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Compression is a typical stress condition for cracks in deep-water structures, where the cracks tend to close from a nonclosed
state, due to a certain gap that exists between the surfaces on both sides of cracks. The stress field models around the crack
have been established in previous studies, while the crack surfaces are simply assumed in a nonclosed or full-closed state. In
fact, the cracks inside deep-water structures are usually in a semiclosed state, leaving the reliability of calculation results in risk.
To reflect the actual state of crack, a comprehensive stress field model around the semiclosed crack is established based on the
complex potential theory, and the stress intensity factor K II at the crack tip related to the closure amount of crack surfaces,
deep-water pressure, friction coefficient in the closed region, and crack inclination angle is derived. The analytical solution of
the stress field around the semiclosed crack contains three T-stress components, i.e., Tx , Ty , and Txy . The rationality and
effectiveness of the proposed stress field model are verified by the isochromatic fringe patterns around the crack obtained from
the photoelastic experiment. It reveals that the proposed model can reasonably predict the evolution of the stress field with the
closure amount of crack under constant and variable stress conditions.

1. Introduction

In general, the most common construction material that
has been used for off-shore oil production platforms is steel
[1–3]; however, more than 50 reinforced concrete platform
bases have been utilized by the Norwegians and British in
the North Sea [4]. As shown in Figure 1, the reinforced
concrete oil platform typically consists of a large gravity
base and several concrete legs supporting the upper steel
structure. The foundations of offshore wind turbine can
also be made of concrete materials [5], as demonstrated
in Figure 2. These are massive structures due to the deep-
water pressures involved and the wave loading that has to
be resisted. However, during the manufacture and con-
struction of these concrete structures, discontinuity defects
similar to fault or microcrack are inevitably generated
owing to the uneven distribution of early thermal stress

or shrinkage of cementitious materials [6, 7]. Generally,
these defects tend to occur and appear in the form of
cracks, which can be seen in Figures 1 and 2. It would be
no exaggeration to state that cracks have their great influ-
ences on the mechanical performance of concrete structure.
Crack tips under load are susceptible to stress concentra-
tion effects, which in turn cause a reduction in structural
capacity significantly through initiation, propagation, and
interconnection; on the other hand, the presence of cracks
leads to the corrosion of internal reinforcement by reducing
the durability of the concrete and further weakens the
capacity of the structure, often resulting in serious and
disastrous consequences [8].

To realistically evaluate the effect of internal cracks on
the structural capacity under deep-water pressure condi-
tions, it is essential to have a clear understanding of the
stress field around the cracks. Most previous studies on
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crack fracture behavior have focused on the stress field and
crack initiation of tension cracks (mode I), and theoretical
research on this type crack has become mature [9, 10]. How-
ever, the internal cracks in deep-water structures are hardly
subjected to such stress states similar to the pure mode I
cracks. In fact, these cracks under the action of deep-water
pressure, self-weight, and upper load are usually under mul-
tiaxial compression stress state, and the surfaces on both
sides of the crack cause an interaction due to the closure,
including mutual compression and friction effects [11, 12].
Different closure amounts may cause to interact differently
between the two surfaces, and these differences may be
important to the stress field depending on the magnitude
of the influence.

For the analysis of crack problems, the stress field pro-
posed by Williams [13] can well describe the stress distribu-
tion near the crack tip. The Williams expression contains
not only the singular stress term with r1/2 but also the non-
singular stress terms (generally called T-stress) and higher
order terms with Oðr1/2Þ. In the past, only the singular stress
term in the expansion is adopted by scholars when studying
the stress field at the crack tip [14, 15], ignoring the nonsin-
gular term and the higher-order term. However, numerous
studies [16–18] have shown that T-stress has a significant
effect on the tip stress field, which can be summarized as fol-
lows: when r approaches to 0, the singular stress term in the
expansion plays the main controlling role, and as the r grad-
ually increases, the value of the singular stress term decreases
rapidly while the proportion of nonsingular stress term
gradually increases. It reveals that the nonsingular stress
term cannot be ignored in particular under this condition.
The study of the stress field near the crack when considering
the T-stress under tensile conditions has a relatively mature
theoretical basis, but the effects of T-stress in a compressive
stress state are rarely considered for studying the stress field
around the crack [19, 20].

Many scholars have studied the influence of defects such
as inclusions and cracks on the fracture behavior of mate-
rials by using experimental and numerical analysis, and
Fan et al. [21] conducted uniaxial compression tests on the
cuboidal sandstone containing a nonpenetrating crack to
study the cracking mechanism of defects. The results show
that crack first initiates at the tip of the crack on the front
surface of the specimen, while the new crack initiates at
the middle of the crack on the back surface. Zhang et al.
[22] quantitatively studied the influence of two conditions,
with and without inclusions, on the mechanical mechanisms
of rock crack evolution, and the impact of inclusions on the
mechanical properties of the rock during compressive load-
ing was researched as well. Through a combination of exper-
iments and numerical simulations, Yang et al. [23]
investigated the relationship between wing crack expansion
and peak strength for specimens containing main crack
and prefabricated wing cracks, where it was concluded that
the length of the prefabricated wing crack had a negligible
effect on the peak strength of the specimen. For the study
of crack in the closed state, Liu [24] established the stress
field expression around the crack that is full-closed under
uniaxial compression; Fan et al. [25] and Feng et al. [26]
studied the initiation behavior and the evolution of tangen-
tial stress for rock material under compression. Neverthe-
less, all of the above studies are based on an ideal model
with the cracks being in a full-closed state. It is worth noting
that a certain gap usually exists between the crack surfaces,
and under the action of compression, the crack is actually
always in such a practical state; that is, the crack surfaces
are gradually closed from the nonclosed state.

