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In this paper, we introduce new coincidence fixed point theorems for generalized ðϕ, ψÞ-contractive mappings fulfilling kind of an
admissibility provision in a Hausdorff b-rectangular metric space with the support of C-functions. We applied our results to
establish the existence of a solution for some integralitions. Finally, an example is presented to clarify our theorem.

1. Introduction

One of the main results in the development area of fixed
point theorems is the Banach contraction principle [1]. It
has been evolutionized and generalized in several directions.
From those directions, we faced some new kinds of metric
spaces in literature as the one established by Branciari [2]
and gave the principle of a rectangular metric space in which
the replacement of the triangle inequality with a weaker
hypothesis called quadrilateral inequality and an analogue
of the Banach contraction principle is shown. Then next,
fixed point results in these spaces were studied by many
authors. For more informations on fixed point theorems,
in rectangular metric space, see [3–10]. In fact, a contraction
principle in rectangulat b-metric space and its properties
appeared by George [11]. Many definitions of various math-
ematical concepts and terms in rectangular b-metric space
can be found in [12–19]. Separation of the Hausdorff space
from rectangular b-metric space is not useful for our theo-
rem, as Hausdorff space plays an important role in Theorem
16 and its corollaries. On another hand, Samet in [20] intro-
duced the principle of (ϕ, ψ)-contractive mapping. Newly,

two separate evaluations of α-admissible mapping were
introduced in which the researcher Ansari in [21] used the
notion of C-functions, whereas Budhia et al. in [22] used a
rectangular metric space. By ideas from [21, 22], we prove
several coincide fixed point results in rectangular b-metric
space. That should be considered as development of [23],
which are applied to find the existence and uniqueness of a
solution for many problems in different mathematical
branches. Moreover, one of the most attractive research sub-
jects in fixed point theorem is the investigation of the exis-
tence and uniqueness of coincidence points of various
operators in the setting of metric spaces (see [24–29]).

2. Mathematical Preliminaries

We recall some basic notions and needful results on the
work in the literature.

Definition 1 (see [2]). Suppose X is a nonempty set. A func-
tion d : X × X⟶ ½0,∞Þ is a rectangular metric (RM) on X
if, for all s1, s2 ∈ X and all distinct points r1, r2 ∈ X such that
r1, r2 ∉ fs1, s2g, the following terms hold
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(i) dðs1, s2Þ = 0, if and only if s1 = s2
(ii) dðs1, s2Þ = dðs2, s1Þ
(iii) dðs1, r1Þ ≤ dðs1, r2Þ + dðr2, s2Þ + dðs2, r1Þ (rectangu-

lar inequality)

Then, ðX, dÞ is called a rectangular-metric space.

Definition 2 (see [11, 30]). Let X be a nonempty set and the
mapping d : X × X⟶ ½0,∞Þ satisfies

(i) dðs1, s2Þ = 0, if and only if s1 = s2 for all s1, s2 ∈ X

(ii) dðs1, s2Þ = dðs2, s1Þ for all s1, s2 ∈ X
(iii) there exists a real number b ≥ 1 such that

d s1, r1ð Þ ≤ b d s1, r2ð Þ + d r2, s2ð Þ + d s2, r1ð Þ½ �, b‐rectangularinequalityð Þ
ð1Þ

For all s1, s2 ∈ X and all ðr1 ≠ r2Þ ∉ fs1, s2g.
Then, d is called a bRM on X and ðX, dÞ is called a rect-

angular b-metric space with coefficient b.

Remark 3 (see [31]). The type of rectangular b-metric space
is greater than the type of metric space, where a b-metric
space is a metric space when b = 1.

Example 1 (see [31]). Let X =ℝ and d : X × X ⟶ℝ+, such
that dðs1, s2Þ = js1 − s2j3. Then, ðX, dÞ is a bMS, with b = 3.

Remark 4 (see [11]). Every metric space is a rectangular met-
ric space, and every rectangular metric space is a rectangular
b-metric space, with b = 1. However, the opposite of imply-
ing above is not valid.

