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In this paper, a partial dynamic equation of fractional order is considered with Neumann and Dirichlet boundary conditions, and
we studied the oscillation properties of the fractional partial dynamic equation on time scales. Riccati transformation technique is
used to establish oscillation criteria for the fractional partial dynamic equation. ,e obtained results are verified with examples.

1. Introduction

In recent years, the importance of fractional-order calculus
has been much motivated by researchers rather than the
integer order because of increasing applications in signal
processing, neural networks, and electrical and mechanical
engineering. Definitions for fractional derivatives in con-
tinuous and discrete cases using various operators and
functions have been given by many such as Hadamard,
Euler, Riemann, and Grunwald, but fundamental properties
of derivatives were not satisfied by these derivatives, and
with these derivatives, solving the differential equations of
fractional order is not easy. In [1], the definition of the
conformable fractional derivative has been given, and it has
satisfied some fundamental properties of derivatives. ,e
properties and application of the conformable derivative
have been presented in [2, 3] and the references cited

therein. Meanwhile, the oscillation properties of solutions
are an important qualitative tool to study the solutions of
dynamical systems. ,e oscillation of different types of both
integer-order and fractional-order differential, difference,
and dynamic equations has been investigated by many
authors [4–20]. ,e time-scale calculus was introduced by
Stefan Hilger to unify the theory of continuous and discrete
cases. ,e time-scale analysis for multivariable cases is
discussed in [21–23], and the fractional time-scale calculus is
studied in [24]. To the best of our knowledge, we observe
that the oscillation of solutions of the fractional partial
dynamic equation on the time scale was not considered so
far.

,is motivates the authors to establish oscillation results
of the following fractional partial dynamic equation with the
damped term:

ℓ(η)χ Δ
α( )η(ξ, η) 

Δα( )η
+ Z(η)χ Δ

α( )η(ξ, η) + υ(ξ, η)f(χ(ξ, η)) � τ(η)∇2ξχ(ξ, η), (1)

where (ξ, η) ∈ Ω × [η0,∞)Θ with the Neumann boundary
condition zχ(ξ, η)

z]
� 0, (ξ, η) ∈zΩ × η0,∞ Θ, (2)
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and the Dirichlet boundary condition

χ(ξ, η) � 0, (ξ, η) ∈zΩ × η0,∞ Θ, (3)

where (Δα)η is the conformable fractional partial dynamic
operator with respect to the time variable η, Ω is a bounded
domain in Rn with piecewise smooth boundary zΩ, ] is the
unit exterior normal vector to zΩ and α ∈ (0, 1], and ∇2ξ �


n
i�1 z2ξiξi

is the Laplacian operator. ℓ(η), Z(η), and τ(η) are
real-valued and rd-continuous functions on [0,∞)Θ, ℓ(η)> 0
is conformable fractional differentiable with ℓ(η)(Δα)η con-
tinuous, and υ(ξ,η) ∈C(Ω× [η0,∞)Θ,R) with υ(η) �minξ∈Ω
υ(ξ,η). ,e continuous function f satisfies χf(χ)>0 for χ≠0.

A time scale Θ is a nonempty closed subset of the real
numbers R which is unbounded above. ,e time-scale in-
terval of the form [η0,∞)Θ is denoted by [η0,∞)Θ � [η0,
∞)∩Θ for η0 ∈ Θ, η0 > 0.

A nontrivial solution χ(ξ, η) which satisfies (1) on Ω ×

[η0,∞)Θ along with boundary condition (2) (or (3)) is called
oscillatory if it has neither eventually positive solution (EPS)

nor eventually negative solution (ENS). Equation (1) is
oscillatory if all the solutions of it are oscillatory.

2. Preliminaries

,e following definitions can be found in [25], where there is a
detailed introduction to time-scale calculus. A time scaleΘ is a
nonempty closed subset of the real numbers R. We will use
intervals of the form [t0,∞)Θ � [t0,∞)∩Θ for t0 ∈ Θ. For a
point t ∈ Θ, we have the following definitions: the forward
jump operator is defined as σ(t) � inf s ∈ Θ, s> t{ }. ,e
backward jump operator is defined as ρ(t) � sup s ∈ Θ, s< t{ }.
,e graininess is defined as μ(t) � σ(t) − t. A point t ∈ Θ is
said to be right dense if σ(t) � t. A functiong: Θ⟶ R is said
to be rd-continuous if it is continuous at each right-dense point
and there exists a finite left limit ofg at all left-dense points.,e
set of rd-continuous functions is denoted by Crd(Θ,R).