To reflect the actual state of cracks in view of the short-
comings of the previous research results, this paper firstly
derives a more comprehensive and detailed stress field
model containing T-stress around the crack under compres-
sion stress state based on the complex potential theory of
Muskhelishvili [27], considering not only the mutual
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Figure 1: The oil platform with concrete legs and concrete base
installed on the seabed.

Sea surface

Sea bed

Concrete
base

Concrete
column

Internal
cracks

Figure 2: Schematic of a gravity-based offshore wind turbine.
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compression and frictional effects between the surfaces on
both sides of the crack but also the closure amount of crack
surfaces. The rationality of the stress field model is then ver-
ified by comparing the isochromatic fringe pattern obtained
from the previous photoelastic experiments with the contour
lines predicted by the proposed model in this study. Finally,
the evolution of stress fields with closure amount under
equal stress and variable stress conditions is analyzed and
compared, respectively. The aim of this paper is to accu-
rately describe the stress fields of semiclosed cracks; further-
more, the results can also intend to provide a theoretical
guidance for accurate and quantitative analysis of the distri-
bution of stress fields around internal cracks in deep-water
structures, so as to provide a design reference for structures.

2. Stress Fields of Nonclosed and Full-Closed
Crack under Compression

Crack propagation strongly depends on the asymptotic
stress field near the crack tip. It is well known that the
asymptotic stress field at the crack tip in a two-
dimensional elastic medium can be described by the leading
singular and secondary constant terms as follows [28]:
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where K I and KII represent the modes I and II stress inten-
sity factors, respectively, which characterize the singular
behaviors caused by the normal and shear components of
the stress on the crack surfaces. It is worth noting that the
asymptotic stress field of Equation (1) is only applicable to
open cracks. That is, the application of the crack tip stress
field actually requires K I ≥ 0, and the above expression no
longer holds if K I < 0. It is attributed to the fact that the
two crack surfaces are in contact with each other when the
crack is closed by compression, and the singular behavior
relative to K I no longer occurs [11, 12]. For the inclined
crack with tips in the material, such a trend is always pre-
sented at the tip in the process of gradual compression; that

is, the crack transforms from completely nonclosed state to
semiclosed state and then to full-closed state. For a non-
closed crack with no interaction between the two sides, as
shown in Figure 3, the stress field has been derived by previ-
ous scholars [29, 30], which can be expressed as follows:
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Meanwhile, for a full-closed crack with interactions
(both compressive stress and friction) on all surfaces, as
shown in Figure 4; the analytical solution of the stress field
has also been established under this condition [24–26],
which can be expressed as follows:
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However, the establishment of the above two stress fields
is only based on the ideal condition; that is, the crack is
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Figure 3: Nonclosed crack subjected to compression.
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under nonclosed or full-closed states. However, the actual
situation is that the crack tips gradually close as compression
proceeds. Furthermore, the above models are only applicable
to the stress field in the very small area of the tip, and the
reliability cannot be guaranteed for predicting stress field
at distances far from the tip. Therefore, given the actual state
of the general crack, it needs to be stated that the stress fields
expressed by Equations (2) and (3) still have great limita-
tions in application, and the influence of semiclosed crack
on the stress field must be properly understood for their
use in concrete fracture mechanics.

3. Stress Fields of Semiclosed
Crack under Compression

3.1. Boundary Conditions and Model Assumptions. Consider
an elastic infinite plate containing a semiclosed crack of
length 2a subjected to two vertical stresses σ1 and σ3 at
infinity, as shown in Figure 5. The angle between the crack
and the vertical stress σ1 is α, and the angle between the
crack and the horizontal stress σ3 is β. The crack tends to
close under the action of compression, as illustrated in
Figure 6. The two surfaces above and below the closed region
of the crack tip produce mutual compression and friction,
where the closed length and nonclosed length are denoted
by Δa and b, respectively. The expression Δa/a is defined
as the closure amount in this paper. Due to the existence
of a very small gap between the two surfaces of the crack,
the crack is no longer strictly linear during the process of
tip closure. Comparatively, when the gap between crack sur-
faces is much smaller than the length of the crack, it can be
assumed that the crack is still straight. The compressive
stress in the closed region is σn, which can be expressed as
follows by a function:

σn = f xð Þ, ð4Þ

where f ðxÞ is a function in relation to x and σN and σN is the
maximum compressive stress on the closed region, which
can be taken as

f xð Þmax = σN = σ1 + σ3
2 + σ1 − σ3

2 cos 2β
� �

: ð5Þ

The shear stress on the closed region surface is given by:

τs =
σ1 − σ3

2 sin 2β: ð6Þ

Due to the drive of shear stress, frictional resistance τf
can be generated in the closed region. When the shear stress
τs is less than the frictional resistance τf on the crack sur-
face, the friction can prevent the crack in the closed region
from slipping; when the shear stress τs is greater than the
frictional resistance τf on the surface of the crack, the sur-
faces on both sides of the closed region relatively slid, and
the frictional resistance τf on the surface of the closed
region is

τf = μσn =
1
2 μ σ1 + σ3ð Þ + σ1 − σ3ð Þ cos 2β½ �, ð7Þ

where μ represents the friction coefficient. Therefore, the
condition for relative sliding of the crack surfaces in the
closed region is

