sin tsinx − e−t sinx


 �� � 	" #
:

8>>>>><
>>>>>:

ð56Þ

Thus, for all x, t ≥ 0, we have

Therefore,

N u0 x, tð Þð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u0 x, tð Þ − v0 x, tð Þð Þ − sin t sin x − e−t sin x


 �� � 	
= 0

" #
,

N u0 x, tð Þð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u0 x, tð Þ − v0 x, tð Þð Þ − sin tsinx − e−tsinx


 �� � 	
= 0

" #
:

8>>>>><
>>>>>:

ð57Þ

N u0 x, tð Þð Þk k = 0k k = 0 < 1
e
,

N v0 x, tð Þð Þk k = 0k k = 0 < 1
e
,

8>><
>>: ð58Þ

N
∂
∂t

u x, tð Þ
� �

= −Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos u − vð Þ ∂∂t u − vð Þ

−cos t sin x − e−t sin x

 �

sin x + e−t sin x

 �

8><
>:

9>=
>;

2
64

3
75

2
64

3
75,

N
∂
∂t

v x, tð Þ
� �

= Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos u − vð Þ ∂
∂t

u − vð Þ

−cos t sin x − e−t sin x

 �

sin x + e−t sin x

 �

8><
>:

9>=
>;

2
64

3
75

2
64

3
75:

8>>>>>>>>><
>>>>>>>>>:

ð59Þ

9Advances in Mathematical Physics



Then,

Then,

Therefore,

N
∂
∂t

u0 x, tð Þ
� �

= −Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos t sin x − e−t sin x

 �

sin x + e−t sin x

 �

−ccos t sin x − e−t sin x

 �

sin x + e−t sin x

 �

( )" #
= 0

" #
,

N
∂
∂t

v0 x, tð Þ
� �

= Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos t sin x − e−t sin x

 �

sin x + e−t sin x

 �

−cos t sin x − e−t sin x

 �

sin x + e−t sin x

 �

( )" #
= 0

" #
,

8>>>>>><
>>>>>>:

N
∂
∂x

u x, tð Þ
� �

= −Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos u − vð Þ ∂
∂x

u − vð Þ

−cos t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

8><
>:

9>=
>;

2
64

3
75

2
64

3
75,

N
∂
∂x

v x, tð Þ
� �

= Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos u − vð Þ ∂
∂x

u − vð Þ

−cos t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

8><
>:

9>=
>;

2
64

3
75

2
64

3
75:

8>>>>>>>>><
>>>>>>>>>:

ð60Þ

N
∂
∂x

u0 x, tð Þ
� �

= −Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

−

cos t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

( )" #
= 0

" #
,

N
∂
∂x

v0 x, tð Þ
� �

= Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

−

cos t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

( )" #
= 0

" #
:

8>>>>>><
>>>>>>:

ð61Þ

N ′ u0 x, tð Þð Þ�� �� = 0k k = 0 < 1
e
,

N ′ v0 x, tð Þð Þ�� �� = 0k k = 0 < 1
e
,

8>><
>>: ð62Þ

N
∂2

∂t2
u0 x, tð Þ

 !
= −Sx

−1St
−1 k2p2

k2 − p2
SxSt

−sin t sin x − e−t sin x

 �

sin x + e−t sin x

 �2

+cos t sin x − e−t sin x

 �

−e−t sin x

 �

sin t sin x − e−t sin x

 �

sin x + e−t sin x

 �2

−cos t sin x − e−t sin x

 �

−e−t sin x

 �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

= 0

2
6666664

3
7777775

2
6666664

3
7777775
,

N
∂2

∂t2
v0 x, tð Þ

 !
= Sx

−1St
−1 k2p2

k2 − p2
SxSt

−sin t sin x − e−t sin x

 �

sin x + e−t sin x

 �2

+cos t sin x − e−t sin x

 �

−e−t sin x

 �

sin t sin x − e−t sin x

 �

sin x + e−t sin x

 �2

−cos t sin x − e−t sin x

 �

−e−t sin x

 �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

= 0

2
6666664

3
7777775

2
6666664

3
7777775
,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:
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Therefore,

