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In this study, we focus our attention on a kind of generalized fuzzy set. This generalized fuzzy set is known as neutrosophic
octahedron sets (NOSs). NOSs are a combination of neutrosophic, intuitionistic fuzzy, and octahedron sets that provide a
better platform for dealing with imprecise and ambiguous data. First of all, we analyze uncertainty, for this purpose, we need
neutrosophic octahedron set that can also reduce the loss of information about ambiguity and uncertainty. We use NOS over
TOPSIS method (technique to order the performance by similarity with the ideal solution). It is a most suitable technique for
describing uncertain data in the TOPSIS method in order to allow more imprecision than the neutrosophic, intuitionistic
fuzzy, and octahedron set. Thus, the TOPSIS method of NOSs in decision making is used to overcome the problems that arise
during decision-making. We use this proposed structure to implement the selection of the energy source by a numerical
example as an application. As a result, this model is valuable for decision-making and can be used to choose the most
environmentally friendly energy source. Finally, we present an example to demonstrate the validity and effectiveness of the
proposed strategy.

1. Introduction

Decision-making is a beneficial method in human activities
to consider the appropriate option among alternatives with
the highest degree of membership from a group of available
possibilities in terms of parameters. In decision-making
problems, the evaluated values of alternatives considering
the evaluated attribute are often imprecise. The theme of
uncertainty and vagueness is difficult, to understand and
implement in different areas. So, Zadeh, the developer of
fuzzy set theory [1], introduces fuzzy sets in this area to solve
the complications and make it more usable. Fuzzy set theory
can be applied to evaluate the elements of a set defined by a

membership (MM) function in a closed interval ½0, 1�. After
fuzzy set theory, Zadeh [2] also introduced the theme of
interval valued fuzzy set in 1975. Atanasove developed the
intuitionistic fuzzy set [3] in 1986, with MM and nonmem-
bership (NMM) degrees such that their sum is less than or
equal to one. In 1989, Atanassov and Gargov [4] developed
a new them with the help of intuitionistic fuzzy set which
is known as interval valued intuitionistic fuzzy set. Lee
et al. [5] in 2020 introduced octahedron set by combining
interval-valued fuzzy set, an intuitionistic fuzzy set and a
fuzzy set. The theme of neutrosophic sets developed by
Smarandache [6–8] by expanding Atanasove’s ideas. He
created the term “neutrosophic” because “neutrosophy” is
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etymologically related to “neutrosophic.” On the other hand,
Lupiáñez [9] developed the structure of neutrosophic sets
and their topology with basic algebraic operations. In 2005,
Wang et al. [10] developed the structure of interval neutro-
sophic sets. In 2009, Bhowmik and Pal [11] distinguished
between truth-based intuitionist neutrosophic sets and intu-
itionist neutrosophic sets. They established that all intuitio-
nistic neutrosophic sets are neutrosophic sets, but not all
neutrosophic sets are intuitionistic neutrosophic sets. In
addition, some new INS operations have been defined, as well
as illustrations of how the operations could be implemented
in real scenarios. Maji [12] developed the structure of neutro-
sophic soft sets by using Smarandache’s idea of neutrosophic
sets and also introduced some basic definitions and opera-
tion. In 2015, Alkhazaleh and Uluçay [13] initiated the theme
of neutrosophic soft expert set with basic operations and also
discussed real-life application. Alias et al. [14] established the
theme of rough neutrosophic multisets in 2017 with basic
operations and properties. The fuzzy sets discussed above
are incapable of handling imprecise, uncertain, inconsistent,
and incomplete periodic information. To overcome this chal-
lenge, Ali and Smarandache [15] expand the idea of neutro-
sophic sets and developed the structure of complex
neutrosophic set. There are some many other applications
for solving these uncertainty like [16–19]. In 2012, Balin
et al. [20] developed multicriteria decision making model
for energy sources. Huang et al. [21] worked on the applica-
tion used in multicriteria decision making technique in the
field of environmental science. TOPSIS is a most useful
method. According to certain studies, the TOPSIS technique
exhibits a monotonically increasing or decreasing preference
for each criterion [22, 23]. Compensatory approaches, like
TOPSIS, are widely used in numerous fields of multicriteria
decision-making due to the potential of criteria modeling.
Some researchers [24, 25] worked on the significance of
TOPSIS approach in MADM problem. Pehlivan and Yalçın
[26] utilized the TOPSIS approach in a neutrosophic envi-
ronment to identify sustainable suppliers in a low market
chain in 2022. Distinct techniques [27, 28, 30] utilize differ-
ent versions of neutrosophic sets in decision making chal-
lenges, such as single valued neutrosophic sets, single
valued neutrosophic type2 fuzzy sets, and type2 neutrosophic
model. Jun et al. [29] discovered the cubic set in 2012. Jun
et al. [30] studied the concept of cubic subalgebras/ideals in
BCK/BCI-algebras and their characteristics. Jun et al. [31]
have also presented the neutrosophic cubic set notion
(NCS). Gulistan and Khan [32] show the extension of neu-
trosophic cubic set via complex fuzzy set with application.
Some researchers [33, 34] have used the different version of
fuzzy sets in the decision-making environment.

Since neutrosophic set provides higher uncertainty and
ambiguity than intuitionistic fuzzy set, interval valued fuzzy
set and fuzzy set. To further analyze uncertainty, we there-
fore require a neutrosophic octahedron set. Compared to
intuitionistic octahedron sets and octahedron sets, neutro-
sophic octahedron sets also reduce information loss about
ambiguity and uncertainty. So, neutrosophic octahedron
set covers broader area as compare to intuitionistic fuzzy
set, fuzzy set, and interval valued fuzzy set.

1.1. Contribution of the Study. The following is a list of the
planned study’s contributions.

(1) Interval number, intuitionistic number, octahedron
number, neutrosophic set, and octahedron set are
some of the core notions discussed in the literature

(2) This work conceptualises the construction of a NOS
with set theoretic operation

(3) In a neutrosophic octahedron environment, the
TOPSIS method is proposed

(4) The paper is summarised, along with its scope and
future research prospects

1.2. Organization of the Study. The following is a diagram
illustrating the study’s structure: Section 2: recall some useful
information from the previous research. The construction of
the NOS is described in Section 3 as a novel mathematical
instrument for solving the problem of uncertainty. Introduce
the internal and external NOSs, as well as their union and
intersection. The NOS’s operational features are addressed.
Also, the practical element of the suggested structure is
developed in this section. Section 4 describes the TOPSIS
approach in the context of a NOS as a decision-making
problem, and Section 5 describes the comparison, while Sec-
tion 6 summarises the conclusion and future directions.