τs > τf , ð8Þ

takes the stress form:

σ1 − σ3ð Þ sin 2β > μ σ1 − σ3ð Þ + σ1 − σ3ð Þ cos 2β½ �: ð9Þ
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3.2. Stress Function. According to Muskhelishvili, the com-
plexity of a problem in the plane theory of elasticity can be
simplified very significantly by finding ΦðzÞ and ΩðzÞ,
which must satisfy the problem boundary conditions [27].
The stress field at the tip of the crack can always be
expressed by these two complex functions:

σx + σy = 4 Re Φ zð Þ½ �, ð10Þ

σy − iτxy =Φ zð Þ +Ω �zð Þ + z − �zð ÞΦ′ zð Þ, ð11Þ
where z = x + iy and�z = x − iy.σ+

y and τ+xy and σ−y and τ−xy are
defined representing the boundary values of the upper and
lower surfaces of the crack, respectively. For the crack
shown in Figure 6, the boundary values of surfaces in the
closed region can be taken as below.

Upper surface:

σ+y = σn, τ+xy = τf ; for − a ≤ x ≤ −b and b ≤ x ≤ a, ð12Þ

σ+y = 0, τ+xy = 0 ; for − b < x < b: ð13Þ
Lower surface:

σ−y = σn, τ−xy = τf ; for − a ≤ x ≤ −b and b ≤ x ≤ a, ð14Þ

σ−y = 0 ; τ−xy = 0 ; for − b < x < b: ð15Þ
By the Equations (11), (12), and (14), the boundary con-

ditions of surfaces in the closed region take the form:

Φ+ tð Þ +Ω− tð Þ = σ+y − iτ+xy , ð16Þ

Φ− tð Þ +Ω+ tð Þ = σ−
y − iτ−xy, ð17Þ

adding and subtracting, which can be obtained:

Φ tð Þ +Ω tð Þ½ �+ + Φ tð Þ +Ω tð Þ½ �− = 2P tð Þ, ð18Þ

Φ tð Þ −Ω tð Þ½ �+ − Φ tð Þ −Ω tð Þ½ �− = 2Q tð Þ, ð19Þ
where PðtÞ and QðtÞ are known functions on the surface in
the closed region. The Equations (18) and (19) are typical
Riemann-Hilbert problem, which generally takes the follow-
ing form:

F+ tð Þ = gF− tð Þ + f , ð20Þ

assume FðtÞ =ΦðtÞ +ΩðtÞ, the Equation (18) can be
obtained when g = −1 and f = 2ðσn − iτf Þ; assume FðtÞ =Φ

ðtÞ −ΩðtÞ, the Equation (19) can be obtained when g = 1
and f = 0. The two general solutions to the problem can be
obtained, respectively:
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The two stress functions can be solved:
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where XðzÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
and PðzÞ = C0z and the two stress

functions can be rewritten as
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in which

C0 = Γ + 1
2Γ

′ = −
1
4 σ1 + σ3ð Þ

−
1
4 σ1 + σ3ð Þ cos 2β − i sin 2βð Þ:

ð27Þ

It is assumed that the closed crack surface in the closed
region is subjected to a uniformly distributed compressive
stress as shown in Figure 7; by the Equations (4) and (5),
we have

f xð Þ = σN : ð28Þ

The boundary values can be taken as

σn = σN , for − a ≤ x ≤ −b and b ≤ x ≤ a, ð29Þ

τf = μσn = μσN , for − a ≤ x ≤ −b and b ≤ x ≤ a: ð30Þ
The PðtÞ in the stress function is as follows:

P tð Þ = σn − iτf = σN 1 − iμð Þ: ð31Þ
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The general expressions of the two stress functions can
be obtained:

Φ zð Þ = σN 1 − iμð Þ
2π
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Ω zð Þ = σN 1 − iμð Þ
2π

�
π + tan−1 −bz − a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 − a2
p

− tan−1 bz − a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − a2

p
�
−
σN 1 − iμð Þz
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − a2

p

Á π

2 − sin−1 b
a

� �
+ C0zffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 − a2
p + 1

2Γ
′:

ð33Þ

3.3. Stress Intensity Factor. The relationship between the
stress intensity factors KI and KII for mode I and mode II
of inclined crack in the infinite plane can be expressed as
[19, 31]

KΙ − iKΙΙ = lim
z⟶a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π z − að Þ

p
Φ zð Þ, ð34Þ

the term σNð1 − iμÞ in the stress function is given by

σN 1 − iμð Þ = −
1
2 1 − iμð Þ σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �: ð35Þ

Thus, the Equation (34) can then be expressed by

KΙ − iKΙΙ = −
1
2
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πa

p
σ1 + σ3ð Þ + σ1 + σ3ð Þ cos 2βf

− 2 σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �Wg
−
1
2 i
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πa

p
σ1 + σ3ð Þ sin 2βf

− 2μ σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �Wg,

ð36Þ

where

W = 1
π

π

2 − sin−1 b
a

� �
: ð37Þ

From Equation (36) the stress intensity factors K I and
K II ahead of the crack tip are separately expressed as

KΙ = −
1
2

ffiffiffiffiffiffi
πa

p
σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ � 1 − 2Wð Þ, ð38Þ

KΙΙ =
1
2

ffiffiffiffiffiffi
πa

p
σ1 − σ3ð Þ sin 2βf

− 2μ σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �Wg:
ð39Þ

Figure 8 shows the relationship curve between the
parameters W and b; it can be seen that W takes the range
of values 0:5 ≥W ≥ 0 when b takes a range of values 0 ≤ b
≤ a, and the term ð1 − 2WÞ in Equation (38) falls between
the range of 0 to 1, indicating that the mode I stress intensity
factor KΙ at the crack tip is a nonpositive value under com-
pression. In addition, due to the noninvasive nature of the
material, it can be considered that the crack tip does not
have the characteristics of a mode I under the compression
condition, that is K I = 0.