To define derivatives, we introduce

Θk
�
Θ\(ρ(supΘ), supΘ) if supΘ<∞,

Θ if supΘ<∞.
 (4)

Definition 1 (see [24]). Let f: Θ⟶ R; η ∈ Θk, and α ∈
(0, 1]. For η> 0, we define f(Δα)(η) to be the number (pro-
vided it exists) with the property that, given any ϵ> 0, there is a
δ-neighborhood Nη ∈ Θ of η, δ > 0 such that

f
σ
(η) − f(κ) η1− α

− f
Δα( )

(η)[σ(η) − κ]


≤ ε|σ(η) − κ| for all κ ∈Nη, (5)

f(Δα)(η) is called the conformable fractional derivative of f

of order α at η, and the conformable fractional derivative at 0
is f(Δα)(0) � limη⟶0+ f(Δα)(η).

Lemma 1. Let a ∈ Θk and b ∈ Θ, and assume that f: Θ ×

Θk⟶ R is continuous at (η, η) where η ∈ Θk with a< η.
Suppose that, for all ϵ> 0, there is a δ-neighborhood U of ηi

such that

f
σi (η) − f

κ
i (η) η1− α

i − f
Δα( )ηi (η) σi(η) − κ 



≤ ε σi(η) − κ


 for all κ ∈ U, (6)

where f(Δα)ηi denotes the partial derivative of f with respect
to ηi. ?en,

g(η) � 
η

a
f(η, κ)Δκ⇒g

Δα( )ηi (η) � 
η

a
f
Δα( )ηi (η, κ)Δκ + f σi(η), η( ,

h(η) � 
b

η
f(η, κ)Δκ⇒h

Δα( )ηi (η) � 
b

η
f
Δα( )ηi (η, κ)Δκ − f σi(η), η( .

(7)

Proof. ,e proof is analogous to the proof of ,eorem 1.117
in [25]. □ □

Definition 2. Let B � (η, κ)|η≥ κ≥ η0 . ,en, the class Λ is
a collection of functionsΛ ∈ Crd(B,R) such thatΛ(η, η) � 0

for η≥ η0, Λ(η, κ)> 0 for η> κ≥ η0, and Λ has a nonpositive
continuous α-partial fractional derivative Λ(Δα)κ(η, κ).

A function g: Θ⟶ R is said to be regressive provided
1 + μ(t)g(t) ≠ 0 for each t ∈ Θk. Let R be the set of func-
tions that are rd-continuous and regressive. Also, we define
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R+ � g ∈R: 1 + μ(t)g(t)> 0, t ∈ Θ . For c ∈R and
s, t ∈ Θ, the generalized exponential function is defined by

ec(t, s) � exp 
t

s
ζμ(τ)(c(τ))Δτ , ζμ(z) �

1
μ
log(1 + μz), μ≠ 0,

z, μ � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

For convenience, we use the following:

Υ(η) � 
Ω
χ(ξ, η)dξ,

R(η) � −
ηα− 1

Z(η)

ℓ(η)
.

(9)

3. Oscillation of (1) with Boundary
Condition (2)

Lemma 2. If the fractional dynamic inequalities

ℓ(η)Υ Δ
α( )

(η) 
Δα( )

+ Z(η)Υ Δ
α( )

(η) + υ(η)f(Υ(η)) ≤ 0, η≥ η1, (10)

ℓ(η)Υ Δ
α( )

(η) 
Δα( )

+ Z(η)Υ Δ
α( )

(η) + υ(η)f(Υ(η)) ≥ 0, η≥ η1, (11)

have no EPS and ENS, respectively, then every solution χ(ξ, η)

of (1) and (2) is oscillatory.
Proof. Suppose that χ(ξ, η) is an EPS of (1) and (2). ,en, by
the definition of EPS, there exists η1 ≥ η0 such that χ(ξ, η)> 0
for η≥ η1, which gives Υ(η)> 0 for η≥ η1. Now, taking
integration to (1) in connection with ξ over Ω, we get


Ω

ℓ(η)χ Δ
α( )η(ξ, η) 

Δα( )ηdξ + 
Ω

Z(η)χ Δ
α( )η(ξ, η)dξ + 

Ω
υ(ξ, η)f(χ(ξ, η))dξ

� 
Ω
τ(η)∇2ξχ(ξ, η)dξ.