2. Materials and Methods

This section of the document reviews the available literature
to give some basic materials and methods for a clear under-
standing of the planned work.

Definition 1 (see [4]). A intuitionistic neutrosophic set is the
structure of the form A = ðx, TðxÞ, IðxÞ, FðxÞÞ such that Tð
xÞ∧IðxÞ ≤ 0:5, TðxÞ∧FðxÞ ≤ 0:5, FðxÞ∧IðxÞ ≤ 0:5, with 0 ≤ T
ðxÞ + IðxÞ + FðxÞ ≤ 2, for all x ∈ X:

Definition 2 (see [5]). Denote members of ½I� × ðI ⊕ IÞ × I as

~~x = <~x, �⋏, x > = < x−,x −½ �, v∈, x∉
� �

, x > , ð1Þ

and it is called octahedron number.

Definition 3 (see [5]). Let X be the collection of some ele-
ments and let AO = ½A−, A+�∈I�X , BO = ðB∈, B∉Þ ∈ ðI ⊕ IÞX ,
and λO ∈ IX . Then, the triplet O = hAO, BO, λOi is called an
octahedron set in X. The mapping O : X⟶ I� × ðI ⊕ IÞ × I
is known as octahedron.

Definition 4 (see [8]). Let X be the collection of some ele-
ments. A neutrsophic set in X is a structure of the type A
= fx ; TðxÞ, IðxÞ, FðxÞjx ∈ Xg, which is characterised by
truth-membership (t-MM) T , indeterminacy-membership
(i-MM) I, and falsity-membership(f-MM) F, in such a way
that 0 ≤ TðxÞ + IðxÞ + FðltimesÞ ≤ 3:
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3. Neutrosophic Octahedron Sets with
Basic Operations

In this section, we introduce new notion of NOS with some
interesting properties and basic operations. Also the score
function, neutrosophic octahedron weighted average opera-
tor, and neutrosophic octahedron order the weighted aver-
age operator are discussed.

Definition 5. Let X be the collection of some elements. A
structure of the form A = ðA1, A2, A3Þ, where A1 : X⟶ I�
denotes the interval valued neutrsophic set, A2 : X⟶ ðI ⊕
IÞ denotes the intuitionistic neutrosophic set, A3 : X ⟶ I
denotes the neutrsophic set, is called the neutrosophic octa-
hedron set (NOS) with A : X⟶ I� × ðI ⊕ IÞ × I.

Example 1. Let X = f _x, €x,   x⃛g be a nonempty set and A = ð
A1, A2,A3Þ: X⟶ I� × I ⊕ I� × I be the mapping given by

A _xð Þ =
A1 _xð Þ = 0:2,0:4½ �, 0:3,0:5½ �, 0:3,0:5½ �ð Þ,

A2 _xð Þ = 0:8,0:2,0:4ð Þ,
A3 _xð Þ = 0:6,0:8,0:4ð Þ

* +
, ð2Þ

A €xð Þ =
A1 €xð Þ = 0:3,0:4½ �, 0:4,0:5½ �, 0:4,0:6½ �ð Þ,

A2 €xð Þ = 0:8,0:2,0:4ð Þ,
A3 €xð Þ = 0:5,0:7,0:6ð Þ

* +
, ð3Þ

A   x⃛ð Þ =
A1   x⃛ð Þ = 0:1,0:3½ �, 0:4,0:6½ �, 0:4,0:5½ �ð Þ,

A2   x⃛ð Þ = 0:8,0:2,0:4ð Þ,
A3   x⃛ð Þ = 0:4,0:6,0:5ð Þ

* +
: ð4Þ

Then, A = ðA1, A2, A3Þ is NOS.

Definition 6. Let X be the collection of some elements. A
structure of the form A = ðA1,A2, A3Þ, where A1 = f½A−

T , A+
T

�, ½A−
I , A+

I �, ½A−
F , A+

F �g ∈ I�, A2 = ðAT∗ , AI∗ , AF∗Þ ∈ ðI ⊕ IÞX , A3
= fAT , AI , AFg ∈ I, is called the NOS in X, with the map-
ping, A : X ⟶ I� × ðI ⊕ IÞ × I. We consider following spe-
cial NOSs:

0̂, 0̆, 0
� �

= 0, ð5Þ

0̂, 0̆, 1
� �

, 0̂, 1̆, 0
� �

, 0, 0, 1h i, ð6Þ

0̂, 1̆, 1
� �

, 1̂, 0, 1
� �

, 1̂, 1̆, 0
� �

, ð7Þ

1̂, 1̆, 1
� �

= 1: ð8Þ

In the above case, 0 (resp., 1) is called a neutrosophic
octahedron empty (resp., neutrosophic octahedron whole
set) in X.

Remark 7.

(1) Every NOS is an Octahedron set

The set of all NOS of X is denoted by NOðXÞ.