Furthermore, when b = 0, W = 0:5, and KI = 0 it reveal
that the crack surface is full-closed and the singular term
in relation to the mode I crack disappears, which is consis-
tent with previous research results [24–26]. For this case,
the expression for KII is given by

KΙΙ =
1
2

ffiffiffiffiffiffi
πa

p
σ1 − σ3ð Þ sin 2βf

− μ σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �g:
ð40Þ

The above equation is the same as the stress intensity
factor for the full-closed crack tip obtained by Fan et al.
[25]. For the case when b = a and W = 0, the crack surfaces
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Figure 7: The surfaces in closed region subjected to the uniformly
distributed compressive stress.
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are closed but without interaction, and the stress intensity
factor is

KΙΙ =
1
2

ffiffiffiffiffiffi
πa

p
σ1 − σ3ð Þ sin 2β: ð41Þ

Figure 9 shows the comparison of the variation of normal-
ized stress intensity factor as a function of crack inclination
angle obtained from the proposed theory and the previous
theories [11, 12, 25]. As we can see, for the three models, the
stress intensity factor has the characteristic of decreasing with
the increase of the crack inclination angle. Besides, the stress
intensity factor obtained from the semiclosed model in this
paper is in between that of the nonclosed model and the full-
closed model for the same crack inclination angle, and differ-
ent crack inclination angles corresponding to the maximum
values of the stress intensity factor can be determined from
the three different closed models.

For the semiclosed crack, the condition for relative slid-
ing of the crack surfaces is defined by the Equations (8) and

(9), combining with the value range of W in Equation (39),
the following equation always set up:

σ1 − σ3ð Þ sin 2β − 2μ σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �W > 0:
ð42Þ

To sum up, the mode II stress intensity factor K II at the
tip of a semiclosed crack is a parameter related to the closure
amount, the confining pressure of deep water, the friction
coefficient in the closed region, and the inclination angle of
crack.

3.4. Analytical Solution of Stress Fields. The analytical solu-
tion of stress fields near the crack tip subjected to the loading
in Figure 5 can be derived by the two stress function ΦðzÞ
and ΩðzÞ. The coordinate system defining a double-ended
crack in a complex z-plane is shown in Figure 10. Consider-
ing the coordinate origin at the center of the crack, the com-
plex variable z is defined as z = x + iy. Thus, the P represents
a point in the z-plane where the elastic stresses σx, σy, and
τxy are determined at (θ1, r1). According to the polar coordi-
nate system in which the crack is located, the relevant vari-
ables are defined as follows:

z = r1e
iθ1 ; z − a = reiθ ; z + a = r2e

iθ2 , ð43Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − a2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z + að Þ z − að Þ

p
=

ffiffi
r

p
eiθ/2

ffiffiffiffi
r2

p
eiθ2/2: ð44Þ

The stress function is expressed in terms of stress inten-
sity factor as

Φ zð Þ = σN 1 − iμð Þ
2π π + tan−1 −bz − a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 − a2
p

�

− tan−1 bz − a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − a2

p
�
−

izKΙΙ

2 ffiffiffiffiffiffi
πa

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − a2

p −
1
2Γ

′,

ð45Þ
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Figure 9: Comparison of the variation of normalized stress
intensity factor as a function of crack inclination angle obtained
from the proposed and the previous theories.
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Figure 10: The coordinate system of the crack.
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Ω zð Þ = σN 1 − iμð Þ
2π π + tan−1 −bz − a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 − a2
p

�

− tan−1 bz − a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − a2

p
�
−

izKΙΙ

2 ffiffiffiffiffiffi
πa

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − a2

p + 1
2Γ

′:

ð46Þ
Inserting Equations (43) and (44) into Equations (45)

and (46), the expressions of the two stress functions in a
polar coordinate system are given by

Φ zð Þ = −
KΙΙr1

2 ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p −sin θ1 −
θ + θ2
2

� �
+ i cos θ1 −

θ + θ2
2

� �� �

+ σN 1 − iμð Þ
2π π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2
p

� �
−
1
2Γ

′,

ð47Þ

Ω zð Þ = −
KΙΙr1

2 ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p
�
−sin θ1 −

θ + θ2
2

� �

+ i cos θ1 −
θ + θ2
2

� ��
+ σN 1 − iμð Þ

2π

Á π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
� �

+ 1
2Γ

′:

ð48Þ

Therefore, the other functions Φ′ðzÞ, Φ′ðzÞ, and Ωð�zÞ in
Equation (11) can be rewritten as