(12)

Applying Green’s formula and (2), we get


Ω
∇2ξχ(ξ, η)dξ � 

zΩ

zχ(ξ, η)

z]
dS � 0. (13)

By using the condition on υ and applying Jensen’s in-
equality, we obtain


Ω
υ(ξ, η)f(χ(ξ, η))dξ ≥ υ(η)

Ω
f(χ(ξ, η))dξ ≥ υ(η)f(Υ(η)).

(14)

From (12)–(14), we have


Ω

ℓ(η)χ Δ
α( )η(ξ, η) 

Δα( )ηdξ

+ Z(η)
Ω
χ Δ

α( )η(ξ, η)dξ + υ(η)f(Υ(η)) ≤ 0.

(15)

Using that [ℓ(η)χ(Δα)η(ξ, η)](Δα)η is continuous in con-
nection with ξ on the closed and bounded set G⊆Rn, we
have δ independent of η in Lemma 1. ,erefore, the con-
ditions of Lemma 1 are satisfied. ,us, 

G
[χ(ξ,

η)dξ](Δα)η � 
G
χ(Δα)η(ξ, η)dξ. Hence, from (15), we obtain

(10). A similar argument is used for the ENS χ(ξ, η) of (1)and
(2) to obtain (11). □ □

Lemma 3. Assume that 
∞
η0
Δακ/ℓ(κ) �∞ and R(η) ∈R+.

If (10) has an EPSΥ(η), then there exists sufficiently large
η1 ∈ [η0,∞)Θ such that [ℓ(η)Υ(Δα)(η)/eR(η)(η, η0)]

(Δα) < 0
and Υ(Δα)(η)> 0 on [η,∞)Θ.

Proof. GivenΥ(η) is an EPS of (10), there is sufficiently large
η2 so that Υ(η)> 0 on [η,∞)Θ. Now, we have
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ℓ(η)Υ Δ
α( )(η)

eR(η) η, η0( 
 

Δα( )

�
eR(η) η, η0(  ℓ(η)Υ Δ

α( )
(η) 
Δα( )

− ℓ(η)Υ Δ
α( )

(η) eR(η) η, η0(  
Δα( )

eR(η) η, η0( eR(η) σ(η), η0( 

�
eR(η) η, η0(  ℓ(η)Υ Δ

α( )
(η) 
Δα( )

+ Z(η)Υ Δ
α( )

(η)eR(η) η, η0( 

eR(η) η, η0( eR(η) σ(η), η0( 

�
− υ(η)f(Υ(η))

eR(η) σ(η), η0( 
< 0.

(16)

Since R(η) ∈ R+, we get eR(η)(σ(η), η0)> 0, and ℓ(η)

Υ(Δα) (η)/eR(η)(η, η0) is decreasing on [η2,∞)Θ. ,erefore,
we get that Υ(Δα)(η) is the EPS or ENS. Suppose that
Υ(Δα)(η)< 0 on [η2,∞)Θ for sufficiently large η2 > η1. ,en,

Υ(η) − Υ η3(  � 
η

η2

ℓ(κ)Υ Δ
α( )

(κ)

ℓ(κ)
Δακ≤ ℓ η2( Υ Δ

α( ) η2(  
η

η2

Δακ
ℓ(κ)

.

(17)

Letting η⟶∞ and using the condition that

∞
η Δ

ακ/ℓ(κ) �∞, we get limη⟶∞Υ(η) � − ∞ which is a
contradiction to Υ(η)> 0, and hence, Υ(Δα)(η)> 0. □ □

,e following lemma holds if we proceed as in the above
lemma with an ENSΥ(η).

Lemma 4. Assume that 
∞
η0
Δακ/ℓ(κ) �∞ and R(η) ∈R+.

If (11) has an ENSΥ(η), then there exists sufficiently large
η1 ∈ [η0,∞)Θ such that [ℓ(η)Υ(Δα)(η)/eR(η)(η, η0)]

(Δα) > 0
and Υ(Δα)(η)< 0 on [η,∞)Θ.