N ′′ u0 x, tð Þð Þ�� �� = 0k k = 0 < 1
e
,

N ′′ v0 x, tð Þð Þ�� �� = 0k k = 0 < 1
e
:

8>><
>>: ð64Þ

Similarly, we have

N 3ð Þ u0 x, tð Þð Þ
��� ��� = N4Þ u0 x, tð Þð Þ

��� ��� =⋯ = N kð Þ u0 x, tð Þð Þ
��� ��� = 0k k = 0 < 1

e
,

N 3ð Þ v0 x, tð Þð Þ
��� ��� = N4Þv0 x, tð Þ

��� ��� =⋯ = N kð Þ v0 x, tð Þð Þ
��� ��� = 0k k = 0 < 1

e
,

8>><
>>:

ð65Þ

for all k ≥ 0 by the principle of mathematical induction.
As the conditions of Theorem 13 are satisfied, the series

solution obtained by the new iterative method is convergent
on the domain of interest.

Example 2. Consider the following IBVP for one-
dimensional coupled sine-Gordon equation on Ω = ½0, π�, t
> 0:

utt − uxx = − sin u − vð Þ + sin cos x + 2tð Þ − sin x sinh tð Þð Þ − 3 cos x + 2tð Þ,
vtt − vxx = sin u − vð Þ − sin cos x + 2tð Þ − sin x sinh tð Þð Þ + 2 sin x sinh tð Þ,

(

ð66Þ

with initial condition

u x, 0ð Þ = cos x, ut x, 0ð Þ = −2 sin x,
v x, 0ð Þ = 0, vt x, 0ð Þ = sin x,

(
ð67Þ

and boundary condition

u 0, tð Þ = cos 2tð Þ, ux 0, tð Þ = − sin 2tð Þ,
u 0, tð Þ = 0, ux 0, tð Þ = sin h tð Þ:

(
ð68Þ

Solution. Applying the properties of the double Sumudu
transform to both sides of the system of equations (66) , we
get

N
∂2

∂x2
u0 x, tð Þ

 !
= −Sx

−1St
−1 k2p2

k2 − p2
SxSt

−sin t sin x − e−t sin x

 �

t cos x − e−t cos x

 �2

+cos t sin x − e−t sin x

 �

−t sin t + e−t sin x

 �

sin t sin x − e−t sin x

 �

t cos x − e−t cos x

 �2

−cos t sin x − e−t sin x

 �

−t sin t + e−t sin x

 �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

2
6666664

3
7777775
= 0

2
6666664

3
7777775
,

N
∂2

∂x2
v0 x, tð Þ

 !
= Sx

−1St
−1 k2p2

k2 − p2
SxSt

−sin t sin x − e−t sin x

 �

t cos x − e−t cos x

 �2

+cos t sin x − e−t sin x

 �

−t sin t + e−t sin x

 �

sin t sin x − e−t sin x

 �

t cos x − e−t cos x

 �2

−cos t sin x − e−t sin x

 �

−t sin t + e−t sin x

 �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

2
6666664

3
7777775
= 0

2
6666664

3
7777775
,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

N
∂2

∂t∂x
u0 x, tð Þ

 !
= −Sx

−1St
−1 k2p2

k2 − p2
SxSt

−sin t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

sin x + e−t sin x

 �

+cos t sin x − e−t sin x

 �

cos x + e−t cos x

 �

sin t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

sin x + e−t sin x

 �

−cos t sin x − e−t sin x

 �

cos x + e−t cos x

 �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

2
6666664

3
7777775
= 0

2
6666664

3
7777775
,

N
∂2

∂t∂x
v0 x, tð Þ

 !
= Sx

−1St
−1 k2p2

k2 − p2
SxSt

−sin t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

sin x + e−t sin x

 �

+cos t sin x − e−t sin x

 �

cos x + e−t cos x

 �

sin t sin x − e−t sin x

 �

t cos x − e−t cos x

 �

sin x + e−t sin x

 �

−cos t sin x − e−t sin x

 �

cos x + e−t cos x

 �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

2
6666664

3
7777775
= 0

2
6666664

3
7777775
:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð63Þ
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Multiplying both sides of each equation in the system of
equation (69) by k2p2, we get