Example 2 (see [11]). Suppose, X =ℕ and d : X × X ⟶ X
as

d s1, s2ð Þ =
0, if s1 = s2,

4η, if s1, s2 ∈ 1, 2f g, s1 ≠ s2,

η, if s1ors2∈ 1, 2f g, s1 ≠ s2:

8>><
>>:

ð2Þ

Consider η ∈ ð0,∞Þ. Hence, ðX, dÞ is a rectangular b
-metric space, with b = 4/3, but ðX, dÞ is not rectangular
metric space, take

d 1, 2ð Þ = 4η > 3η = d 1, 3ð Þ + d 3, 4ð Þ + d 4, 2ð Þ: ð3Þ

In 1914, German mathematician Felix Hausdorff [32]
defined a new distance idea called Hausdorffmetric, denoted
by HðX, YÞ, as

H X, Yð Þ =max �δ X, Yð Þ, �δ Y , Xð Þ� �
, ð4Þ

where

�δ X, Yð Þ =max δ s, Yð Þ: s ∈ Xf g: ð5Þ

The Hausdorff distance is the largest one of all the dis-
tances measured from one set to another.

Definition 5 (see [33]). A Hausdorff space H is a topological
space where for any two distinct points s1, s2 ∈H, there exist
neighbourhoods of each are disjoint from each other.

Definition 6 (see [11]). Let ðX, dÞ be a rectangular b-metric
space, fnig be a sequence in X, and n ∈ X. Then,

(i) a sequence fsig is said to be convergent in ðX, dÞ
and converges to s, if for all ε > 0 there exists i0 ∈
ℕ such that dðsi, sÞ < ε, for all i > i0 and this truth
is acted via lim

i⟶∞
fsig = s or fsig⟶ s as i⟶∞

(ii) a sequence fsig is said to be Cauchy sequence in ð
X, dÞ if for all ε > 0 there exists i0 ∈ℕ such that dð
si, si+ηÞ < ε, for all i > i0, η > 0 or equivalently, if
lim
i⟶∞

dðsi, si+ηÞ = 0, for all η > 0

(iii) ðX, dÞ is said to be a complete rectangular b-metric
space if every Cauchy sequence in X converges to
some s ∈ X

The next lemmas are helpful in providing principle
outcomes.

Lemma 7 (see [34]). Let ðX, dÞ be a rectangular b-metric
space with b ≥ 1 and let fsig be a Cauchy sequence in X such
that si ≠ sj when it was i ≠ j. Then, fsig be able convergence at
most one point.

Lemma 8 (see [34]). Let ðX, dÞ be a rectangular b-metric
space with b ≥ 1.

(i) Suppose that the sequences fsig, frig ∈ X where si
⟶ s, ri ⟶ r as i⟶∞, such that si ≠ s, ri ≠ r, for
all i ∈ℕ. Thus, we have

1
b
d s, rð Þ ≤ lim

i⟶∞
inf d si, rið Þ ≤ lim

i⟶∞
sup d si, rið Þ ≤ bd s, rð Þ

ð6Þ

(ii) Suppose s,m ∈ X and fsig are a Cauchy sequence in
X where si ≠ sj, for all i, j ∈ℕ, i ≠ j. where si ⟶ s, sj
⟶mas i, j⟶∞,s ≠m. Thus, we have
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1
b
d s,mð Þ ≤ lim

i⟶∞
inf d si,mð Þ ≤ lim

i⟶∞
sup d si,mð Þ ≤ bd s,mð Þ,

1
b
d m, sð Þ ≤ lim

i⟶∞
inf d sj, s

� �
≤ lim

i⟶∞
sup d sj, s

� �
≤ bd m, sð Þ

ð7Þ

Definition 9 (see [35, 36]). Let F : X⟶ X be a self-mapping
on a metric space ðX, dÞ and let α : X × X⟶ ½0,∞Þ be a
function. F is called a α-admissible function if

α Fs1, Fs2ð Þ ≥ 1whenever α s1, s2ð Þ ≥ 1,∀s1, s2 ∈ X: ð8Þ

Definition 10 (see [35, 36]). Let F be a self-mapping on a
metric space ðX, dÞ. A map F is called a (ϕ, ψ)-contractive
mapping if there exist two functions ϕ : X × X⟶ ½0,∞Þ
and ψ : ½0,+∞Þ⟶ ½0,+∞Þ such that

ϕ s1, s2ð Þd Fs1, Fs2ð Þ ≤ ψ s1, s2ð Þ∀s1, s2 ∈ X, ð9Þ

where ψ is a nondecreasing functions such that ∑∞
i=1ψ

iðtÞ
< +∞,∀t > 0, where ψi is the ith iteration of ψ.