Theorem 1. Assume that 
∞
η0
Δακ/ℓ(κ) �∞, R(η) ∈R+,

and f′ exists with f′(ξ)≥N for some N> 0, ∀ξ ≠ 0. If there
exists z(η)> 0 on [H,∞)Θ such that

limsup
η⟶∞


η

H

υ(κ)z(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) z
Δα( )

(κ) 
2

4Nz(κ)eR(η) κ, η0( 
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ �∞,

(18)

then (1) and (2) are oscillatory.

Proof. Suppose that the solution χ(ξ, η) of (1) and (2) is the
EPS. Define a generalized Riccati function as

w(η) �
z(η)ℓ(η)Υ Δ

α( )
(η)

f[Υ(η)]eR(η) η, η0( 
 . (19)

By Lemma 3, it is lucid that Υ> 0 and Υ(Δα) ≥ 0, re-
spectively. Hence, w(η)≥ 0 for η≥ η1. ,en,

w
Δα( )

(η) �
z(η)

f[Υ(η)]

eR(η) η, η0(  ℓ(η)Υ Δ
α( )

(η) 
Δα( )

− eR(η) η, η0(  
Δα( )

ℓ(η)Υ Δ
α( )

(η)

eR(η) η, η0( eR(η) σ(η), η0( 

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

+
ℓ(σ(η))Υ Δ

α( )
(σ(η))

eR(η) σ(η), η0( 

f Υ(η)z
Δα( )

(η) − z(η)[f(Υ(η))]
Δα( )



f[Υ(η)]f[Υ(σ(η)]
⎡⎢⎣ ⎤⎥⎦

≤
− υ(η)z(η)

eR(η) σ(η), η0( 
+

z
Δα( )

(η)w(σ(η))

z(σ(η))
−

Nz(η)eR(η) η, η0( 

ℓ(η)

w(σ(η))

z(σ(η))
 

2

≤
− υ(η)z(η)

eR(η) σ(η), η0( 
+

ℓ(η) z
Δα( )

(η) 
2

4Nz(η)eR(η) η, η0( 
.

(20)

By taking α-integration from η1 to η, we obtain

limsup
η⟶∞


η

η1

υ(κ)z(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) z
Δα( )

(κ) 
2

4Nz(κ)eR(η) κ, η0( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ

≤w η1(  − w(η)≤w η1( ≤∞,

(21)

which is a contradiction to (18). Similarly, we get a con-
tradiction while assuming that χ(ξ, η) is the ENS of (1) and
(2). □ □

Theorem 2. Assume that 
∞
η0
Δακ/ℓ(κ) �∞, R(η) ∈R+,

and f(ξ)≥Ex for some E> 0, ∀ξ ≠ 0. If there exists z(η)> 0
on [H,∞)Θ such that
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limsup
η⟶∞


η

H

Eυ(κ)z(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) z
Δα( )

(κ) 
2

4z(κ)eR(η) κ, η0( 
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ �∞,

(22)

then (1) and (2) are oscillatory.

Proof. Suppose that the solution χ(ξ, η) of (1) and (2) is the
EPS. Define a generalized Riccati function as

w(η) �
z(η)ℓ(η)Υ Δ

α( )
(η)

Υ(η)eR(η) η, η0( 
 . (23)

By Lemma 3, it is lucid that Υ> 0 and Υ(Δα) ≥ 0, re-
spectively. Hence, w(η)≥ 0 for η≥ η1. ,en,

w
Δα( )

(η) �
z(η)

Υ(η)

eR(η) η, η0(  ℓ(η)Υ Δ
α( )

(η) 
Δα( )

− eR(η) η, η0(  
Δα( )

ℓ(η)Υ Δ
α( )

(η)

eR(η) η, η0( eR(η) σ(η), η0( 

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

+
ℓ(σ(η))Υ Δ

α( )
(σ(η))

eR(η) σ(η), η0( 

Υ(η)z
Δα( )

(η) − z(η)[Υ(η)]
Δα( )

Υ(η)Υ(σ(η)
 

≤
− Eυ(η)z(η)

eR(η) σ(η), η0( 
+

z
Δα( )

(η)w(σ(η))

z(σ(η))
−

z(η)eR(η) η, η0( 

ℓ(η)

w(σ(η))

z(σ(η))
 

2

≤
− Eυ(η)z(η)

eR(η) σ(η), η0( 
+

ℓ(η) z
Δα( )

(η) 
2

4z(η)eR(η) η, η0( 
.