p2�u k, pð Þ − p2�u k, 0ð Þ − kp2�ut k, 0ð Þ − k2�u k, pð Þ + k2�u 0, pð Þ + pk2�ux 0,pð Þ

= −
6p3k3

1 + k2

 �

1 + 4p2ð Þ − k2p2SxSt sin u − vð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þð Þ,

p2�v k, pð Þ − p2�v k, 0ð Þ − kp2�vt k, 0ð Þ − k2�v k, pð Þ + k2�v 0, pð Þ + pk2�vx 0, pð Þ

= 2p3k3

1 + k2

 �

1 − p2ð Þ
+ k2p2SxSt sin u − vð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þð Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð70Þ

Next, applying a single Sumudu transform to the systems
of equations (67) and (68), we obtain

�u k, 0ð Þ = 1
1 + k2

, �ut k, 0ð Þ = −2k
1 + k2

,

�v k, 0ð Þ = 0, �vt k, 0ð Þ = k

1 + k2
,

8>><
>>: ð71Þ

�u 0, pð Þ = 1
1 + 4p2 , �ux 0, pð Þ = −2p

1 + 4p2 ,

�v 0, pð Þ = k

1 + k2
, �vx 0, pð Þ = p

1 − 4p2 :

8>>><
>>>:

ð72Þ

By substituting the systems of equations (72) and (71)
into the system of equation (70) and simplifying, we obtain

�u k, pð Þ = 2kp
1 + k2

 �

1 + 4p2ð Þ
−

k2p2

k2 − p2
SxSt sin u − vð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þf g½ �,

�v k, pð Þ = kp

1 + k2

 �

1 − p2ð Þ
+ k2p2

k2 − p2
SxSt sin u − vð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þf g½ �:

8>>>><
>>>>:

ð73Þ

Applying inverse double Sumudu transform to (73), we
obtain

u x, tð Þ = cos x + 2tð Þ − Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u − vð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þf g½ �

" #
,

v x, tð Þ = sinxsinh tð Þ + Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u − vð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þf g½ �

" #
:

8>>>>><
>>>>>:

ð74Þ

Now, applying the new iterative method to the system of
equations (74), we obtain the components of the solution as

follows:

u0 x, tð Þ = cos x + 2tð Þ,
v0 x, tð Þ = sinxsinh tð Þ,

(

u1 x, tð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u0 x, tð Þ − v0 x, tð Þð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð ÞÞf g½ �

" #
,

v1 x, tð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u0 x, tð Þ − v0 x, tð Þð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þf g½ �

" #
,

8>>>>><
>>>>>:

⟹

u1 x, tð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt sin tsinx − e−tsinx


 �
− sin tsinx − e−tsinx


 �� � 	
= 0

" #
,

v1 x, tð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt sin tsinx − e−t sin x


 �
− sin tsinx − e−tsinx


 �� � 	
= 0

" #
,

8>>>>><
>>>>>:

un+1u x, tð Þ = Sx
−1Sy

−1 k2p2

k2 − p2
SxSt 〠

∞

i=1

sin 〠
i

r=0
ur x, tð Þ − vr x, tð Þð Þ

 !

−sin 〠
i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

vn+1u x, tð Þ = −Sx
−1Sy

−1 k2p2

k2 − p2
SxSt 〠

∞

i=1

sin 〠
i

r=0
ur x, tð Þ − vr x, tð Þð Þ

 !

