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In this paper, the local fractional version of homotopy perturbation method (HPM) is established for a new class of local fractional
integral-differential equation (IDE). With the embedded homotopy parameter monotonously changing from 0 to 1, the special
easy-to-solve fractional problem continuously deforms to the class of local fractional IDE. As a concrete example, an explicit
and exact Mittag–Leffler function solution of one special case of the local fractional IDE is obtained. In the process of solving,
two initial solutions are selected for the iterative operation of local fractional HPM. One of the initial solutions has a critical
condition of convergence and divergence related to the fractional order, and the other converges directly to the real solution.
This paper reveals that whether the sequence of approximate solutions generated by the iteration of local fractional HPM can
approach the real solution depends on the selection of the initial approximate solutions and sometimes also depends on the
fractional order of the selected initial approximate solutions or the considered equations.

1. Introduction

Fractals, solitons, and chaos together constitute three impor-
tant branches of nonlinear sciences. In fractal space, there
exist some magical functions which are continuous every-
where but nondifferentiable everywhere. The local fractional
calculus [1] developed in recent years provides a powerful
mathematical tool to handling with such type of nondifferen-
tiable functions. Fractional calculus, which is widely believed
to have originated more than 300 years ago, has attracted
much attention [2–17]. It is of theoretical and practical value
to solve fractional differential equations (DEs) directly con-
necting with fractional dynamical processes in a great many
fields. For this reason, people often construct exact solutions
of fractional DEs to obtain useful clues in these fractional
dynamical processes for specific applications.

With the development of fractional calculus, many
numerical and analytical methods for fractional DEs have

been developed, such as integral transform method [1],
series expansion method [3], Adomian decomposition
method [4], Fan subequation method [5], variational itera-
tion method (VIM) [6], variable separation method [7],
finite difference method [8], homotopy perturbation
method (HPM) [9], combined the HPM with Laplace trans-
form [10], exp-function method [11], and Hirota bilinear
method [12]. The HPM proposed by He [18] couples the
homotopy method and the perturbation technique, which
needs no the small parameters embedded in differential
equations. More importantly, it is indicated in [19] that
the HPM can truly eliminate the limitations existing in tra-
ditional perturbation methods.

One of the advantages of local fractional derivative is that
it has been successfully used to describe some nondifferential
problems appearing in science and engineering [1]. The
concept of local fractional derivative, which is based on
Riemann-Liouville fractional derivative, can be retrospected
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to Kolwankar and Gangal’s pioneering work [13]. More spe-
cifically, if the following limit exists and is finite for a given
continuous function uðxÞ: ½0, 1�⟶ R,

Dαu x0ð Þ = lim
x⟶x0

dq u xð Þ − u x0ð Þð Þ
d x − x0ð Þq , 0 < q < 1ð Þ, ð1Þ

then Dαuðx0Þ is called q-order fractional derivative of uðxÞ at
the point x = x0. Later, inspired by the relation dαuðxÞ = Γð1
+ αÞduðxÞ of Jumarie [20], the local fractional derivative of a
local fractional continuous but nondifferentiable function uð
xÞ is defined as another form ([4], see Definition 1). Recently,
the theory of local fractional calculus has been significantly
developed. Yang and his collaborators [1, 3, 17] have made a
series of achievements in the development of local fractional
calculus. Benefiting from the graceful properties of local frac-
tional calculus, some existing methods like those [5, 11, 12],
originally proposed for DEs with integer orders, have success-
fully been extended to fractional DEs and many methods are
meeting more and more challenges for solving fractional DEs.

The paper is aimed at establishing the local fractional
HPM for a new class of local fractional IDEs:

dαu xð Þ
dxα

− f xð Þ − 1
Γ 1 + αð Þ

ð1
0
g x, tð Þu tð Þ dtð Þα = 0, ð2Þ

where 0 < α ≤ 1, uðxÞ, f ðxÞ, and gðx, tÞ are the local frac-
tional continuous but nondifferentiable functions, dαuðxÞ/
dxα and ð1/Γð1 + αÞÞÐ 10gðx, tÞuðtÞðdtÞα represent the local
fractional derivative and integral [1], respectively, and Γð1
+ αÞ is the well-known Euler’s Gamma function:

Γ 1 + αð Þ =
ð∞
0
tαe−tdt: ð3Þ

Considering a concrete application of the established
local fractional HPM, we would like to solve a special case
of Equation (2):

dαu xð Þ
dxα

− 3Eα 3xαð Þ + Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
xα

−
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα = 0,

ð4Þ

where the Mittag–Leffler function

Eα xαð Þ = 〠
∞

k=0

xkα

Γ 1 + kαð Þ , ð5Þ

which is defined on a fractal set [1].
The organization of the rest of this paper is as follows.