(24)

By taking α-integration from η1 to η, we obtain

limsup
η⟶∞


η

η1

Eυ(κ)z(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) z
Δα( )

(κ) 
2

4z(κ)eR(η) κ, η0( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ

≤w η1(  − w(η)≤w η1( ≤∞,

(25)

which is a contradiction to (22). Similarly, we get a con-
tradiction while assuming that χ(ξ, η) is the ENS of (1) and
(2). □ □

Remark 1. In ,eorem 1, (18) can be replaced by

limsup
η⟶∞

1
Λ(η, H)


η

H
Λ(η, κ)

·
υ(κ)z(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) z
Δα( )

(κ) 
2

4Nz(κ)eR(η) κ, η0( 
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ �∞,

(26)

for Λ ∈ Λ.
By ,eorem 1, we have

w
Δα( )

(η)≤
− υ(η)z(η)

eR(η) σ(η), η0( 
+

ℓ(η) z
Δα( )

(η) 
2

4Nz(η)eR(η) η, η0( 
. (27)

Multiplying the above inequality by Λ(η, κ) and taking
α-integration from H to η, we get


η

H
Λ(η, κ)w

Δα( )
(κ)Δακ≤ 

η

H
Λ(η, κ)

·
− υ(κ)z(κ)

eR(κ) σ(κ), η0( 
+

ℓ(κ) z
Δα( )

(κ) 
2

4Nz(κ)eR(η) κ, η0( 
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ.

(28)

Using integration by parts, we obtain

[Λ(η, κ)w(η)]
η
H − 

η

H
Λ Δ

α( )
(η, κ)w(σ(κ))Δακ

≤ 
η

H
Λ(η, κ)

− υ(κ)z(κ)

eR(κ) σ(κ), η0( 
+

ℓ(κ) z
Δα( )

(κ) 
2

4Nz(κ)eR(η) κ, η0( 
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ.

(29)

By using the definition of the functionΛ and rearranging
the terms in the above inequality, we have

1
Λ(η, H)


η

H
Λ(η, κ)

υ(κ)z(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) z
Δα( )

(κ) 
2

4Nz(κ)eR(η) κ, η0( 
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ≤w(H)≤∞, (30)
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which contradicts (26). Likewise, we obtain a contradiction
when we take χ(ξ, η) is the ENS of (1) and (2).

Similarly, (22) can be replaced by the following in
,eorem 2:

limsup
η⟶∞

1
Λ(η, H)


η

H
Λ(η, κ)

Eυ(κ)z(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) z
Δα( )

(κ) 
2

4z(κ)eR(η) κ, η0( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ �∞, (31)

for Λ ∈ Λ.

4. Oscillation of (1) with Boundary
Condition (3)

In this section, we use the eigenvalues of the Laplacian,
− ∇2ϕ(ξ) � λϕ(ξ) inG, ϕ(ξ) � 0 on zG. ,e principal ei-
genvalue λ1 is positive, and the corresponding eigenfunction
ϕ1 is also positive in the interior of G; see [26], ,eorem 2,
page 356. Furthermore, we normalize this eigenvector so
that 

G
ϕ1 � 1.

Lemma 5. If χ(ξ, η) is an EPS of (1) and (3), then there exists
η1 ≥ η0 such that Υ1(η) � 

G
χ(ξ, η)ϕ1(ξ)dξ > 0 and

ℓ(η)Υ Δ
α( )

1 (η) 
Δα( )

+ Z(η)Υ Δ
α( )

1 (η)

+ υ(η)f Υ1(η)( ≤ 0, ∀η≥ η1.
(32)

Also, if χ(ξ, η) is an ENS, then there exists η1 ≥ η0 such
that Υ1(η)< 0 and

ℓ(η)Υ Δ
α( )

1 (η) 
Δα( )

+ Z(η)Υ Δ
α( )

1 (η)

+ υ(η)f Υ1(η)( ≥ 0, ∀η≥ η1.
(33)