Definition 8. Let X be the collection of some elements and let
A = ðA1, A2,A3Þ, and B = ðB1, B2, B3Þ ∈NOðXÞ: Then, we can
define the order relations between A and B as follows:

(i) Equality

A = B if and only if A1 = B1, A2 = B2, A3 = B3,
ð9Þ

(ii) Type 1-order

A⊂1B if and only if A1 ⊂ B1, A2 ⊂ B2, A3 ≤ B3,
ð10Þ

(iii) Type 2-order

A⊂2B if and only if A1 ⊂ B1, A2 ⊂ B2, A3 ≥ B3,
ð11Þ

(iv) Type 3-order

A⊂3B if and only if A1 ⊂ B1, A2 ⊃ B2, A3 ≤ B3,
ð12Þ

(v) Type 4-order

A⊂3B if and only if A1 ⊂ B1, A2 ⊃ B2, A3 ≥ B3:

ð13Þ

Definition 9. Let X denote a universe of discourse and ðAjÞ
j ∈ �J = hA1j, A2j, A3jij ∈ �J denote a family of neutrosophic
octahedron sets in X. Then, for ðAjÞj ∈ Jði = 1, 2, 3, 4Þ, the
type i-union ∪i and type i-intersection ∩ i are defined as
follows:

(i) Type i-union

∪1
j∈�JA = ∪j∈�JA1j, ∪j∈�JA2j, ∪j∈�JA3j

� �
, ð14Þ
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∪2
j∈�JA = ∪j∈�JA1j, ∪j∈�JA2j, ∩ j∈�JA3j

� �
, ð15Þ

∪3
j∈�JA = ∪j∈�JA1j, ∩ j∈�JA2j, ∪j∈�JA3j

� �
, ð16Þ

∪4
j∈�JA = ∪j∈�JA1j, ∩ j∈�JA2j, ∩ j∈�JA3j

� �
: ð17Þ

(ii) Type i-intersection

∩ 2
j∈�JA = ∩ j∈�JA1j, ∩ j∈�JA2j, ∪j∈�JA3j

� �
, ð18Þ

∩ 3
j∈�JA = ∩ j∈�JA1j, ∪j∈�JA2j, ∩ j∈�JA3j

� �
, ð19Þ

∩ 4
j∈�JA = ∩ ∩ j∈�JA1j, ∪j∈JA2j, ∪j∈�JA3j

� �
: ð20Þ

Proposition 10. Let X be the collection of some elements and
let A = ðA1, A2, A3Þ, B = ðB1, B2, B3Þ, C = ðC1, C2, B3Þ, and
�∝ = ð �∝1, �∝2, �∝3Þ be neutrosophic octrahedron sets. Then,
for each i = 1, 2, 3, 4.

(i) If A⊂iB and B⊂iC then A⊂iC

(ii) If A⊂iB and A⊂iC then A⊂iB ∩ C

(iii) If A⊂iB and C⊂iB then A ∪ C⊂iB

(iv) If A⊂iB and C⊂i �∝ then A ∪ C⊂iB ∪ �∝ and A ∩ C⊂i
B ∩ �∝

Definition 11. Let X be the collection of some elements and
let A = ðA1,A2, A3Þ be a neutrosophic octahedron set in X.
Then, the complement Ac,[] and ⋄ of A are defined as
follows:

(i) AC = ðA1, A2, A3Þ
(ii) []A = ðA1, ½�A2, A3Þ
(iii) ⋄A = ðA1,⋄A2, A3Þ
From Definition 6, we can easily see that the following

holds:

b_0c = 1, 1c = 0, ð21Þ

b_0, _̆0, 1D Ec
= 1̂, 1̆, 0
� �

, 1̂, 1̆, 0
� �c = b_0, _̆0, 1D E

, ð22Þ

b_0, 1̆, 0D Ec
= 1̂, _̆0, 1
D E

, 1̂, _̆0, 1
D Ec

= b_0, 1̆, 0D E
, ð23Þ

1̂, _̆0, 0
D Ec

= 0, 1̂, 1̆
� �

, 0, 1̂, 1̆
� �c = 1̂, _̆0, 0

D E
, ð24Þ

b_0, 1̆, 1D Ec
= 1̂, _̆0, 0
D E

, 1̂, _̆0, 0
D Ec

= b_0, 1̆, 1D E
, ð25Þ

1̂, _̆0, 1
D Ec

= b_0, 1̆, 0D E
, b_0, 1̆, 0D Ec

= 1̂, _̆0, 1
D E

, ð26Þ

1̂, 1̆, 0
� �c = b_0, _̆0, 1D E

, b_0, _̆0, 1D Ec
= 1̂, 1̆, 0
� �

: ð27Þ

Remark 12. The union, intersection, and complement of
NOS does not hold in general, i.e., A ∪ Ac = 1 and A ∩ Ac =
0:

Proposition 13. Let X be the collection of some elements and
let A = ðA1, A2, A3Þ, and B = ðB1, B2, B3Þ be two neutrosophic
octrahedron sets in X. If A⊂iB, then BC⊂iA

C , for each i = 1,
2, 3.

Proposition 14. Let A ∈NOðXÞ and let ðAJÞj ∈ J ⊂NOðXÞ:
Then

(i) ðACÞC = A

(ii) For each i = 1, 2, 3

[i
j∈J

Aj

 !C

=
\i
j∈J

AC
j , ð28Þ

\i
j∈J

Aj

 !C

=
[i
j∈J

AC
j : ð29Þ

Proposition 15. Let X be the collection of some elements and
let A = ðA1, A2, A3Þ, and B = ðB1, B2, B3Þ be two neutrosophic
octrahedron sets in X. If A ⊂ B, then NN

CB ⊂NN
CA for each i

= 1, 2, 3, 4.

Definition 16. Let X be the collection of some elements and
let A = ðA1, A2, A3Þ ∈NOðXÞ, then, A is called an internal
and external neutrosopic octahedron set if the following
are satisfied:

A truth-internal NOS (briefly, INOS) in X, for each x
∈ X,

A
2TA

xð Þ, A 3TA
xð Þ ∈ A1 = A−

TA, A+
TA½ �, A−

IA, A+
IA½ �, A−

FA,A+
FA½ �ð Þ:
ð30Þ

An indeterminacy-internal NOS (briefly, INOS) in X, for
each x ∈ X,

A
2IA

xð Þ, A 3IA
xð Þ ∈ A1 = A−

TA, A+
TA½ �, A−

IA, A+
IA½ �, A−

FA, A+
FA½ �ð Þ:
ð31Þ

A falsity-internal NOS (briefly, INOS) in X, for each x
∈ X,

A
2FA

xð Þ, A 3FA
xð Þ ∈ A1 = A−

TA, A+
TA½ �, A−

IA, A+
IA½ �, A−

FA, A+
FA½ �ð Þ:
ð32Þ

A truth-external NOS (briefly, ∉ −ENOS) in X, for each
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x ∈ X,