For more informations for α-admissible and (ϕ, ψ
)-contractive mappings, see [35–37].

Definition 11 (see [38]). Let T be a self-mapping on a metric
space ðX, dÞ and let α, η : X × X⟶ ½0,∞Þ are two map-
pings. A function T is called α-admissible with regard to η if

α Ts1, Ts2ð Þ ≥ η Ts1, Ts2ð Þwhere α s1, s2ð Þ ≥ η s1, s2ð Þ,∀s1, s2 ∈ X:
ð10Þ

Observe that, if αðs1, s2Þ = 1, ∀s1, s2 ∈ X. Thus, this defi-
nition led to Definition 9. Likewise, if we pick αðs1, s2Þ = 1,
then we state that T is a η-subadmissible functions.

Definition 12 ([21]). A C-function ϑ : ½0,∞Þ × ½0,∞Þ⟶ℝ
is a continuous functions such that

(i) ϑðs1, s2Þ ≤ s1

(ii) ϑðs1, s2Þ = s1 ⇒ s1 = 0 or s2 = 0

For all s1, s2 ∈ ½0,∞Þ.

Definition 13 (see [39]). A nondecreasing continuous map
ϕ : ½0,∞Þ⟶ ½0,∞Þ is called an altering distance mapping
whenever ϕðβÞ = 0⇔ β = 0.

Definition 14 (see [29]). Let ðX, dÞ be a rectangular metric
space and let α, η in Definition 10. X is said to be α-orderly
with respect to η if for fsig ∈ X with αðsi, si+1Þ ≥ ηðsi, si+1Þ, for
all i ≥N where si ⟶ s as i⟶∞; therefore, αðsi, sÞ ≥ ηðsi, sÞ
, for all i ≥N .

Remark 15. In altering the type of distance mapping, we
denoted it by symbol Φ.

In the next section, we present a new coincide FPT by
the generalization (ϕ, ψ)-contractive mappings on rectangu-
lar b-metric space fulfilling α-admissibility by the concept of
C-functions.

A lot of authors used altering functions to prove the exis-
tence and uniqueness of the fixed point; see [3, 22, 34]. We
will use generalizing some of them to prove our results.

3. Main Results

We will introduce new results of coincide fixed point in
RMS. Let us start with the following.

Theorem 16. Let ðX, dÞ be a Hausdorff rectangular b-metric
space, with ðb ≥ 1Þ. Assume that T , F : X ⟶ X be an α
-admissible function with respect to η such that TX ⊂ FX.
Assume that ðFX, dÞ is a complete rectangular metric space.
Let Θ ∈ C-functions and ϕ, ψ ∈Φ such that, for all s1, s2 ∈
X,

α Fs1, Fs2ð Þ ≥ η Fs1, Fs2ð Þ⇒ ϕ
1
b
d Ts1, Ts2ð Þ

� �

≤Θ ϕ ϑ Fs1, Fs2ð Þð Þ, ψ ϑ Fs1, Fs2ð Þð Þ½ �,
ð11Þ

where

Let that

(a) αðFs1, Fs2Þ ≥ ηðFs1, Fs2Þ and αðFs2, Fs3Þ ≥ ηðFs2, Fs3
Þ⇒ αðFs1, Fs3Þ ≥ ηðFs1, Fs3Þ, for all s1, s2, s3 ∈ X

(b) either T is continuous or X is α-orderly with respect
to η

Then, there exist w ∈ X such that Tkw = Fkw, for some
k ∈ℕ; i.e., w is a periodic point. If all periodic point w

satisfies

α Fw, Twð Þ ≥ η Fw, Twð Þ, ð13Þ

we can decide that T and F have a fixed point. The fixed
point is unique if for all z1, z2 ∈ΘðTÞ = fw ∈ X : Fw = Tw
=wg, such that

α Fz1, Fz2ð Þ ≥ η Fz1, Fz2ð Þ: ð14Þ

ϑ Fs1, Fs2ð Þ = sup
1
b
d Fs1, Fs2ð Þ, 1

b
d Fs1, Ts1ð Þ, 1

b
d Fs2, Ts2ð Þ, d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Fs1, Fs2ð Þ ,
d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Ts1, Ts2ð Þ
� 	