Proof. Since χ(ξ, η) is an EPS of (1) satisfying (3), there exists
η1 ≥ η0 such that χ(ξ, η)≥ 0. ϕ1(ξ)> 0 in the interior of Ω,
which implies that Υ1(η) � Ωχ(ξ, η)ϕ1(ξ)dξ > 0. Multiply
(1) by ϕ1(ξ), and integrate in connection with ξ overΩ; then,


Ω

ℓ(η)χ Δ
α( )η(ξ, η) 

Δα( )ηϕ1(ξ)dξ

+ 
Ω

Z(η)χ Δ
α( )η(ξ, η)ϕ1(ξ)dξ

+ 
Ω
υ(ξ, η)f(χ(ξ, η))ϕ1(ξ)dξ

� 
Ω
τ(η)∇2ξχ(ξ, η)ϕ1(ξ)dξ .

(34)

On the right-hand side of (34), we have


Ω
τ(η)∇2ξχ(ξ, η)ϕ1(ξ)dξ

� − λτ(η)
Ω
χ(ξ, η)ϕ1(ξ)dξ � − λτ(η)Υ1(η)≤ 0,

(35)

which implies that


Ω

ℓ(η)χ Δ
α( )η(ξ, η) 

Δα( )ηϕ1(ξ)dξ

+ 
Ω

Z(η)χ Δ
α( )η(ξ, η)ϕ1(ξ)dξ

+ 
Ω
υ(ξ, η)f(χ(ξ, η))ϕ1(ξ)dξ ≤ 0.

(36)

Applying Jensen’s inequality and condition on υ to the
third term of the above inequality and using Lemma 1 and
continuity of (ℓ(η)χ(Δα)η(ξ, η))(Δα)η in the first term of the
above inequality, we obtain

ℓ(η)Υ Δ
α( )

1 (η) 
Δα( )

+ Z(η)Υ Δ
α( )

1 (η) + υ(η)f Υ1(η)( ≤ 0.

(37)

A similar proof will be used for the ENS to obtain (33).
□ □

,e following lemmas and theorems consider the so-
lution Υ1(η) of (1) and (3), and the proofs of the following
are similar to those of lemmas and theorems proved for the
solution Υ(η) of (1) and (2). ,us, we omit the proofs.

Lemma 6. Assume that 
∞
η0
Δακ/ℓ(κ) �∞ and R(η) ∈R+.

If (32) has an EPSΥ(η), then there is sufficiently large
η1 ∈ [η0,∞)Θ such that [ℓ(η)Υ(Δα)

1 (η)/eR(η)(η, η0)]
(Δα) < 0

and Υ(Δα)
1 (η)> 0 on [η1,∞)Θ.

Lemma 7. Assume that 
∞
η0
Δακ/ℓ(κ) �∞ and R(η) ∈R+.

If (33) has an ENSΥ1(η), then there is sufficiently large
η1 ∈ [η0,∞)Θ such that [ℓ(η)Υ(Δα)

1 (η)/eR(η)(η, η0)]
(Δα) > 0

and Υ(Δα)
1 (η)< 0 on [η1,∞)Θ.

Theorem 3. Assume that 
∞
η0
Δακ/ℓ(κ) �∞, R(η) ∈R+,

and f′ exists with f′(η)≥N for some N≥ 0, ∀ξ ≠ 0. If there
exists ψ(η)> 0 on [H,∞)Θ such that

limsup
η⟶∞


η

H

υ(κ)ψ(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) ψ Δ
α( )

(κ) 
2

4Nψ(κ)eR(η) κ, η0( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ �∞,

(38)

then (1) and (3) are oscillatory.

Theorem 4. Assume that 
∞
η0
Δακ/ℓ(κ) �∞, R(η) ∈R+,

and f(ξ)≥Ex for some E> 0, ∀ξ ≠ 0. If there exists ψ(η)> 0
on [H,∞)Θ such that
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limsup
η⟶∞


η

H

Eυ(κ)ψ(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) ψ Δ
α( )

(κ) 
2

4ψ(κ)eR(η) κ, η0( 
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ �∞,

(39)

then (1) and (3) are oscillatory.