Φ′ zð Þ = a2KΙΙ

2 ffiffiffiffiffiffi
πa

p
rr2ð Þ3/2

sin 3
2 θ + θ2ð Þ

� �
+ i cos 3

2 θ + θ2ð Þ
� �� �

,

ð49Þ

Φ′ zð Þ = a2KΙΙ

2 ffiffiffiffiffiffi
πa

p
rr2ð Þ3/2

sin 3
2 θ + θ2ð Þ

� �
− i cos 3

2 θ + θ2ð Þ
� �� �

,

ð50Þ

Ω �zð Þ = −
KΙΙr1

2 ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p
�
sin θ1 −

θ + θ2
2

� �

+ i cos θ1 −
θ + θ2
2

� ��
+ σN 1 − iμð Þ

2π

Á π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
� �

−
1
2Γ

′:

ð51Þ

By the Equation (10), the relationship between the stress
components σx and σy of the stress field around the crack
can be written as follows:

σx + σy = 4 Re Φ zð Þ½ � = 2KΙΙr1ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p sin θ1 −
θ + θ2
2

� �
+ σ1 − σ3ð Þ cos 2β − σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �
Á 1
π

π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
� �

:

ð52Þ

Similarly, apply the proper functions given above to
Equation (11) to get the relationship between the stress com-
ponents σy andτxy :

σy − iτxy =Φ zð Þ +Ω �zð Þ + z − �zð ÞΦ′ zð Þ

= −
KΙΙr1

2 ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p
�
−sin θ1 −

θ + θ2
2

� �

+ i cos θ1 −
θ + θ2
2

� ��
+ σN 1 − iμð Þ

π

Á π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
� �

−
KΙΙr1

2 ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p

Á sin θ1 −
θ + θ2
2

� �
+ i cos θ1 −

θ + θ2
2

� �� �

+ 2ira2KΙΙffiffiffiffiffiffi
πa

p
rr2ð Þ3/2 sin θ

2 cos θ

2

Á sin 3
2 θ + θ2ð Þ

� �
− i cos 3

2 θ + θ2ð Þ
� �� �

:

ð53Þ

Extracting the real and imaginary parts of Equation (53),
the stress components σy and τxy can be obtained:

σy =
2ra2KΙΙffiffiffiffiffiffi
πa

p
rr2ð Þ3/2 sin θ

2 cos θ

2 cos 3
2 θ + θ2ð Þ

−
1
2 σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ � 1

π

Á π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
� �

:

ð54Þ

τxy =
KΙΙr1ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p cos θ1 −
θ + θ2
2

� �

−
2ra2KΙΙffiffiffiffiffiffi
πa

p
rr2ð Þ3/2 sin θ

2 cos θ

2 sin 3
2 θ + θ2ð Þ

−
1
2 μ σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ � 1

π

Á π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
� �

:

ð55Þ

Combining Equations (52) and (54) yields the stress
component σx, as follows:

σx =
2KΙΙr1ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p sin θ1 −
θ + θ2
2

� �

−
2ra2KΙΙffiffiffiffiffiffi
πa

p
rr2ð Þ3/2 sin θ

2 cos θ

2 cos 3
2 θ + θ2ð Þ

−
1
2 σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ � 1

π

Á π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
� �

+ σ1 − σ3ð Þ cos 2β:

ð56Þ

8 Advances in Mathematical Physics



With respect to Equations (54), (55), and (56), one can
see that each stress component contains a subterm related
to the stress intensity factor K II and r, and the other subterm
is unrelated to K II and r, the latter subterm is the T-stress,
which can be expressed by the three T -stress components
Tx, Ty, and Txy , respectively:

Tx = −
1
2 σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �w + σ1 − σ3ð Þ cos 2β,

ð57Þ

Ty = −
1
2 σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �w, ð58Þ

Txy = −
1
2 μ σ1 + σ3 + σ1 − σ3ð Þ cos 2β½ �w, ð59Þ

where

w = 1
π

π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
� �

: ð60Þ
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Figure 12: Comparison of the variation of normalized T-stress components as a function of crack inclination angle obtained from the
proposed and the previous theories: (a) Tx , (b) Ty , and (c) Txy .

Figure 13: The typical isochromatic pattern around the nonclosed
inclined crack in the plate [36].
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Figure 11 illustrates the relationship between the w and b
. From the figure one can see that w takes the range of values
1 ≥w ≥ 0 when b takes a range of values 0 ≤ b ≤ a. For the
specific case that w→ 1 as b→ 0, the three T-stress compo-
nents are the same as those in full-closed crack obtained
by Tang [11] and Fan et al. [25].

Figure 12 compares the variation of the three normalized
T-stress components as a function of crack inclination angle
obtained from the proposed theory and the previous theories
[11, 25, 32]. By comparison, it can be seen that the three stress
components obtained from the semiclosed model are larger
than those obtained from the full-closed model under the
same inclination angle, and the Tx obtained from this paper
is smaller than that obtained from the nonclosed model.

In summary, it is clear from Equations (57)–(59) that the
T-stress in stress field is the component in relation to the clo-
sure amount, confining pressure of deep water, friction coeffi-
cient in the closed region, and inclination angle of the crack.
So far, the expressions of the three individual stress compo-
nents σx, σy, and τxy in stress field around the semiclosed
crack under compression have been already derived as

σx =
2KΙΙr1ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p sin θ1 −
θ + θ2
2

� �

−
2ra2KΙΙffiffiffiffiffiffi
πa

p
rr2ð Þ3/2

sin θ

2 cos θ

2 cos 3
2 θ + θ2ð Þ + Tx,

ð61Þ

σy =
2ra2KΙΙffiffiffiffiffiffi
πa

p
rr2ð Þ3/2

sin θ

2 cos θ

2 cos 3
2 θ + θ2ð Þ + Ty , ð62Þ

τxy =
KΙΙr1ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p cos θ1 −
θ + θ2
2