Section 2 recalls the local fractional derivative and integral
and some basic properties. Section 3 establishes the local
fractional HPM for the class of local fractional IDEs (2). Sec-
tion 4 takes the local fractional IDE (4), a special case of
Equation (2), to test the established local fractional HPM
and discuss the influence of not only the initial approximate

solutions but also the fractional order on whether the
sequence of approximate solutions can approach the real
solution. Section 5 employs He-Laplace method coupling
the HPM with Laplace transform to solve the local fractional
IDE (4) and compares the obtained results. Section 6 sum-
marizes the whole paper.

2. Local Fractional Derivative and Integral and
Some Basic Properties

In this section, we recall the local fractional derivative and
integral and some basic properties.

Definition 1 (see [1]). Let uðxÞ be a local fractional continu-
ous but nondifferentiable function; then, α-order local frac-
tional derivative of uðxÞ at the point x = x0 reads

Dα
xu x0ð Þ = dαu xð Þ

dxα

����
x=x0

= lim
x⟶x0

Δα u xð Þ − u x0ð Þð Þ
x − x0ð Þα , 0 < α ≤ 1ð Þ,

ð6Þ

where ΔαðuðxÞ − uðx0ÞÞ ≅ Γð1 + αÞðuðxÞ − uðx0ÞÞ:
The local fractional derivative has some basic properties

[1]:

Dα
x λu xð Þ + μv xð Þð Þ = λDα

xu xð Þ + μDα
xv xð Þ,

Dα
x u xð Þv xð Þð Þ = Dα

xu xð Þð Þv xð Þ + u xð Þ Dα
xv xð Þð Þ,

Dα
x
u xð Þ
v xð Þ = Dα

xu xð Þ
v xð Þ −

u xð Þ Dα
xv xð Þð Þ

v2 xð Þ ,

Dα
x Cð Þ = 0,

Dα
x

xkα

Γ 1 + kαð Þ =
x k−1ð Þα

Γ 1 + k − 1ð Þαð Þ ,

Dα
xEα qxαð Þ = qEα qxαð Þ,

Dα
x sinα xαð Þ = cosα xαð Þ,Dα

x cosα xαð Þ = − sinα xαð Þ,

ð7Þ

where λ, μ, C, and q are constants and k is an integer, while
sinαðxαÞ =∑∞

k=0ð−1Þkxð2k+1Þα/Γð1 + ð2k + 1ÞαÞ and cosαðxαÞ
=∑∞

k=0ð−1Þkx2kα/Γð1 + 2kαÞ.

Definition 2 (see [1]). Let function uðxÞ ∈ Cα½a, b�; then, the
definition of α-order local fractional integral of uðxÞ in the
integral ½a, b� is as follows:

aI
α
bu xð Þ = 1

Γ 1 + αð Þ
ðb
a
u tð Þ dtð Þα

= 1
Γ 1 + αð Þ lim

Δxk⟶0
〠
N−1

k=0
u xkð Þ Δxkð Þα, 0 < α ≤ 1ð Þ,

ð8Þ

where Δxk = xk+1 − xk with x0 = a < x1 <⋯<xN−1 < xN = b.

2 Advances in Mathematical Physics



The local fractional integral has some basic properties
[1]:

aI
α
b λf xð Þ + μg xð Þð Þ = λaI

α
b f xð Þ + μaI

α
bg xð Þ,

aI
α
b Dα

x f xð Þð Þg xð Þ½ � = f xð Þg xð Þjba − aI
α
b f xð Þ Dα

xg xð Þð Þ½ �,

0I
α
xC = Cxα

Γ 1 + αð Þ ,

0I
α
x

xkα

Γ 1 + kαð Þ = x k+1ð Þα

Γ 1 + k + 1ð Þαð Þ ,

0I
α
xEα qxαð Þ = Eα qxαð Þ − 1

q
,

0I
α
x sinα xαð Þ = 1 − cosα xαð Þ, 0Iαx cosα xαð Þ = sinα xαð Þ:

ð9Þ

3. Local Fractional HPM for the Class of Local
Fractional IDEs

In this section, we establish the local fractional HPM for the
class of IDEs (2). For convenience, we rewrite Equation (2)
as follows:

Aα uð Þ = Lα uð Þ + Iα uð Þ = 0,

Lα uð Þ = dαu xð Þ
dxα

− f xð Þ,

Iα uð Þ = −
1

Γ 1 + αð Þ
ð1
0
g x, tð Þu tð Þ dtð Þα,

ð10Þ

where Aα represents the local fractional operator.
In view of the local fractional HPM [17], we construct

the local fractional homotopy Hαðu, pαÞ, u ∈ R, and p ∈ ½0, 1
� by the following:

Hα u, pαð Þ = 1 − pαð Þ Lα uð Þ − Lα u0ð Þð Þ + pα Lα uð Þ + Iα uð Þð Þ = 0,
ð11Þ

with the embedded parameter pα which monotonously
changes from 0 to 1 leads to the result that the easy-to-
solve equation LαðuÞ − Lαðu0Þ = 0 continuously deforms to
the original equation LαðuÞ + IαðuÞ = 0: Using the con-
structed homotopy Hαðu, pαÞ, we can continuously trace a
curve which is implicitly defined from a starting point

Hα u, 0ð Þ = Lα uð Þ − Lα u0ð Þ = 0, ð12Þ

to a solution function

Hα u, 1ð Þ = Lα uð Þ + Iα uð Þ = 0: ð13Þ

From the perspective of topology, the above changing
process is called a deformation. In this deformation, LαðuÞ
− Lαðu0Þ and LαðuÞ + IαðuÞ are homotopic.

Thus, the fractional homotopy Hαðu, pαÞ in Equation
(11) can be written as below:

Hα u, pαð Þ = 1 − pαð Þ dαu xð Þ
dxα

− f xð Þ − dαu0 xð Þ
dxα

− f xð Þ
� �� �

+ pα
dαu xð Þ
dxα

− f xð Þ − pα

Γ 1 + αð Þ
ð1
0
g x, tð Þu tð Þ dtð Þα

� �

= dαu xð Þ
dxα −

dαu0 xð Þ
dxα

+ pα
dαu0 xð Þ
dxα

− f xð Þ
�

−
1

Γ 1 + αð Þ
ð1
0
g x, tð Þu tð Þ dtð Þα

�
= 0:

ð14Þ

Substituting the series u expanded by the fractional
homotopy parameter pα

u = vα0 + pαvα1 + p2αvα2 + p3αvα3+⋯, ð15Þ

into Equation (14) and comparing the coefficients of the
same power of pα, we obtain a set of fractional equations:

p0 :
dαvα0 xð Þ
dxα

−
dαu0 xð Þ
dxα

= 0,

pα :
dαvα1 xð Þ
dxα

+ dαu0 xð Þ
dxα

− f xð Þ

−
1

Γ 1 + αð Þ
ð1
0
g x, tð Þvα0 tð Þ dtð Þα = 0,

p2α :
dαvα2 xð Þ
dxα

−
1

Γ 1 + αð Þ
ð1
0
g x, tð Þvα1 tð Þ dtð Þα = 0,

p3α :
dαvα3 xð Þ
dxα

−
1

Γ 1 + αð Þ
ð1
0
g x, tð Þvα2 tð Þ dtð Þα = 0,⋮:

ð16Þ

Here u0 is assumed to be an initial approximate solution
of Equation (2). Generally, the initial approximation vα0 or u0
can be freely chosen. Solving above set of fractional equa-
tions, we can obtain solutions vα0 , v

α
1 , v

α
2 , v

α
3 , and so on.

Setting pα ⟶ 1 and using Equation (15), we finally
arrive at an approximate solution of Equation (2).

u = lim
pα⟶1

〠
∞

k=0
vαk xð Þ = vα0 + vα1 + vα2 + vα3+⋯: ð17Þ

As pointed by He [18], the series (17) has convergence in
most cases and the convergent rate is determined by LαðuÞ
when α = 1. For the case of convergence, the series (17)
can reach a closed form solution.