Remark 2. In ,eorem 3, (38) can be replaced by

limsup
η⟶∞

1
Λ(η, H)


η

H
Λ(η, κ)

·
υ(κ)ψ(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) ψ Δ
α( )

(κ) 
2

4Nψ(κ)eR(η) κ, η0( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ

�∞, forΛ ∈ Λ.

(40)

Similarly, (39) can be replaced by the following in
,eorem 4:

limsup
η⟶∞

1
Λ(η, H)


η

H
Λ(η, κ)

·
Eυ(κ)ψ(κ)

eR(κ) σ(κ), η0( 
−

ℓ(κ) ψ Δ
α( )

(κ) 
2

4Nψ(κ)eR(η) κ, η0( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Δακ

�∞, forΛ ∈ Λ.

(41)

5. Examples

,e equations considered below are an illustration to vali-
date our established results.

Example 1. Consider

η− 1χ Δ
0.5( )η(ξ, η) 

Δ0.5( )η
+ η− 3χ Δ

0.5( )η(ξ, η)

+ η− 1χ(ξ, η)(1 +|χ(ξ, η)|) � η∇2ξχ(ξ, η),

(42)

with χx(0, η) � χx(π, η) � 0. Here, Θ � R; Ω � (0, π); α �

0.5; ℓ(η) � η− 1; Z(η) � η− 3; f(χ(ξ, η)) � χ(ξ, η)(1 + |χ (ξ,

η)|); υ(η) � η− 1; and η0 � 1. It is lucid that f(χ)≥ χ⇒E � 1,
σ(η) � η, μ(η) � 0, R(η) � − η− (5/2),


∞

η0

Δακ
ℓ(κ)

� 
∞

η0

κ− (1/2)
dκ

κ− 1 � 
∞

η0
κ1/2dκ �∞,

1≥ eR(η) η, η0(  � exp 
η

η0
R(κ)dκ ≥ 1 + 

η

1
R(κ)dκ

� 1 − 
η

1
κ− (5/2)

dκ � 1 +
2
3

η− (3/2)
− 1 ≥

1
3
.

(43)

Let z(η) � η1/2. ,en, every condition of ,eorem 2 is
fulfilled. Hence, (42) with the given boundary condition is
oscillatory.

Example 2. Consider

η− 1/2χ Δ
0.5( )η(ξ, η) 

Δ0.5( )η
+ η− 5/2χ Δ

0.5( )η(ξ, η)

+ η− 1χ(ξ, η) E + e
χ(ξ,η)

  � η∇2ξχ(ξ, η),

(44)

with χ(0, η) � χ(π, η) � 0. Here, η ∈ [2,∞)Z; Θ � Z; Ω �

(0, π); α � 0.5; ℓ(η) � η− (1/2); Z(η) � η− (5/2); υ(η) � η− 1;
η0 � 2; and f(χ(ξ, η)) � (χ(ξ, η))c(E + eχ(ξ,η)).

,erefore, we get f(χ)≥Eχ, σ(η) � η + 1, μ(η) � 1,
R(η) � − η− (5/2), and 1 + μ(η)R(η) � 1 − η− (5/2) ≥ 1 − (1/
2)> 0 which implies R(η) ∈R+. Also,


∞

η0

Δακ
ℓ(κ)

� 
∞

2

κα− 1Δκ
ℓ(κ)

� 
∞

κ�2

κα− 1

κ− (1/2)
� 
∞

κ�2
1 �∞,

1> eR(η) η, η0(  � exp 
η

η0
R(κ)Δκ ≥ 1 + 

η

2
R(κ)Δκ � 1 − 

η− 1

κ�2
κ− (5/2)

≥ 1 − 
η− 1

1
κ− (5/2)dκ � 1 +

2
3

(η − 1)
− (3/2)

− 1 >
1
3
.

(45)

Let ψ(η) � η. ,en, all the conditions of ,eorem 4 are
fulfilled. Hence, (44) with the given boundary condition is
oscillatory.

6. Conclusion

In this article, we established the oscillation criteria for the
fractional partial dynamic equation on time scales. ,e
obtained results are improved in the sense that which provide
sufficient criteria for the oscillation of the considered

equation with two boundary conditions. Finally, numerical
examples are also presented to validate the theoretical results
of this study. Additionally, more complex systems, including
the fractional dynamic equation with time delay, are inter-
esting research topics and will be examined in our future
works.
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