: ð12Þ

3Advances in Mathematical Physics



Proof. We shall prove the existence of coincide point of T
and F. Assume that s0 ∈ X be an arbitrary point such that

α Fs0, Ts0ð Þ ≥ η Fs0, Ts0ð Þ: ð15Þ

Consider the iteration

Tsi = Fsi+1 = vi, ð16Þ

such that vi ≠ vi+1, for all i ∈ℕ. Since T satisfied Defini-
tion 11 and by (16) using (15), we have

α vi, vi+1ð Þ ≥ η vi, vi+1ð Þ,∀i ∈ℕ: ð17Þ

In the beginning, we will show that dðvi, vi+1Þ⟶ 0, as i
⟶∞; i.e., dðvi, vi+1Þ is nonincreasing.

By (11), we get

ϕ
1
b
d vi, vi+1ð Þ

� �
= ϕ d Tsi, Tsi+1ð Þð Þ

≤Θ ϕ ϑ Fsi, Fsi+1ð Þð Þ, ψ ϑ Fsi, Fsi+1ð Þð Þ½ �,
ð18Þ

where

ϑ Fsi, Fsi+1ð Þ = sup

1
b
d Fsi, Fsi+1ð Þ, 1

b
d Fsi, Tsið Þ, 1

b
d Fsi+1, Tsi+1ð Þ,

d Fsi, Tsið Þd Fsi+1, Tsi+1ð Þ
b + bd Fsi, Fsi+1ð Þ ,

d Fsi, Tsið Þd Fsi+1, Tsi+1ð Þ
b + bd Tsi, Tsi+1ð Þ

8>>><
>>>:

9>>>=
>>>;

= sup

1
b
d Fsi, Fsi+1ð Þ, 1

b
d Fsi, Fsi+1ð Þ, 1

b
d Fsi+1, Fsi+2ð Þ,

d Fsi, Fsi+1ð Þd Fsi+1, Fsi+2ð Þ
b + bd Fsi, Fsi+1ð Þ ,

d Fsi, Fsi+1ð Þd Fsi+1, Fsi+2ð Þ
b + bd Fsi+1, Fsi+2ð Þ

8>>><
>>>:

9>>>=
>>>;

= sup

1
b
d vi−1, við Þ, 1

b
d vi−1, við Þ, 1

b
d vi, vi+1ð Þ,

d vi−1, við Þd vi, vi+1ð Þ
b + bd vi−1, við Þ ,

d vi−1, við Þd vi, vi+1ð Þ
b + bd vi, vi+1ð Þ

8>>><
>>>:

9>>>=
>>>;

= sup
1
b
d vi−1, við Þ, 1

b
d vi, vi+1ð Þ

� 	
:

ð19Þ

We have two cases.

Case 1. If ϑðFsi, Fsi+1Þ = ð1/bÞdðvi−1, viÞ for some i ∈ℕ.
Thus, inequality (18) will become

ϕ
1
b
d vi, vi+1ð Þ

� �
≤Θ ϕ

1
b
d vi−1, við Þ

� �
, ψ 1

b
d vi−1, við Þ

� �
 �
,

≤ ϕ
1
b
d vi−1, við Þ

� �

ð20Þ

Since ϕ ∈Φ and ϕ is nondecreasing function,

1
b
d vi, vi+1ð Þ ≤ 1

b
d vi−1, við Þ ð21Þ

was obtained; fdðvi, vi+1Þg is a nonincreasing sequence
which v1 ≥ 0 and satisfies

lim
i⟶∞

d vi, vi+1ð Þ = v1,

lim
i⟶∞

ϑ vi−1, við Þ = v1:
ð22Þ

Also, since ϕ, ψ are continuous functions,

lim
i⟶∞

ϕ d vi, vi+1ð Þð Þ ≤ lim
i⟶∞

Θ ϕ ϑ vi−1, við Þð Þ, ψ ϑ vi−1, við Þð Þ½ �

=Θ lim
i⟶∞

ϕ ϑ vi−1, við Þð Þ, lim
i⟶∞

ψ ϑ vi−1, við Þð Þ
h i

:

ð23Þ

Thus,

ϕ v1ð Þ ≤Θ ϕ v1ð Þ, ψ v1ð Þ½ � ≤ ϕ v1ð Þ: ð24Þ

By Definition 13, we get v1 = 0; hence,

lim
i⟶∞

d vi, vi+1ð Þ = 0: ð25Þ

Case 2. If ϑðFsi, Fsi+1Þ = ð1/bÞdðvi, vi+1Þ for some i ∈ℕ.
Thus, inequality (18) becomes

ϕ
1
b
d vi, vi+1ð Þ

� �
≤Θ ϕ

1
b
d vi+1, við Þ

� �
, ψ

1
b
d vi+1, við Þ

� �
 �

≤ ϕ
1
b
d vi+1, við Þ

� �
:

ð26Þ

By Definition 13 we get either ϕðð1/bÞdðvi+1, viÞÞ = 0 or
ψðð1/bÞdðvi+1, viÞÞ = 0 and then ð1/bÞdðvi+1, viÞ = 0, but this
is a contradiction with vi+1 ≠ vi.

In the next step, we will show that ð1/bÞdðvi, vi+2Þ⟶
0, as i⟶∞.

By (11), we have

ϕ
1
b
d vi, vi+2ð Þ

� �
= ϕ

1
b
d Tsi, Tsi+2ð Þ

� �

≤Θ ϕ ϑ Fsi, Fsi+2ð Þð Þ, ψ ϑ Fsi, Fsi+2ð Þð Þ½ �
≤ ϕ ϑ Fsi, Fsi+2ð Þð Þ:

ð27Þ

Well, it could be

ϕ
1
b
d vi, vi+2ð Þ

� �
≤ ϕ ϑ Fsi, Fsi+2ð Þð Þ ð28Þ
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since ϕ is altering distance. We find that

1
b
d vi, vi+2ð Þ ≤ ϑ Fsi, Fsi+2ð Þ

= sup

1
b
d Fsi, Fsi+2ð Þ, 1

b
d Fsi, Tsið Þ, 1

b
d Fsi+2, Tsi+2ð Þ,

d Fsi, Tsið Þd Fsi+2, Tsi+2ð Þ
b + bd Fsi, Fsi+2ð Þ ,

d Fsi, Tsið Þd Fsi+2, Tsi+2ð Þ
b + bd Tsi, Tsi+2ð Þ

8>>><
>>>:

9>>>=
>>>;

= sup

1
b
d vi−1, vi+1ð Þ, 1

b
d vi−1, við Þ, 1

b
d vi+1, vi+2ð Þ,

d vi−1, við Þd vi+1, vi+2ð Þ
b + bd vi−1, vi+1ð Þ ,

d vi−1, við Þd vi+1, vi+2ð Þ
b + bd vi, vi+2ð Þ

8>>><
>>>:

9>>>=
>>>;

≤ sup
1
b
d vi−1, vi+1ð Þ, 1

b
d vi−1, við Þ, 1

b
d vi+1, vi+2ð Þ,

d vi−1, við Þd vi+1, vi+2ð Þ, d vi−1, við Þd vi+1, vi+2ð Þ

8><
>:

9>=
>;

≤ sup
1
b
d vi−1, vi+1ð Þ + d vi−1, við Þ + d vi+1, vi+2ð Þ½ �, d vi−1, við Þd vi+1, vi+2ð Þ

� 	

= sup d vi, vi+2ð Þ, d vi−1, við Þd vi+1, vi+2ð Þf g:
ð29Þ

We obtain ϑðFsi, Fsi+2Þ = dðvi, vi+2Þ, when i⟶∞.
Therefore, by (27)

ϕ lim
i⟶∞

d vi, vi+2ð Þ
� 

≤Θ ϕ lim
i⟶∞

ϑ Fsi, Fsi+2ð Þ
� 

, ψ lim
i⟶∞

ϑ Fsi, Fsi+2ð Þ
� h i

≤ ϕ lim
i⟶∞

ϑ Fsi, Fsi+2ð Þ
�

= lim
i⟶∞

ϕ d vi, vi+2ð Þð Þ:

ð30Þ

Consequently, by Definition 13, we get

lim
i⟶∞

d vi, vi+2ð Þ⟶ 0, as i⟶∞: ð31Þ

The next lemma is useful for the rest and its proof is clas-
sical. We omit it.