4. A Concrete Example

In this section, we apply the previously established local frac-
tional HPM to the local fractional IDE (4).
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Firstly, we construct such a fractional homotopy:

Hα u, pαð Þ = dαu xð Þ
dxα

−
dαu0 xð Þ
dxα

+ pα
dαu0 xð Þ
dxα

− 3Eα 3xαð Þ
�

+ Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
xα −

1
Γ 1 + αð Þ

�
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

�
= 0:

ð18Þ

Secondly, we substitute Equation (15) into Equation
(18), and then, the comparison of the coefficients of pjαðj
= 0, 1, 2,⋯Þ gives a system of fractional equations:

p0 :
dαvα0 xð Þ
dxα

−
dαu0 xð Þ
dxα

= 0, ð19Þ

pα :
dαvα1 xð Þ
dxα

+ dαu0 xð Þ
dxα

− 3Eα 3xαð Þ

+ Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
xα

−
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ v

α
0 tð Þ dtð Þα = 0,

ð20Þ

p2α :
dαvα2 xð Þ
dxα

−
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ v

α
1 tð Þ dtð Þα = 0, ð21Þ

p3α :
dαvα3 xð Þ
dxα

−
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ v

α
2 tð Þ dtð Þα = 0,⋮:

ð22Þ

In view of the arbitrariness of vα0 or u0, here we set

dαvα0 xð Þ
dxα

= dαu0 xð Þ
dxα

= 3Eα 3xαð Þ − Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
xα,

ð23Þ

and then, from Equations (20)–(23), we have

vα0 = Eα 3xαð Þ − Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α ; d
αvα1 xð Þ
dxα

−
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
xα = 0,

ð24Þ

namely,

vα1 =
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �
1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α ; d
αvα2 xð Þ
dxα

−
3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �
1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

xα

= 0,
ð25Þ

namely,

vα2 =
3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α ; d
αvα3 xð Þ
dxα

−
32Γ2 1 + 3αð Þ

Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
xα = 0,

ð26Þ

namely,

vα3 =
32Γ2 1 + 3αð Þ

Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α ; d
αvα4 xð Þ
dxα

−
33Γ3 1 + 3αð Þ

Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
xα = 0,

ð27Þ

namely,

vα4 =
33Γ3 1 + 3αð Þ

Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α;⋮:

ð28Þ

Finally, we obtain an approximate solution of Equation
(4).
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u = lim
pα⟶1

〠
∞

k=0
vαk xð Þpkα = Eα 3xαð Þ − Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α + 1 + 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

�

+ 32Γ2 1 + 3αð Þ
Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ+

33Γ3 1 + 3αð Þ
Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ+⋯

�

× Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

ð29Þ

which can be simplified as follows:

u = Eα 3xαð Þ − lim
m⟶∞

3m−1Γm−1 1 + 3αð Þ
Γm−1 1 + 2αð ÞΓm−1 1 + 4αð Þ

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α:

ð30Þ

Obviously, the nth-order approximate solution of Equa-
tion (4) has the following form:

un = Eα 3xαð Þ − 3nΓn 1 + 3αð Þ
Γn 1 + 2αð ÞΓn 1 + 4αð Þ

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α, n = 0, 1, 2,⋯ð Þ:

ð31Þ

When the condition

q = 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ < 1, ð32Þ

holds, the limit of Equation (30) exists. In this case, we
obtain

u = Eα 3xαð Þ: ð33Þ

In Figure 1, we show the curve of the condition q with
fractional order α, where the dashed line represents q = 1.
We can see from Figure 1 that there exists a unique value
α0 ∈ ð0:7, 0:75Þ such that qðα0Þ = 1. At the same time, with
the help of Mathematica, we have

q 0:73ð Þ ≈ 1:02522329079942, q 0:74ð Þ ≈ 0:9916413061494614:
ð34Þ

Thus, we can more accurately determine the range of α0
as

0:73 < α0 < 0:74: ð35Þ

This tells that qðαÞ < qðα0Þ = 1 if and only if α0 < α ≤ 1.

In Figure 2, the initial solution and 5th-order and 8th-
order approximate solutions u0, u5, and u8 and the exact
solution uexa are shown by constraining them to a Cantor
set with dimension α = ln 2/ln 3 ≈ 0:631 which does not sat-
isfy the convergence condition α0 < α ≤ 1. In this case, uexa,
u0, u5, and u8 form a sequence of divergent approximate
solutions.

Since the initial approximation vα0 or u0 possesses arbi-
trariness as mentioned earlier, if we set again

dαvα0 xð Þ
dxα

= dαu0 xð Þ
dxα

= 3Eα 3xαð Þ, ð36Þ

then the similar process yields

vα0 = u0 = Eα 3xαð Þ, ð37Þ

vα1 = vα2 = vα3 =⋯ = 0, ð38Þ
from which we finally reach solution (33). So, for any 0 < α
≤ 1, the solution (33) is always the exact solution of Equa-
tion (4). That is to say, if we chose an appropriate initial
approximation vα0 or u0, then the operation can be

0.2 0.4 0.6 0.8 1.0
𝛼

1.0

1.5

2.0

2.5

3.0

q

Figure 1: Curve of the condition q with fractional order α.