� �

−
2ra2KΙΙffiffiffiffiffiffi
πa

p
rr2ð Þ3/2 sin θ

2 cos θ

2 sin 3
2 θ + θ2ð Þ + Txy:

ð63Þ

4. Verification of the Stress Field Model

Quantitative visualization gradually becomes an essential
experimental tool to understand the stress field evolution
which govern mechanical and fracture behaviors in various
engineering applications. The photoelastic method enables
visualization of the stress field near the crack; therefore, the
results of photoelastic fringe pattern have been used to fit
the parameters in the analytical solution of the stress field
in numerous studies [33–35]. In the photoelastic theory in
two-dimensional plane, the difference of principal stresses
can be expressed by isochromatic fringe order N , the mate-
rial fringe value f , and the thickness of the plane h:

σ1 ′ − σ2 ′ =
Nf
h

: ð64Þ

For the plane stress problem, the principal stresses can
be written as

σ1 ′, σ2 ′ =
σx + σy

2 ± 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx − σy
À Á2 + 4τ2xy

q
: ð65Þ

Inserting Equations (61)–(63) into (65) and combining
(64), one can obtain the theoretical isochromatic fringes
around the crack. It should be noted that the principal

(a) (b) (c)

(d) (e) (f)

Figure 14: The comparison of isochromatic fringe patterns obtained from experiment and model: (a) the results of photoelastic experiment
[37]; the results of the proposed model: (b) Δa/a = 0; (c) Δa/a = 0:25; (d) Δa/a = 0:5; (e) Δa/a = 0:75; and (f) Δa/a = 1.
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stresses σ1 ′ and σ2 ′ herein are different from the far-field
stresses σ1 and σ2 subjected to the plate containing a crack.
Hoek and Bieniawski [36] conducted the photoelastic exper-
iment on glass plate containing a single nonclosed inclined
crack under uniaxial compression, a typical isochromatic
pattern obtained around the crack in the plate, as illustrated
in Figure 13.

Lee et al. [37] studied the evolution of isochromatic
fringes around the crack in the Homalite-100 plate under
compression and compared the experimental results with
the numerical simulation results so as to determine the dis-
tribution of stress field. Since it is difficult to achieve a full-
closed state on both sides of the crack during the specimen
production process at the beginning of compression, we
assume that the crack surfaces are in a state of semiclosed.
The stress field model proposed in this paper can predict

the isochromatic fringes of principal stress difference around
the crack under various closure amounts; therefore, the
rationality of the proposed model can be verified by compar-
ing the theoretical isochromatic fringes obtained by the
model with the isochromatic fringe patterns obtained by
the photoelastic experiment. Figure 14 presents the results
on the comparison of the isochromatic fringe patterns from
photoelastic experiment and theoretical prediction, in which
Figure 14(a) shows the distribution of isochromatic fringe
patterns around the crack with length of 11mm and inclina-
tion angle of 60° when the axial stress is 36.2MPa in the uni-
axial compression test, and Figures 14(b)–14(f) are the
theoretical isochromatic fringes predicted by the proposed
model in this paper when the closure amount Δa/a = 0,
0.25, 0.5, 0.75, and 1, respectively, where the friction coeffi-
cient of the crack surface is μ = 0:7.
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Figure 16: The contour plot of normalized σx around the crack: (a) Δa/a = 0; (b) Δa/a = 0:35; (c) Δa/a = 0:65; and (d) Δa/a = 1.
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Figure 17: The contour plot of normalized σy around the crack: (a) Δa/a = 0; (b) Δa/a = 0:35; (c) Δa/a = 0:65; and (d) Δa/a = 1.

(a) (b) (c)

Figure 15: The comparison of isochromatic fringe patterns at crack tip obtained from experiment and models: (a) experimental results [38];
(b) the results of proposed model; and (c) the results of Fan’s model [25].
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The comparison in Figure 14 reveals that when the crack
surfaces are nonclosed or full-closed, the discrepancy
between theoretical isochromatic fringe patterns and exper-
imental results is considerable, while when the crack surfaces
are semiclosed, theoretical results are in better agreements

with the experimental results, especially under the relatively
lower closure amount of crack surfaces.

In order to study the effect of crack location and orienta-
tion around the tunnel on the stress intensity factor, Wang
et al. [38] conducted a series of uniaxial compression tests
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Figure 19: Comparison of normalized stress components on a circle with radius of 0.05mm around the crack tip at different closures: (a) σx ;
(b) σy ; and (c) τxy .
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Figure 18: The contour plot of normalized τxy around the crack: (a) Δa/a = 0; (b) Δa/a = 0:35; (c) Δa/a = 0:65; and (d) Δa/a = 1.
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on samples made of transparent epoxy resins containing a sin-
gle crack with different inclination angles and analyzed the
photoelastic characteristics of crack near the tip. The distribu-
tion of isochromatic fringe patterns, only at the semiclosed
crack tip, was investigated to further verify the rationality of
the model proposed in this paper. An outcome of a compari-
son between the experimental results by Wang et al. [38], the
model estimation in this paper, and the model estimation
obtained by Fan et al. [25] is shown in Figure 15; in the two
model estimations, the closure amount and the friction coeffi-
cient are taken as 0.2 and 0.3, respectively. It is revealed that
there are somewhat differences between the experimental
results and the isochromatic fringe patterns predicted by Fan
et al. [25] who considered the crack in a full-closed state, while
relatively good agreements exist between experimental results
and predicted results of the model in this paper.