A
2TA

xð Þ, A 3TA
xð Þ ∉ A1 = A−

TA,A+
TA½ �, A−

IA, A+
IA½ �, A−

FA, A+
FA½ �ð Þ:
ð33Þ

An indeterminacy-external NOS (briefly, INOS) in X,
for each x ∈ X,

A
2IA

xð Þ, A 3IA
xð Þ ∉ A1 = A−

TA, A+
TA½ �, A−

IA,A+
IA½ �, A−

FA, A+
FA½ �ð Þ:
ð34Þ

A falsity-external NOS (briefly, INOS) in X, for each x ∈ X,

A
2FA

xð Þ, A 3FA
xð Þ ∉ A1 = A−

TA, A+
TA½ �, A−

IA, A+
IA½ �, A−

FA, A+
FA½ �ð Þ:
ð35Þ

Proposition 17. Let X be the collection of some elements and

let A = ðA1, A2, A3Þ ∈NOðXÞ: If A is not external NOSs, then,
there is x ∈ X such that

A2 xð Þ ∈ A−
TA, A+

TA½ �, A−
IA, A+

IA½ �, A−
FA, A+

FA½ �ð Þ, ð36Þ

or

1 − A2 xð Þ ∈ A−
TA, A+

TA½ �, A−
IA, A+

IA½ �, A−
FA,A+

FA½ �ð Þ, ð37Þ

A3 xð Þ ∈ A−
TA, A+

TA½ �, A−
IA, A+

IA½ �, A−
FA,A+

FA½ �ð Þ: ð38Þ
Proposition 18. Let X be the collection of some elements and
let A = ðA1, A2,A3Þ ∈ AðXÞ: if A is both internal and external
NOSs, then, there is x ∈ X,

Figure 1: Source of solar energy.

Figure 2: Source of wind energy.

Figure 3: Source of geothermal energy.

Figure 4: Source of hydropower energy.

A2 xð Þ, 1 − A2 xð Þ, A3 xð Þ ∈U A1ð Þ ∪ L A1ð Þ, A−
TA, A+

TA½ �, A−
IA, A+

IA½ �, A−
FA, A+

FA½ �ð Þ, ð39Þ
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where UðA1Þ = fA+
TA, A+

IA,A+
FA : x ∈ Xg and LðA2Þ = fA−

TA,
A−
IA, A−

FA : x ∈ Xg.

Proposition 19. Let X be the collection of some elements and
let A = ðA1, A2, A3Þ ∈ AðXÞ: if A is an internal (resp., exter-
nal) NOSs, then, ⌝A (complement) is external (resp., internal).

Example 2. Let A = hA1, A2, A3i be a NOS in X given by for
each x ∈ X,

A xð Þ =

x
4 ,

1 + x
2

� �
, x
6 ,

1 + x
4

� �
, x
8 ,

1 + x
6

� �� 	
,

x
3 ,

1 + x
5

� �
, x
5 ,

1 + x
7

� �
, ~a
7 ,

1 + x
9

� �� 	
, x

2 ,
x
4 ,

x
6


 �
* +

:

ð40Þ

A2ðxÞ, A3ðxÞ ∈ A1 for each x ∈ X is then easily calculated, but
A2ðxÞ ∉ ð½A−

TA, A+
TA�, ½A−

IA, A+
IA�, ½A−

FA, A+
FA�Þ, for each x ∈ X

such that x > 3/7: Thus, A is an ∈−INOS but not a ∉ −
INOS in X.

Proposition 20. Let X be the collection of some elements and
let A = ðA1, A2, A3Þ, and B = ðB1, B2, B3Þ be two neutrosophic
octrahedron sets in X. Suppose A and B are internal for each
x ∈ X:

Definition 21. The sum between two NOSs A = ðA1, A2, A3Þ,
and B = ðB1, B2, B3Þ is defined as

A ⊕ B = A1 + B1 − A1:B1, A2 + B2 − A2:B2, A3 + B3 − A3:B3ð Þ:
ð41Þ

Definition 22. The product between two NOSs A = ðA1, A2,
A3Þ, and B = ðB1, B2, B3Þ is defined as A ⊗ B = ðA1:B1, A2:B2
, A3:B3Þ.

Definition 23. Scalar multiplication with a neutrosophic
octahedron set of a Scalar λA = ðA1,A2, A3Þ, is defined as λ
A.

Theorem 24. Let A = ðA1,A2, A3Þ, B = ðB1, B2, B3Þ and C = ð
C1, C2, C3Þ be three NOSs ofA, whereA be a collection of NOSs.
Then ðA, ⊕Þ is a commutative monoid.

Proof.

(1) Let A, B ∈ A: Then, we have

A ⊕ B = A1 + B1 − A1:B1,A2 + B2 − A2:B2, A3 + B3 − A3:B3ð Þh i,
ð42Þ

which is clearly in A:

(2) Let A, B, C ∈ A. Then, we prove ðA ⊕ BÞ
⊕ C = A ⊕ ðB ⊕ CÞ

NNC
1 ⊕NNC

2
� �

⊕NNC
3

= A1,A2, A3ð Þ ⊕ B1, B2, B3ð Þh i ⊕ C1, C2, C3h i
= A1 + B1 − A1:B1, A2 + B2 − A2:B2,A3 + B3 − A3:B3ð Þh i

⊕ C1, C2, C3h i = A1, A2, A3ð Þ
⊕ B1 + C1 − B1:C1, B2 + C2 − B2:C2, B3 + C3 − B3:C3ð Þh i

= A ⊕ B ⊕ Cð Þ:
ð43Þ

(3) Let A, B ∈ A. Then, we have

0.
45

85

0.
46

48

0.
43

44

0.
51

74

RANKING ORDER

Figure 5: Ranking.
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A ⊕ B = A1, A2, A3ð Þ ⊕ B1, B2, B3ð Þh i
= A1 + B1 − A1:B1,A2 + B2 − A2:B2, A3 + B3 − A3:B3ð Þh i
= B1 + A1 − B1:A1, B2 + A2 − B2:A2, B3 + A3 − B3:A3ð Þh i
= B ⊕ A:

ð44Þ

Hence, ðA, ⊕Þ is a commutative semigroup.