0.2 0.4 0.6 0.8 1.0
x

–100

100

200

300

400

u

u0
u5

u8
uexa

Figure 2: Divergent asymptotic solutions and exact solution in the
case α = ln 2/ln 3.
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considerably simplified. More importantly, the convergence
condition that the sequence of approximate solutions
depends on fractional order can be removed.

It should be noted that when α = 1 and uðxÞ, f ðxÞ, and
gðx, tÞ are all the continuous and differentiable functions,
solution (33) reduces to u = e3x which is the known exact
solution of the following IDE [19]:

du xð Þ
dx

− 3e3x + 1
3 2e3 + 1
� �

x −
ð1
0
3xtu tð Þdt = 0: ð39Þ

5. He-Laplace Method and Comparison

As Deng and Ge [21] pointed out, He-Laplace method has a
simple and reliable algorithm and it can be coupled with the
HPM or the VIM for solving various nonlinear models,
shedding a bright light on fractal calculus. A newest typical
example of He-Laplace method to illustrate its simplicity,
directness, strength, and great prospects can be found in
[22]. In what follows, we employ the local fractional version
of He-Laplace method [23] to solve the local fractional IDE
(4).

Taking the local fractional Laplace transform on Equa-
tion (4), we can gain

L
dαu xð Þ
dxα

� �
= L 3Eα 3xαð Þ + Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �
xα

� �

+ L
1

Γ 1 + αð Þ
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

� �
,

ð40Þ

sαL u xð Þð Þ − u 0ð Þ = L
�
3Eα 3xαð Þ +

�
Eα 3ð Þ

Γ 1 + αð Þ
−
Eα 3ð Þ − 1

3

�
xα
�
+ L

� 1
Γ 1 + αð Þ

�
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

�
,

ð41Þ

L u xð Þð Þ = u 0ð Þ
sα

+ 1
sα
L
�
3Eα 3xαð Þ +

�
Eα 3ð Þ

Γ 1 + αð Þ
−
Eα 3ð Þ − 1

3

�
xα
�
+ 1
sα
L
� 1
Γ 1 + αð Þ

�
ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

�
:

ð42Þ

Then, the inverse local fractional Laplace transform of
Equation (42) gives

u xð Þ = Eα 3xαð Þ − Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

α

+ L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u tð Þ dtð Þα

� �	 

,

ð43Þ

where uð0Þ = 1 has been assumed and L and L−1 are the local
fractional Laplace transform operator and inverse operator
[1], respectively.

Dealing Equation (43) with the local fractional HPM, we
introduce

〠
∞

n=0
pnαun xð Þ = Eα 3xαð Þ − Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

α + pαL−1
(

1
sα
L

"
1

Γ 1 + αð Þ

�
ð1
0

3xαtα
Γ 1 + αð Þ〠

∞

n=0
pnαun xð Þ dtð Þα

#)
,

ð44Þ

and compare the coefficients of the same powers of pα; then,
He’s polynomials can be obtained:

p0 : u0 xð Þ = Eα 3xαð Þ − Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

pα : u1 xð Þ = L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u0 xð Þ dtð Þα

� �	 


= 1 − 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

� �
Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

p2α : u2 xð Þ = L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u1 xð Þ dtð Þα

� �	 


= 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ 1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

p3α : u3 xð Þ = L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u2 xð Þ dtð Þα

� �	 


= 32Γ2 1 + 3αð Þ
Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ 1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

p4α : u4 xð Þ = L−1
1
sα
L

1
Γ 1 + αð Þ

ð1
0

3xαtα
Γ 1 + αð Þ u3 xð Þ dtð Þα

� �	 


= 33Γ3 1 + 3αð Þ
Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ 1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,⋮:

ð45Þ

We therefore obtain an approximate solution of Equa-
tion (4):
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u = lim
pα⟶1

〠
∞

n=0
pnαuαn xð Þ = Eα 3xαð Þ − Eα 3ð Þ

Γ 1 + αð Þ −
Eα 3ð Þ − 1

3

� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α + 1 + 3Γ 1 + 3αð Þ
Γ 1 + 2αð ÞΓ 1 + 4αð Þ

�

+ 32Γ2 1 + 3αð Þ
Γ2 1 + 2αð ÞΓ2 1 + 4αð Þ+

33Γ3 1 + 3αð Þ
Γ3 1 + 2αð ÞΓ3 1 + 4αð Þ+⋯

�

× Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
1 − 3Γ 1 + 3αð Þ

Γ 1 + 2αð ÞΓ 1 + 4αð Þ
� �

� Γ 1 + αð Þ
Γ 1 + 2αð Þ x

2α,

ð46Þ

which is the same as solution (29). It is not difficult to see
that solution (46) has the same nth-order approximate solu-
tion (31), and when the condition (32) holds, the limit of
solution (46) gives the same exact solution (33).