As may be seen from the above comparisons, the predic-
tions of the proposed semiclosed stress field model are accu-
rate in representing the morphology of isochromatic fringe
patterns which represents the stress field distribution on
both of the crack and its tips.

5. Evolution of the Stress Field as the Crack
Transitions from a Nonclosed to a Full-
Closed State

5.1. The Influence of Closure Amount under Constant Stress.
It is assumed that internal cracks in deep-water structures

are subjected to constant stress σ1 caused by self-weight or
upper loads and constant stress σ3 caused by the deep-
water pressure, and the particular influence of different clo-
sure amount on evolution of stress fields is investigated in
this section. The three stress components are normalized
dividing both sides of Equations (61) to (63) by σ1, taking
Equation (61) as an example, the equation can be written as

σx
σ1

= 2KΙΙr1
σ1

ffiffiffiffiffiffiffiffiffiffiffi
πarr2

p sin θ1 −
θ + θ2
2

� �

−
2ra2KΙΙ

σ1
ffiffiffiffiffiffi
πa

p
rr2ð Þ3/2 sin θ

2 cos θ

2 cos 3
2 θ + θ2ð Þ

−
1
2 1 + λ + 1 − λð Þ cos 2β½ � 1

π
π − 2 tan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − b2
p

� �
+ 1 − λð Þ cos 2β,

ð66Þ

where

KΙΙ

σ1
= 1
2

ffiffiffiffiffiffi
πa

p �
1 − λð Þ sin 2β − 2μ 1 + λ½

+ 1 − λð Þ cos 2β� 1
π

π

2 − sin−1 b
a

� ��
:

ð67Þ

In the Equations (66) and (67), λ represents the water
confining pressure coefficient, which can be expressed by λ
= σ3/σ1.

A finite domain with a dimension of 70 × 70mm2 con-
tains a crack with length of 20mm, and inclination angle
of 30° was selected as the studied area. The friction coeffi-
cient μ of the crack surfaces in the closed region was taken
as 0.3, and the water confining pressure coefficient λ was
taken as 0.15. Figures 16–18 show the variation of the con-
tour maps around the crack of the three normalized stress
components with the closed amounts, respectively.

From the above figures, it can be concluded that closure
amount generally exhibits significant and visible effects on
the stress fields around the crack. The crack tip has a more
obvious stress concentration effect at lower closure amount
in comparison to the higher one. For the stress components
σx and σy under the same boundary conditions, the tensile
stress (positive sign) area near the two crack tips gradually
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Figure 21: The relationship between the stress intensity factor and
confining pressure coefficient for μ = 0:3.
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Figure 20: Loading path.
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decreases with the increase of the closure amount, while the
compression stress (negative sign) area gradually increases.
It can be clearly seen from Figures 16(d) and 17(d) that
the compressive stress area around the crack almost
occupies the entire observed area under the condition of Δ
a/a = 1. For the stress component τxy, the whole observed
area is a region of compressive stress, it can be observed that
the low compressive stress area on both sides of the crack
gradually transitions to a relatively higher compressive stress
as the closure volume increases; on the contrary, the high
compressive stress area has a gradual transition to a rela-
tively lower compressive stress.

In consideration of the quantitative analysis of the mag-
nitude of the stress field, the Figure 19 shows the variations

of the three stress components on a circle with a radius of
0.05mm around the crack tip. As can be observed from
the figure, the variation of the closure amount has no influ-
ence on the angles corresponding to the peak values of the
stress components. For the stress components σx and τxy ,
the absolute values of the extreme values decrease signifi-
cantly with the increase of closure amount, and the corre-
sponding reductions in the magnitude for σx and τxy when
the closure amount changes from 0 to 1 are about 22.7%
to 40.5% and 0% to 28.9%, respectively. For the stress com-
ponent σy, the increase of the closure amount makes the
absolute value of the maximum value decrease and the abso-
lute value of the minimum value increases by 79.6% and
14.9%, respectively.
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Figure 22: The contour plot of σx around the crack: (a) λ = 0:6, Δa/a = 0:33; (b) λ = 0:4, Δa/a = 0:50; (c) λ = 0:3, Δa/a = 0:67; and (d) λ = 0:2
, Δa/a = 1.
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Figure 23: The contour plot of σy around the crack: (a) λ = 0:6, Δa/a = 0:33; (b) λ = 0:4, Δa/a = 0:50; (c) λ = 0:3, Δa/a = 0:67; and (d) λ = 0:2
, Δa/a = 1.
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Figure 24: The contour plot of τxy around the crack: (a) λ = 0:6, Δa/a = 0:33; (b) λ = 0:4, Δa/a = 0:50; (c) λ = 0:3, Δa/a = 0:67; and (d) λ
= 0:2, Δa/a = 1.
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5.2. The Influence of Closure Amount under Variable Stress.
Besides under constant stress, this section will deal with
the influence of closure amount on the evolution of the
stress field under variable stress. Considering the conven-
tional loading path shown in Figure 20, the confining pres-
sure coefficient λ = 1 in the initial state and gradually
decreases for a gradually applied stress σ1. Due to the exis-
tence of the confining pressure, the coefficient is close to 0,
but not 0.