Theorem 25. Let A = ðA1, A2, A3Þ, and B = ðB1, B2, B3Þ be
any two NOSs. Then, the following holds

(1) €λðA ⊕ BÞ = €λA ⊕ €λB

(2) ð€λ1 + €λ2ÞA = €λ1A + €λ2A, where €λ is any scalar

Proof.

(1) Let A, B be two NOSs and €k0 be any constant. Then,
we have

€λ0 A ⊕ Bð Þ = €λ0 A1, A2, A3h i ⊕ B1, B2, B3h ið Þ

= €λ0 A1 + B1 − A1:B1, A2 + B2 − A2:B2,A3 + B3 − A3:B3ð Þh i

=

−1 − −1 − A1 + B1 − A1:B1ð Þð Þ€λ0

 �

,

−1 − −1 − A2 + B2 − A2:B2ð Þð Þ€λ0

 �

,

−1 − −1 − A3 + B3 − A3:B3ð Þð Þ€λ0

 �

* +

=

−1 − −1 − A1 − B1 + A1:B1ð Þ€λ0

 �

,

−1 − −1 − A2 − B2 + A2:B2ð Þ€λ0

 �

,

−1 − −1 − A3 − B3 + A3:B3ð Þ€λ0

 �

* +

=

−1 − −1 − A1 − B1 1 − A1:B1ð Þð Þ€λ0

 �

,

−1 − −1 − A2 − B2 1 − A2:B2ð Þð Þ€λ0

 �

,

−1 − −1 − A3 − B3 1 − A3:B3ð Þð Þ€λ0

 �

* +

=

−1 − −1 − A1 − B1 1 − B1ð Þð Þ€λ0

 �

,

−1 − −1 − A2 − B2 1 − B2ð Þð Þ€λ0

 �

,

−1 − −1 − A3 − B3 1 − B3ð Þð Þ€λ0 ,

 �

* +

=

−1 − −1 − A1ð Þ 1 − B1ð Þð Þ€λ0

 �

,

−1 − −1 − A2Ið Þ 1 − B2ð Þð Þ€λ0

 �

,

−1 − −1 − A3ð Þ 1 − B3ð Þð Þ€λ0

 �

* +

=

−1 − −1 − A1ð Þ€λ0 − 1 + B2ð Þ€λ0 + 1 + −1 − A1ð Þ€λ0

+ 1 + B1ð Þ€λ0 − −1 − A1ð Þ€λ0 1 + B1ð Þ€λ0 ,

0@ 1A,

−1 − −1 − A2ð Þ€λ0 − 1 + B2ð Þ€λ0 + 1 + −1 − A2ð Þ€λ0

+ 1 + B2ð Þ€λ0 − −1 − A2ð Þ€λ0 1 + B2ð Þ€λ0 ,

0@ 1A,

−1 − −1 − A3ð Þ€λ0 − 1 + B3ð Þ€λ0 + 1 + −1 − A3ð Þ€λ0

+ 1 + B3ð Þ€λ0 − −1 − A3ð Þ€λ0 1 + B3ð Þ€λ0 ,

0@ 1A

* +

=

2 − −1 − A1ð Þ€λ0 − 1 + B1ð Þ€λ0 − −1 − 1 + B1ð Þ€λ0



− −1 − A1ð Þ€λ0
�
+ −1 − A1ð Þ€λ0 1 + B1ð Þ€λ0 ,

0B@
1CA,

2 − −1 − A2ð Þ€λ0 − 1 + B2ð Þ€λ0 − −1ð − 1 + B2ð Þ€λ0

− −1 − A2ð Þ€λ0
�
+ −1 − A2ð Þ€λ0 1 + B2ð Þ€λ0 ,

0@ 1A,

2 − −1 − A3ð Þ€λ0 − 1 + B3ð Þ€λ0 − −1ð − 1 + B3ð Þ€λ0

− −1 − A3ð Þ€λ0
�
+ − −1 − A1ð Þ€λ0

�
+ −1 − A3ð Þ€λ0 1 + B3ð Þ€λ0 ,

0@ 1A
i

*

=

−1 − −1 − A1ð Þ€λ0 + 1 − 1 − B1ð Þ€λ0

− 1 − −1 − A1ð Þ€λ0

 �

1 − 1 − B1ð Þ€λ0

 �

,

0@ 1A,

−1 − −1 − A2ð Þ€λ0 + 1 − 1 − B2ð Þ€λ0

− 1 − −1 − A2ð Þ€λ0

 �

1 − 1 − B2ð Þ€λ0

 �

,

0@ 1A,

−1 − −1 − A3ð Þ€λ0 + 1 − 1 − B3ð Þ€λ0

− 1 − −1 − A3ð Þ€λ0

 �

1 − 1 − B3ð Þ€λ0

 �

,

0@ 1A

* +

=

−1 − −1 − A1ð Þ€λ0 ,
−1 − −1 − A2ð Þ€λ0 ,
−1 − −1 − A3ð Þ€λ0

* +
⊕

−1 − −1 − B1ð Þ€λ0 ,
−1 − −1 − B2ð Þ€λ0 ,
−1 − −1 − B3ð Þ€λ0

* +
,

= €λ0 A1, A2, A3h i ⊕ €λ0 B1, B2, B3h i ð45Þ

we have €λ0ðA ⊕ BÞ = λA ⊕ €λ0B:

(2) Let Ω ∈ A and €λ1, €λ2 be any constant. Then, we have
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€λ1 + €λ2