Through comparison, we find that the computational
difficulty of solving the local fractional IDE (4) by the above
two methods is about the same. When using the local frac-
tional HPM, we need to introduce an appropriate initial
approximate solution v0ðxÞ, while the local fractional He-
Laplace method uses a known initial value uð0Þ. Generally
speaking, it is more difficult to choose an initial approximate
solution v0ðxÞ than to find an initial value uð0Þ: For the lat-
est valuable work on the modified HPM, we suggest to refer
to Refs. [24, 25].

6. Conclusion

In summary, we have established the local fractional HPM
for the class of local fractional IDEs (1). Based on the estab-
lished local fractional HPM, an explicit and exact Mittag–
Leffler function solution (33) of the local fractional IDE (4)
is obtained by selecting two different initial solutions (24)
and (37). The comparison shows that the local fractional
He-Laplace method [23] can also obtain the same solution
(33), but when the initial approximate solution is not easy
to choose, the local fractional He-Laplace method [23] has
certain advantages over the method used in this paper. The
obtained results show that if we choose the approximate
solutions appropriately, for example solution (37), then the
calculation can be considerably simplified and that the
sequence of approximate solutions generated by the local
fractional HPM can directly approach the real solution with-
out the influence of fractional order. However, for the
selected initial approximate solution (24), we obtained a
sequence of approximate solutions converging the real solu-
tion (33) in a certain range of the fractional order α, i.e., α0
< α ≤ 1. At the same time, there is a divergence interval ð0
, α0Þ which depends on the fractional order α. Here, qðα0Þ
= 1, and an approximate range of α0 is 0:73 < α0 < 0:74.
That is to say, α0 is the critical value of convergence and
divergence related to fractional order α of the obtained
sequence of approximate solutions. This is different from
the HPM for integer-order DEs, all the sequences of approx-
imate solutions of which either converge or diverge, and

there is no such a critical value of convergence and diver-
gence. When the nth-order approximate solution (31) is
constrained to a Cantor set with dimension α = ln 2/ln 3 ≈
0:631, this paper shows in Figure 2 a sequence of divergent
approximate solutions. This paper fails to describe a
sequence of convergent approximate solutions of (31), which
is due to the complexity of the numerical simulation of frac-
tal set. How to constrain solution (31) to other fractal sets
and show some sequences of convergent approximate solu-
tions? This is a question worth exploring. Besides, the
research on qualitative behaviors of Equation (4) and other
fractional IDEs is worth discussing. Some recent meaningful
results of this research can be found in [26–28]. In 2007,
Wang and He [29] took three concrete IDEs as examples
to illustrate the effectiveness of the VIM for various IDEs.
Based on this fact, we conclude that the local fractional ver-
sion of VIM can also solve the local fractional IDE (4). In
fact, the main steps of the local fractional VIM for Equation
(4) can be summarized as follows: (i) identifying Lagrange
multiplier λα = −1, (ii) determining the iterative formula of
solution:

un+1 xð Þ = un xð Þ − 1
Γ 1 + αð Þ

ðx
0

dαun ξð Þ
dξα

+ F un ξð Þð Þ
� �

� dξð Þα, n = 0, 1, 2⋯ð Þ,
ð47Þ

with

F un ξð Þð Þ = −3Eα 3ξα
� �

+ Eα 3ð Þ
Γ 1 + αð Þ −

Eα 3ð Þ − 1
3

� �
ξα

−
1

Γ 1 + αð Þ
ð1
0

3ξαtα
Γ 1 + αð Þ un tð Þ dtð Þα,

ð48Þ

and (iii) selecting the initial approximate solution u0ðxÞ =
Eαð3xαÞ to obtain the exact solution uðxÞ = lim

n⟶∞
unðxÞ = Eα

ð3xαÞ by using the determined iterative formula (47). Never-
theless, it is still worth trying to find an appropriate initial
approximate solution and get the approximate solution
(29) or (46) by Equation (47).
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