It is assumed that the closure amount varies linearly with
the increase of vertical stress, that is

Δa/a = σ1/σmax
1 , ð68Þ

where the σmax
1 is the maximum vertical stress applied dur-

ing loading. Let σ3 = 20MPa and σmax
1 = 100MPa; thus, the

closure amount is 0.2 at the initial state of loading and grad-
ually becomes larger and tends to be 1 as gradually applied
stress σ1. Combining the confining pressure coefficient, it
can be summarized that the confining pressure coefficient

λ gradually decreases while the closure amount Δa/a gradu-
ally increases as the loading proceeds.

The Equations (8) and (9) illustrate that the relative slid-
ing of the crack surfaces in the closed region requires a par-
ticular condition. Consequently, Figure 21 shows the
relationship between the stress intensity factor K II and con-
fining pressure coefficient λ. As can been seen from the fig-
ure, the stress intensity factor K II ≤ 0 when 0:68 ≤ λ ≤ 1,
indicating that the shear stress on the closed surfaces is less
than the frictional resistance, so that no relative sliding of
crack surfaces occurs and the stress field model is not appli-
cable. Nevertheless, the stress intensity factor is more than 0
when λ in the range of 0:2 ≤ λ < 0:68, and the stress field
model is applicable since relative sliding of crack surfaces
occurs.

Similarly, a finite domain with a size of 70 × 70mm2

contains a crack with length of 20mm, and inclination angle
of 30° was also selected as the observed area. The distribu-
tions of the three stress components around the crack were
investigated at the confining pressure coefficients of 0.6,
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Figure 25: Comparison of stress components on a circle with radius of 0.05mm around the crack tip at different closures and confining
pressure coefficients: (a) σx ; (b) σy ; and (c) τxy .
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0.4, 0.3, and 0.2, respectively, and the corresponding vertical
stresses were 33.33MPa, 50MPa, 66.67MPa and 100MPa,
respectively, and the corresponding closure amounts were
0.33, 0.50, 0.67, and 1.00, respectively. The variations of
the contour plots around the crack of the three stress com-
ponents σx, σy, and τxy during the loading process are shown
in Figures 22, 23, and 24, respectively.

The distributions of the three stress components exhibit
apparently different characteristics at various confining pres-
sure coefficients, as can be seen from Figures 22–24. For the
three stress components, the distribution of their contour
plots in the observed area has a uniform character, and slight
stress concentration effect occurs at the crack tip. As the
loading proceeds, there is stress concentration effect in the
area near the tip which is more relatively obvious in magni-
tude compared to the area far from the tip. For the stress
components σx and σy , the high stress and low stress regions
are distributed on both sides of the crack tip, respectively.
For a gradually applied stress σ1, the high stress region grad-
ually transforms into a relatively low stress, while the low
stress region gradually transforms into a relatively high
stress. Finally, most of the observed area is distributed with
low stress. For the stress component τxy , it is on the both
sides of crack surface where the low stress is distributed,
but on the two tips where the high stress is distributed. As
the loading proceeds, the tendencies of stress both in both
sides of crack surface and the area near the tip will preferably
decrease. To conclude, it can be considered that the stress
around the crack surface and near the tip, whether in the
region of high stress or low stress, tends to transform into
a lower stress as the loading progresses.

As the closure amount Δa/a increases and confining
pressure coefficient decreases during the loading progress,
the variation of the stress component on a radius of
0.05mm circle around the crack tip is displayed in
Figure 25. At the initial state, the magnitudes of three com-
ponent stresses changed a little on the circle around the tip
due to the large confining pressure coefficient, although clo-
sure amount is relatively small. As the loading proceeds, the
component stress fluctuates significantly with the angle θ.
Specifically, it can be clearly observed that when the closure
amount changes from 0.33 to 1 together with the confining
pressure coefficient changes from 0.6 to 0.2, the maximum
absolute values of the extreme values of the three stress com-
ponents are 8.7, 6.3, and 9.1 times of the initial state,
respectively.

The above analysis sufficiently demonstrates that the clo-
sure amount of crack has a significant effect on the evolution
of the stress field, and it is necessary to consider the change
in closure caused by the boundary stress during the com-
pression loading, which will be certainly helpful to have a
better and a more accurate understanding of the fracture
behavior of cracks inside of the structure.

6. Conclusions

A prediction model for stress fields around the semiclosed
crack in deep-water structures is innovatively developed in

this study, where the compressive and frictional effects
between crack surfaces, as well as the closure amount in
the closed region, are comprehensively considered. The fol-
lowing conclusions can be drawn:

(1) The stress fields around the semiclosed crack under
compression are derived based on the boundary con-
ditions, which include both singular terms contain-
ing the stress intensity factor KII and nonsingular
terms containing the three T-stresses (Tx, Ty , and
Txy). These terms are critically related to deep-
water pressure, friction coefficient, and closure
amount in the closed region. Furthermore, the fact
that KI singularity does not exist in the crack tip
under compression is proved theoretically

(2) According to comparisons between isochromatic
fringe patterns obtained from the experiments and
the proposed model herein, predicted results are in
excellent agreements with the experimental ones,
demonstrating that the proposed model can accu-
rately and reasonably predict the actual stress field
of semiclosed crack than the previous models

(3) The closure amount of the crack surfaces is one of
the key factors for determining the stress fields
around the crack. With the increase of the closure
amount, the stress of each component around the
crack always tends to change to the lower stress.
Under the condition of constant stress, the degree
of stress concentration at the tip is negatively corre-
lated with the closure amount. However, under the
variable stress, a positive correlation is presented
between the closure amount and the degree of stress
concentration at the tip
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