 �

A = €λ1 + €λ2

 �

A1, A2, A3h i

=

−1 − −1 − A1ð Þ€λ1+€λ2

 �

,

−1 − −1 − A2ð Þ€λ1+€λ2

 �

,

−1 − −1 − A3ð Þ€λ1+€λ2

 �

* +

=

−2 − 1 − A1ð Þ€λ1 − 1 − A1ð Þ€λ2 + 1 − A1ð Þ€λ1

−1 + 1 − A1ð Þ€λ2 − 1 − A1ð Þ€λ1+€λ2 ,

0@ 1A,

−2 − 1 − A2ð Þ€λ1 − 1 − A2ð Þ€λ2 + 1 − A2ð Þ€λ1

−1 + 1 − A2ð Þ€λ2 − 1 − A2ð Þ€λ1+€λ2 ,

0@ 1A,

−2 − 1 − A3ð Þ€λ1 − 1 − A3ð Þ€λ2 + 1 − A3ð Þ€λ1

−1 + 1 − A3ð Þ€λ2 − 1 − A3ð Þ€λ1+€λ2 ,

0@ 1A
i

*

=

−1 − −1 − A1ð Þ€λ1 + 1 − −1 − A1ð Þ€λ2

− 1 − 1 − A1ð Þ€λ1

 �

−1 − 1 − A1ð Þ€λ2

 �

0B@
1CA,

−1 − −1 − A2ð Þ€λ1 + 1 − −1 − A2ð Þ€λ2

− 1 − 1 − A2ð Þ€λ1

 �

−1 − 1 − A2ð Þ€λ2

 �

,

0B@
1CA,

−1 − −1 − A3ð Þ€λ1 + 1 − −1 − A3ð Þ€λ2

− 1 − 1 − A3ð Þ€λ1

 �

−1 − 1 − A3ð Þ€λ2

 �

,

0B@
1CA

i
*

=

1 − 1 − A1ð Þ€λ1 ,
1 − 1 − A2ð Þ€λ1 ,
1 − 1 − A3ð Þ€λ1

* +
⊕

−1 − −1 − A1ð Þ€λ2 ,
−1 − −1 − A2ð Þ€λ2 ,
−1 − −1 − A3ð Þ€λ2

* +
ð46Þ

we have ð€λ1 + €λ2ÞA1 = €λ1A1 + €λ2A1:

Definition 26. Let A = ðA1, A2, A3Þ be a NOS, and we define
score function as

S Að Þ = A1 + A2 + A3
12 : ð47Þ

Definition 27. Let A = ðA1, A2, A3Þtðt = 1, 2,⋯mÞ be the col-
lection of values of neutrosophic octahedron and weighted
average operator is defined as NOWA : Ωn ⟶Ω by
NOWAwðA1, A2 ⋯ AmÞ =∑m

Tru=1wtA1, where W =
ðw1,w2,⋯,wmÞt is the weight vector, such that wt ∈ 0, 1�
and ∑m

t=1wt = 1:

Definition 28. Let A = ðA1, A2, A3Þtðt = 1, 2,⋯mÞ be the col-
lection of values of neutrosophic octahedron and order
weighted average operator as NOOWA : Ωn ⟶Ω by
NOOWAwðA1, A1 ⋯ , A1Þ =∑m

t=1wtA1, where NOOWA is
order weighted average operator A1 is the the largest, W =

ðw1,w2 ⋯ ,wmÞt is the weight vector of A1ðt = 1, 2,⋯mÞ,
such that wt ∈ 0, 1� and ∑m

t=1wt = 1:

4. Energy Source Selection by TOPSIS Method

It is essential to select an energy source that has the least impact
on the natural environment, and it must take into account cru-
cial factors like as reliability, cost, and maintenance. As a result,
selecting the optimal energy source is not a simple task, as this
decision may be fraught with uncertainty and ambiguity. To
deal with ambiguity and vagueness, Zadeh developed the fuzzy
theory. In 1975, he defined interval-valued fuzzy sets as a more
general class of fuzzy sets. Intuitionistic fuzzy sets, neutrosophic
sets, interval neutrosophic sets, intuitionistic neutrosophic sets,
neutrosophic cubic sets, neutrosophic soft sets, rough neutro-
sophic sets, and octahedron sets are some well-known kinds
of fuzzy sets. We use neutrosophic octahedron sets to define
decision making problem. The algorithms are proposed in this
section. The algorithm shows the procedure of TOPSIS method
based on the following terminologies. Some example of energy
sources are solar energy, wind energy, geothermal energy, and
hydropower energy.

Solar energy: solar power is the conversion of solar energy
into thermal or electrical energy. Solar energy is the most
abundant and environmentally friendly source of renewable
energy available today. The source of solar energy is shown
as in Figure 1.

Wind energy: wind is a type of solar energy. Winds are
created by the heating of the atmosphere by the sun, the rota-
tion of the Earth, and irregularities in its surface. The source of
wind energy is shown as in Figure 2.

Geothermal energy: geothermal energy is the heat that
exists in the earth’s crust. Geothermal energy is derived from
the Greek words geo (earth) and therm (heat). Because heat
is constantly produced in the earth, geothermal energy is a
renewable energy source. The source of geothermal energy is
shown as in Figure 3.

Hydropower energy: the conversion of energy from run-
ning water into electricity is known as hydroelectricity. It is the
oldest and largest renewable energy source in the world. The
source of hydropower energy is shown as in Figure 4.

These energy sources are renewable. These resources do
not pollute the environment in any way, and H = human
activities have no effect on renewable resources. It is important
to choose the best energy source for their country which min-
imum effects the environment. The important parameter of
energy sources is reliability, yields, cost, and maintenance.
Where U1,U2,U3, andU4 stand for solar energy, wind energ,
geothermal energy, and hydropower energy. These sources are
evaluated against the four parameters which are represented
by €λ1, €λv, €λ3, and €λ4 where these parameters stand for reliabil-
ity, yields, cost, and maintenance.

For this purpose, we select a panel which are consist of
expertise. The panel assessed the energy sources according to
given criteria. The panel gives their judgements in the form
of decision matrix. Suppose the decision matrix is represented
by a = ½aij �m × n, where aij shows evaluation of ith alternative

with respect to jth criteria.
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Step 1. Standardize the decision matrix as follows:

D =

  U1 U2 U3 U4

€λ1

0:1,0:2�,
0:3,0:1�,
0:1,0:2�,

0:5,0:2,0:4ð Þ,
0:2,0:3,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:1�,
0:1,0:1�,
0:1,0:1�,

0:3,0:2,0:4ð Þ,
0:3,0:5,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:2�,
0:1,0:2�,
0:1,0:2�,

0:3,0:2,0:4ð Þ,
0:3,0:5,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:2�,
0:1,0:1�,
0:1,0:2�,

0:3,0:2,0:4ð Þ,
0:3,0:5,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
,

€λ2

0:1,0:1�,
0:1,0:2�,
0:1,0:3�,

0:5,0:2,0:3ð Þ,
0:3,0:4,0:2ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:2,0:1�,
0:3,0:2�,
0:1,0:2�,