−sin 〠
i−1

r=0
ur x, tð Þ − vr x, tð Þ

 ! !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

  n > 1:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð75Þ

For n = 1,

u2 x, tð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt

sin u0 x, tð Þ − v0 x, tð Þð Þ + u1 x, tð Þ − v1 x, tð Þð Þð Þ
−sin u0 x, tð Þ − v0 x, tð Þð Þ

( )" #
= 0

" #
,

v2 x, tð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt

sin u0 x, tð Þ − v0 x, tð Þð Þ + u1 x, tð Þ − v1 x, tð Þð Þð Þ
−sin u0 x, tð Þ − v0 x, tð Þð Þ

( )" #
= 0

" #
,

8>>>>><
>>>>>:

ð76Þ

in the same way, we obtain

u3 x, tð Þ = 0,
v3 x, tð Þ = 0,

(
u4 x, tð Þ = 0,
v4 x, tð Þ = 0,

(
ð77Þ

and so on.
Therefore, the solution of Example 2 in the sense of (40)

is

u x, tð Þ = cos x + 2tð Þ,
v x, tð Þ = sinxsinh tð Þ:

(
ð78Þ

Let us now test the convergence of the obtained series

1
k2

�u k, pð Þ − 1
k2

�u k, 0ð Þ − 1
k
�ut k, 0ð Þ − 1

p2
�u k, pð Þ + 1

p2
�u 0, pð Þ + 1

p
�ux 0, pð Þ + SxSt sin u − vð Þð Þ = −

6kp
1 + k2

 �

1 + 4p2ð Þ
+ SxSt sin cos x + 2tð Þ − sinxsinh tð Þð Þð Þ,

1
k2

�v k, pð Þ − 1
k2
�v k, 0ð Þ − 1

k
�vt k, 0ð Þ − 1

p2
�v k, pð Þ + 1

p2
�v 0, pð Þ + 1

p
�vx 0, pð Þ − SxSt sin u − vð Þð Þ = 2kp

1 + k2

 �

1 − p2ð Þ
+ SxSt sin cos x + 2tð Þ − sinxsinh tð Þð Þð Þ:

8>>>><
>>>>:

ð69Þ

12 Advances in Mathematical Physics



solution. From the system of equation (74), we have

u0 x, tð Þ = cos x + 2tð Þ,
v0 x, tð Þ = sinxsinh tð Þ,

(
ð79Þ

N u x, tð Þð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u − vð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þf g½ �

" #
,

N v x, tð Þð Þ = Sx
−1St

−1 k2p2

k2 − p2
SxSt sin u − vð Þ − sin cos x + 2tð Þ − sinxsinh tð Þð Þf g½ �

" #
:

8>>>>><
>>>>>:

ð80Þ

Thus, for all x, t ≥ 0, we have

N u0 x, tð Þð Þ = −Sx
−1St

−1 k2p2

k2 − p2
SxSt SxSt

sin cos x + 2tð Þ − sinxsinh tð Þð Þ
−sin cos x + 2tð Þ − sinxsinh tð Þð Þ

( )( )" #
= 0

" #
,

N u0 x, tð Þð Þ = Sx
−1St

−1 k2p2
k2 − p2

SxSt
sin cos x + 2tð Þ − sinxsinh tð Þð Þ
−sin cos x + 2tð Þ − sinxsinh tð Þð Þ

( )" #
= 0

" #
:

8>>>>><
>>>>>:

ð81Þ

Therefore,

N u0 x, tð Þð Þk k = 0k k = 0 < 1
e
,

N v0 x, tð Þð Þk k = 0k k = 0 < 1
e
,

8>><
>>: ð82Þ

N
∂
∂t

u x, tð Þ
� �

= −Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos u − vð Þ ∂∂t u − vð Þ +

cos cos x + 2tð Þ − sinxsinh tð Þð Þ
−2 cos x + 2tð Þ − sinxinh tð Þð Þ

( )
8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775

2
66664

3
77775,

N
∂
∂t

v x, tð Þ
� �

= Sx
−1St

−1 k2p2

k2 − p2
SxSt

cos u − vð Þ ∂
∂t

u − vð Þ +
cos cos x + 2tð Þ − sinxsinh tð Þð Þ
−2 cos x + 2tð Þ − sinxinh tð Þð Þ

8>>><
>>>:

9>>>=
>>>;

2
6664

3
7775

2
6664

3
7775:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð83Þ

Then,

N
∂
∂t

u0 x, tð Þ
� �

= −Sx
−1St

−1 k2p2

k2 − p2
SxSt

−
cos cos x + 2tð Þ − sinxsinh tð Þð Þ
−2 cos x + 2tð Þ − sinxinh tð Þð Þ

( )

+
cos cos x + 2tð Þ − sinxsinh tð Þð Þ
−2 cos x + 2tð Þ − sinxinh tð Þð Þ

( )
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775 = 0

2
666664

3
777775,

N
∂
∂t

v0 x, tð Þ
� �

= Sx
−1St

−1 k2p2

k2 − p2
SxSt

−
cos cos x + 2tð Þ − sinxsinh tð Þð Þ
−2 cos x + 2tð Þ − sinxinh tð Þð Þ

( )

+
cos cos x + 2tð Þ − sinxsinh tð Þð Þ
−2 cos x + 2tð Þ − sinxinh tð Þð Þ

( )
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666664

3
777775 = 0

2
666664

3
777775:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð84Þ

Therefore,

N ′ u0 x, tð Þð Þ�� �� = 0k k = 0 < 1
e
,

N ′ v0 x, tð Þð Þ�� �� = 0k k = 0 < 1
e
:

8>><
>>: ð85Þ

Similarly, we have

N ′′ u0 x, tð Þð Þ�� �� = N 3ð Þ u0 x, tð Þð Þ
��� ��� = N4Þ u0 x, tð Þð Þ

��� ��� =⋯ = N kð Þ u0 x, tð Þð Þ
��� ��� = 0k k = 0 < 1

e
,

N ′′ v0 x, tð Þð Þ�� �� = N 3ð Þ v0 x, tð Þð Þ
��� ��� = N4Þv0 x, tð Þ

��� ��� =⋯ = N kð Þ v0 x, tð Þð Þ
��� ��� = 0k k = 0 < 1

e
,

8>><
>>:

ð86Þ

for all k ≥ 0 by the principle of mathematical induction.
As the conditions of Theorem 13 are satisfied, the series

solution obtained by the new iterative method is convergent
on the domain of interest.

6. Conclusion

The double Sumudu transform method has been known to
be a powerful tool for solving many fractional partial differ-
ential equations, integral equations, and so many other
equations. In this paper, we have presented a new method,
that is, the amalgamation of double Sumudu transform
and a numerical method which is known as an iterative
method to obtain the exact solution of one dimensional
coupled nonlinear sine-Gordon equation. From the solu-
tions of illustrative Examples 1 and 2, we can see that the
decomposition

u x, tð Þ = 〠
∞

i=0
ui x, tð Þ = u0 x, tð Þ + u1 x, tð Þ + u2 x, tð Þ+⋯+un x, tð Þ+⋯,

v x, tð Þ = 〠
∞

i=0
vi x, tð Þ = v0 x, tð Þ + v1 x, tð Þ + v2 x, tð Þ+⋯+vn x, tð Þ+⋯,

8>>>><
>>>>:

ð87Þ

consists only of one term, i.e.,

u x, tð Þ = u0 x, tð Þ,
v x, tð Þ = sv0 x, tð Þ:

(
ð88Þ

From this study, we concluded that double Sumudu
transform linked with an iterative method finds quite practi-
cal analytical results with less computational work.
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