Lemma 17. Let ðX, dÞ be a rectangular b-metric space with
b ≥ 1 and let fvig be a sequence in X such that

lim
i⟶∞

vi, vi+1ð Þ = lim
i⟶∞

vi, vi+2ð Þ = 0, ð32Þ

where vi ≠mj, for all i ≠ j. If fvig is not a b-Cauchy sequence,
then there exist ε > 0 and two subsequences viðkÞ, vjðkÞ ⊂ fvig,
where iðkÞ > jðkÞ > k, k ∈ℕ. Also,

d vi kð Þ, vj kð Þ
� 

≥ bε,

d vi kð Þ, vj kð Þ−1
� 

≤ bε,
ð33Þ

such that for the next sequences

d vi kð Þ, vj kð Þ
� 

, d vi kð Þ−1, vj kð Þ
� 

, d vi kð Þ, vj kð Þ−1
� 

, d vi kð Þ+1, vj kð Þ+1
� 

,

ð34Þ

it satisfies

ε ≤ lim
i⟶∞

inf d vi kð Þ, vj kð Þ
� 

≤ lim
i⟶∞

sup d vi kð Þ, vj kð Þ
� 

≤ bε,

ε ≤ lim
i⟶∞

inf d vi kð Þ−1, vj kð Þ
� 

≤ lim
i⟶∞

sup d vi kð Þ−1, vj kð Þ
� 

≤ b3ε,

ε ≤ lim
i⟶∞

inf d vi kð Þ, vj kð Þ
� 

≤ lim
i⟶∞

sup d vi kð Þ, vj kð Þ
� 

≤ b3ε,

ε ≤ lim
i⟶∞

inf d vi kð Þ−1, vj kð Þ−1
� 

≤ lim
i⟶∞

sup d vi kð Þ−1, vj kð Þ−1
� 

≤ b5ε:

ð35Þ

Now, replace s1 by xik and s2 by xjk in (11). Then,

ϕ
1
b
d vjk , vik
� � �

= ϕ
1
b
d Tsjk , Tsik
� � �

≤Θ ϕ ϑ Fsjk , Fsik
� � 

, ψ ϑ Fsjk , Fsik
� � h i

,

ð36Þ

where

ϑ Fsjk , Fsik
� 

= sup

1
b
d Fsjk , Fsik
� 

,
1
b
d Fsjk , Tsjk
� 

,
1
b
d Fsik , Tsik
� �

,

d Fsjk , Tsjk
� 

d Fsik , Tsik
� �

b + bd Fsjk , Fsik
�  ,

d Fsjk , Tsjk
� 

d Fsik , Tsik
� �

b + bd Tsjk , Tsik
� 

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

= sup

1
b
d vjk−1 , vik−1
� 

,
1
b
d vjk−1 , vjk
� 

,
1
b
d vik−1 , vik
� �

,

d vjk−1 , vjk
� 

d vik−1 , vik
� �

b + bd vjk−1 , vik−1
�  ,

d vjk−1 , vjk
� 

d vik−1 , vik
� �

b + bd vjk , vjk
� 

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

= sup b4ε, 0, 0, 0, 0
� �

:

ð37Þ

Taking k⟶∞ in (36), we obtain

0 ≤ ϕ b4ε
� �

≤Θ ϕ b4ε
� �

, ψ b4ε
� �� �

≤ ϕ b4ε
� �

: ð38Þ

This implies that ϕðb4εÞ = 0 or ψðb4εÞ = 0; thus, ε = 0,
but this is a contradiction with the fact ε > 0. Hence, fvig
is a Cauchy sequence in a rectangular b-metric space. Since
ðFX, dÞ is complete in a rectangular b-metric space, then
there exist s ∈ FX such that vi ⟶ s as i⟶∞.

For the case that T is continuous and by relation (16) we
have

lim
i⟶∞

Tvi = lim
i⟶∞

Fvi+1 ⟶ Ts: ð39Þ

X is Hausdorff; then Ts = Fs. Hence, T and F have a
common fixed point. On the other case, assume that X is α
-orderly with respect to η, then from αðFvi, FwÞ ≥ ηðFvi, F
sÞ, for all i ∈ℕ we have

ϕ
1
b
d Tvi, Tsð Þ

� �
≤Θ ϕ ϑ Fvi, Fsð Þð Þ, ψ ϑ Fvi, Fsð Þð Þ½ �, ð40Þ
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where

Since fvig⟶ swhere i⟶∞.

lim
i⟶∞

ϑ Fvi, Fsð Þ = d Fs, Tsð Þ: ð42Þ

Then, dðFs, TsÞ = 0 and Fs = Ts. Hence, T and F have a
periodic coincide fixed point.