0:3,0:2,0:4ð Þ,
0:5,0:7,0:6ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:2�,
0:1,0:2�,
0:2,0:1�,

0:5,0:2,0:4ð Þ,
0:2,0:3,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:1�,
0:2,0:2�,
0:2,0:1�,

0:5,0:2,0:3ð Þ,
0:3,0:4,0:2ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
,

€λ3

0:1,0:2�,
0:1,0:2�,
0:2,0:1�,

0:2,0:2,0:5ð Þ,
0:5,0:4,0:3ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:2�,
0:1,0:1�,
0:2,0:2�,

0:3,0:2,0:2ð Þ,
0:4,0:3,0:2ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:2�,
0:1,0:2�,
0:2,0:2�,

0:8,0:2,0:4ð Þ,
0:6,0:8,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:2�,
0:2,0:1�,
0:2,0:2�,

0:2,0:2,0:5ð Þ,
0:5,0:4,0:3ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
,

€λ4

0:1,0:2�,
0:1,0:2�,
0:1,0:2�,

0:8,0:2,0:4ð Þ,
0:6,0:8,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:2,0:1�,
0:1,0:2�,
0:3,0:1�,

0:8,0:2,0:4ð Þ,
0:6,0:8,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:1,0:1�,
0:2,0:2�,
0:1,0:1�,

0:5,0:2,0:4ð Þ,
0:2,0:3,0:4ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

0:2,0:1�,
0:1,0:1�,
0:1,0:2�,

0:2,0:2,0:5ð Þ,
0:5,0:4,0:3ð Þ

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
:

ð48Þ

Step 2. Construct normalized decision matrix, using the fol-
lowing equation:

λ
∘

i j
=

ui jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑u2i j

 �r  for i = 1,⋯,m ; j = 1,⋯, n: ð49Þ

  U1 U2 U3 U4

λ
∘

1

0:25,0:29�,
0:5,0:143�,
0:2,0:25�,
0:461,0:5,
0:492

 !
,

0:233,0:292,
0:596

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:17,0:1�,
0:17,0:17�,
0:143,0:17�,
0:314,0:5,
0:554

 !
,

0:6324,0:413,
0:471

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:25,0:29�,
0:2,0:25�,
0:17,0:33�,
0:314,0:5,
0:554

 !
,

0:6324,0:413,
0:471

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:20,0:33�,
0:17,0:20�,
0:17,0:29�,
0:314,0:5,
0:554

 !
,

0:6324,0:413,
0:471

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

λ
∘

2

0:25,0:143�,
0:17,0:29�,
0:2,0:38�,
0:461,0:5,
0:369

 !
,

0:349,0:389,
0:298

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:33,0:1�,
0:5,0:33�,
0:143,0:33�,
0:314,0:5,
0:554

 !
,

0:539,0:578,
0:707

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:25,0:29�,
0:2,0:25�,
0:33,0:17�,
0:461,0:5,
0:492

 !
,

0:233,0:292,
0:596

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:20,0:17�,
0:33,0:4�,
0:33,0:143�,
0:461,0:5,
0:369

 !
,

0:349,0:389,
0:298

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

λ
∘

3

0:25,0:29�,
0:17,0:29�,
0:5,0:125�,
0:184,0:5,
0:616

 !
,

0:581,0:389,
0:447

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:17,0:2�,
0:17,0:17�,
0:29,0:33�,
0:314,0:5,
0:277

 !
,

0:431,0:247,
0:236

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:25,0:29�,
0:2,0:25�,
0:33,0:33�,
0:838,0:5,
0:554

 !
,

0:647,0:661,
0:471

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:20,0:33�,
0:33,0:20�,
0:33,0:29�,
0:184,0:5,
0:616

 !
,

0:581,0:389,
0:447

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

λ
∘

4

0:25,0:29�,
0:17,0:29�,
0:2,0:25�,
0:736,0:5,
0:493

 !
,

0:698,0:779,
0:596

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:33,0:1�,
0:17,0:33�,
0:43,0:17�,
0:838,0:5,
0:554

 !
,

0:647,0:661,
0:471

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:25,0:143�,
0:4,0:25�,
0:17,0:17�,
0:461,0:5,
0:492

 !
,

0:233,0:292,
0:596

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:40,0:17�,
0:17,0:20�,
0:17,0:29�,
0:184,0:5,
0:616

 !
,

0:581,0:389,
0:447

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

:

ð50Þ

Step 3. Create the weighted normalized decision matrix
using the equation below

€λi j =wj:λ
∘

i j
, ð51Þ

  G1 G2 G3 G4

€λ1

0:075,0:087�,
0:15,0:043�,
0:06,0:075�,
0:138,0:15,

0:148

 !
,

0:069,0:088,
0:179

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:017,0:01�,
0:017,0:017�,
0:0143,0:017�,
0:0314,0:05,

0:0554

 !
,

0:06324,0:0413,
0:0471

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:05,0:06�,
0:04,0:05�,
0:034,0:066�,
0:0628,0:1,
0:1108

 !
,

0:1265,0:083,
0:0942

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:08,0:132�,
0:07,0:08�,
0:07,0:12�,
0:1256,0:2,
0:2216

 !
,

0:253,0:1652,
0:1882

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

€λ2

0:075,0:043�,
0:051,0:087�,
0:06,0:114�,
0:138,0:15,
0:1107

 !
,

0:105,0:117,
0:089

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:033,0:01�,
0:05,0:033�,
0:0143,0:033�,
0:0314,0:05,

0:0554

 !
,

0:0539,0:0578,
0:0707

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:05,0:06�,
0:04,0:05�,
0:066,0:034�,
0:0922,0:1,
0:0984

 !
,

0:0466,0:0584,
0:1192

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:08,0:07�,
0:132,0:16�,
0:132,0:06�,
0:1844,0:2,
0:1476

 !
,

0:1396,0:1556,
0:1192

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

€λ3

0:075,0:087�,
0:051,0:087�,
0:15,0:038�,
0:055,0:15,

0:185

 !
,

0:174,0:117,
0:134

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:017,0:02�,
0:017,0:017�,
0:029,0:033�,
0:0314,0:05,

0:0277

 !
,

0:0431,0:0247,
0:0236

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:05,0:06�,
0:04,0:05�,
0:066,0:066�,
0:168,0:1,
0:1108

 !
,

0:129,0:1322,
0:0942

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:08,0:132�,
0:132,0:08�,
0:132,0:12�,
0:0736,0:2,

0:246

 !
,

0:2324,0:156,
0:179

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

€λ4

0:075,0:087�,
0:051,0:087�,
0:06,0:075�,
0:221,0:15,

0:148

 !
,

0:209,0:234,
0:179

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:033,0:01�,
0:017,0:033�,
0:043,0:017�,
0:0838,0:05,

0:0554

 !
,

0:0647,0:0661,
0:0471

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:05,0:143�,
0:08,0:05�,
0:034,0:034�,
0:0922,0:1,
0:0984

 !
,

0:0466,0:0584,
0:1192

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:40,0:07�,
0:07,0:08�,
0:07,0:12�,
0:0736,0:2,
0:2464

 !
,

0:2324,0:156,
0:179

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

:

ð52Þ

Step 4. Identify the ideal and negative ideal solutions. Ideal
solution λ∗ = fλ∗1 ,⋯, λ∗ng, where

λ∗j = max λi j


 �
if j ∈ J ; min λi j


 �
if j ∈ J ′

n o
: ð53Þ

Negative ideal solution

λ′ = λ1′ ,⋯, λn′
n o

, ð54Þ

where

λ j′= max λi j


 �
if j ∈ J ; min λi j


 �
if j ∈ J ′

n o
, ð55Þ
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λ∗

0:075,0:087�,
0:15,0:087�,
0:15,0:114�,
0:221,0:15,

0:185

 !
,

0:209,0:234,
0:179

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:033,0:02�,
0:05,0:033�,
0:029,0:033�,
0:0838,0:0578,

0:0554

 !
,

0:0647,0:0661,
0:0707

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:05,0:143�,
0:08,0:05�,
0:066,0:066�,
0:168,0:1,
0:1108

 !
,

0:129,0:1322,
0:1192

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:08,0:07�,
0:07,0:07�,
0:07,0:06�,
0:0736,0:2,
0:1476

 !
,

0:1396,0:156,
0:1476

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

,

λ′

0:075,0:043�,
0:051,0:043�,
0:06,0:038�,
0:055,0:15,
0:1107

 !
,

0:069,0:088,
0:089

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:017,0:01�,
0:017,0:017�,
0:0143,0:017�,
0:0314,0:033,

0:0277

 !
,

0:0431,0:0247,
0:0236

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:06,0:05�,
0:04,0:05�,
0:034,0:034�,
0:0628,0:1,
0:0984

 !
,

0:0466,0:0584,
0:0942

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

0:40,0:132�,
0:132,0:16�,
0:132,0:12�,
0:2324,0:2,

0:246

 !
,

0:253,0:1652,
0:1882

 !

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

:

ð56Þ
Step 5. Calculate the separation measures for each alterna-
tives, with the help of the following equations as

s∗i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠 λ∗j − λi j


 �2h ir
i = 1,⋯,m: ð57Þ

Separation from negative ideal alternatives is also
expressed as

si′=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠 λj′− λi j


 �2h ir
i = 1,⋯,m, ð58Þ

€s∗1 = 0:3476, ð59Þ

€s∗2 = 0:3531, ð60Þ

€s∗3 = 0:3369, ð61Þ

€s∗4 = 0:4106, ð62Þ

€s1′ = 0:4106, ð63Þ

€s2′ = 0:4066, ð64Þ

€s3′ = 0:4386, ð65Þ

€s4′ = 0:3830: ð66Þ
Step 6. Calculate the distance between relative closeness and
ideal solution D∗

i where

D∗
i =

si′
s∗i + si′

 � 0 ≤D∗

i ≤ 1, ð67Þ

select the option with D∗
i closest to 1.

€λ1 = 0:4585, €λ2 = 0:4648, €λ3 = 0:4344, €λ4 = 0:5174, ð68Þ

€λ4 > €λ2 > €λ1 > €λ3: ð69Þ

The ranking order of €λ1, €λ2, €λ3, and €λ4 is shown as in
Figure 5.

5. Comparison

Topsis method is a common technique to handle decision
making problems. In a neutrosophic set, a group decision-
making procedure was presented by Abdel et al. and Biswas
et al. [35, 36]. The several iterations of the neutrosophic set
were also used in decision-making issues by Zulqarnain
et al. and Dey et al. [37, 38]. All of these techniques are rel-
evant to the ongoing effort. We now contrast the suggested
method with two comparable ways to analyze the benefits
and drawbacks of the current model in order to demonstrate
the technological achievements in this research. The primary
distinction between them is that whereas Biswas focused on
the hybridization of the two ideas, namely, generalized neu-
trosophic sets, and soft sets. Abdel examined the truth, inde-
terminacy, and falsity membership values. As a result, the
decision data in the current model is broader. Consequently,
the strategy described in this paper is more circumspect.

6. Conclusion

We proposed a new notion known as neutrosophic octahe-
dron set in this article by combining the concepts of neutro-
sophic set, intuitionistic fuzzy, and octahedron set. The
major goal of this concept is to resolve uncertainty in real-
world situations. We also look at some basic NOS operations
including union, intersection, and complement, as well as
their characteristics. Define some operational features as
well. We also discussed the fact that the need for energy
planning has increased with the development of new
energy-related technologies and energy sources. The prob-
lem of decision-making is made even more difficult by the
need for collaboration between various stakeholders in order
to produce effective decisions. In order to quantitatively
reflect the ambiguity and imprecision of the data, neutro-
sophic octahedron sets are a useful tool. Finally, using our
proposed method and a numerical example, we presented
a decision-making process.

In the future, this structure can be extended in interval
neutrosophic octahedron set and can be applied in many
real-life applications such as pattern recognition, medical
diagnosis, and personal selection. Moreover, one can use this
concept and develop a new decision-making technique with
VIKOR, ELECTRE, CODAS, and AHP under a neutro-
sophic octahedron environment.
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