Now, we will prove that T and F have a coincide fixed
point. Assume that v1 ∈ X is the coincide of T and F such
that v1 = Tks = Fks. When k = 1, then v1, is a coincide of T
and F. We shall show v2 = Tk−1s = Fk−1s is the coincide of
T and F in case k > 1. Assume that Tk−1s ≠ Tks and Fk−1s

≠ Fks, for all k > 1, such that αðFs, TsÞ ≥ ηðFs, TsÞ for a peri-
odic point s. Therefore, from (11) and (12),

ϕ
1
b
d Tk−1s, Tks
� � �

≤Θ ϕ ϑ FTk−2s, FTk−1s
� � 

, ψ ϑ FTk−2s, FTk−1s
� � h i

≤Θ ϕ ϑ FFk−2s, FFk−1s
� � 

, ψ ϑ FFk−2s, FFk−1s
� � h i

=Θ ϕ ϑ Fk−1s, Fks
� � 

, ψ ϑ Fk−1s, Fks
� � h i

,

ð43Þ

where

Take ϑðFk−1s, FksÞ = ð1/bÞdðFk−1s, FksÞ. Then,

ϕ
1
b
d Tk−1s, Tks
� � �

≤Θ ϕ
1
b
d Fk−1s, Fks
� � �

, ψ
1
b
d Fk−1s, Fks
� � �
 �

≤Θ ϕ
1
b
d Fk−1s, Fks
� � �
 �

:

ð45Þ

Either ϕðð1/bÞdðFi−1s, FisÞÞ = 0 orψðð1/bÞdðFi−1s, FisÞÞ
= 0, i.e., dðFi−1s, FisÞ = 0; this leads to Fi−1s = Fis which is
a contradiction. Hence, our assumption that v2 = Ti−1s is a
coincide fixed point of T and F is not true. Accordingly, T
and F have a coincide fixed point.

To make sure the uniqueness of the coincide fixed point,
let us assume that v1, v2 ∈ X such that w1 ≠w2 are two coin-
cide fixed points of T and F. By the inequality αðFv1, Fv2Þ

≥ ηðFv1, Fv2Þ and (11) and (12), we get

ϕ
1
b
d Fv1, Fv2ð Þ

� �
= ϕ

1
b
d Tv1, Tv2ð Þ

� �

≤Θ ϕ ϑ Fv1, Fv2ð Þð Þ, ψ ϑ Fv1, Fv2ð Þð Þ½ �,
ð46Þ

where

ϑ Fv1, Fv2ð Þ = sup
d Fv1, Fv2ð Þ, d Fv1, Tv1ð Þ, d Fv2, Tv2ð Þ,

d Fv1, Tv1ð Þd Fv2, Tv2ð Þ
b + bd Fv1, Fv2ð Þ ,

d Fv1, Fv2ð Þd Tv1, Tv2ð Þ
b + bd Tv1, Tv2ð Þ

8><
>:

9>=
>;

= sup

1
b
d v1, v2ð Þ, 1

b
d v1, v1ð Þ, 1

b
d v2, v2ð Þ,

d v1, v1ð Þd v2, v2ð Þ
b + bd v1, v2ð Þ ,

d v1, v2ð Þd v1, v2ð Þ
b + bd v1, v2ð Þ

8>>><
>>>:

9>>>=
>>>;
:

ð47Þ

ϑ Fvi, Fsð Þ = sup
1
b
d Fvi, Fsð Þ, 1

b
d Fvi, Tvið Þ, 1

b
d Fs, Tsð Þ, d Fvi, Tvið Þd Fs, Tsð Þ

b + bd Fvi, Fsð Þ ,
d Fvi, Tvið Þd Fs, Tsð Þ

b + bd Tvi, Tsð Þ
� 	

= sup
1
b
d Fs, Fsð Þ, 1

b
d Fs, Tsð Þ, 1

b
d Fs, Tsð Þ

� 	
:

ð41Þ

ϑ Fk−1s, Fks
� 

= sup

1
b
d Fk−1s, Fks
� 

,
1
b
d Fk−1s, TFk−2s
� 

,
1
b
d Fks, TFi−1s
� 

,

d Fk−1s, TFk−2s
� �

d Fks, TFk−1s
� �

b + bd Fk−1s; ;Fks
� � ,

d Fk−1s, TFk−2s
� �

d Fis, TFk−1s
� �

b + bd TFk−1s, TFk−2s
� �

8>>>><
>>>>:

9>>>>=
>>>>;

= sup

1
b
d Fk−1s, Fks
� 

,
1
b
d Fk−1s, Tk−1s
� 

,
1
b
d Fks, Tis
� 

,

d Fk−1s, Fks
� �

d Fks, Tks
� 

b + bd Fk−1s; ;Fks
� � ,

d Fk−1s, Fks
� �

d Fks, Tks
� 

b + bd Tks, Tk−1s
� 

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

=
1
b
d Fk−1s, Fks
� 

:

ð44Þ
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Then, ϑðFv1, Fv2Þ = ð1/bÞdðv1, v2Þ. Applying it in (46),
we get

ϕ
1
b
d Fv1, Fv2ð Þ

� �
= ϕ

1
b
d Tv1, Tv2ð Þ

� �

≤Θ ϕ
1
b
d v1, v2ð Þ

� �
, ψ

1
b
d v1, v2ð Þ

� �
 �

≤ ϕ
1
b
d v1, v2ð Þ

� �
:

ð48Þ

Thus, either ϕðð1/bÞdðv1, v2ÞÞ = 0 or ψðð1/bÞdðv1, v2ÞÞ
= 0, which implies that dðv1, v2Þ = 0. Hence, v1 = v2. This
proves the uniqueness coincide fixed point of T and F
on X.

Corollary 18. Let ðX, dÞ be a complete Hausdorff rectangular
b-metric space, with b ≥ 1. Let T , F : X × X be a self-mapping
such that TX ⊂ FX satisfies

For all s1, s2 ∈ X, such that 0 ≤ η < 1. Then, T and F have
a unique coincide fixed point in X.

Corollary 19. Let ðX, dÞ be a complete Hausdorff rectangular
b-metric space, with b ≥ 1. Let T , F : X × X be a self-
mappings such that TX ⊂ FX satisfies

d Ts1, Ts2ð Þ ≤ η

1
b
d Fs1, Fs2ð Þ + d Fs1, Ts1ð Þ + d Fs2, Ts2ð Þ½ � +

d Fs1, Ts1ð Þd Fs2, Ts2ð Þ
b + bd Fs1, Fs2ð Þ +

d Fs1, Ts1ð Þd Fs2, Ts2ð Þ
b + bd Ts1, Ts2ð Þ

8>><
>>:

9>>=
>>;
:

ð50Þ

For all s1, s2 ∈ X such that 0 ≤ η < 1. Then, T and F have a
unique coincide fixed point in X.

Corollary 20. Let ðX, dÞ be a complete bRMS Hausdorff, with
b ≥ 1. Let T , F : X × X be the self-mappings such that TX ⊂
FX satisfies

d Ts1, Ts2ð Þ ≤Θ ϑ Fs1, Fs2ð Þ, ψ ϑ Fs1, Fs2ð Þð Þ½ �, ð51Þ

where

For all s1, s2 ∈ X such that 0 ≤ η < 1. Then, T and F have a
unique coincide fixed point in X.

Theorem 21. Let ðX, dÞ be a complete Haudorff rectangular b
-metric space, with b ≥ 1. Let T , F : X⟶ X be the self-

mappings such that TX ⊂ FX satisfies

d Ts1, Ts2ð Þ ≤Θ ϕ ϑ Fs1, Fs2ð Þð Þ, ψ ϑ Fs1, Fs2ð Þð Þ½ �: ð53Þ

For all s1, s2 ∈ X and ϕ, ψ ∈Φ, such that

Then, T and F have a unique coincide fixed point.

Proof. Assume that s0 ∈ X be an arbitrary point. Since TX
⊂ FX, consider the sequence fsig ⊂ X such that Fsi = Tsi−1
for all i ≥ 1. Let that Fsi ≠ Fsi+1 = Tsi for all i ≥ 0. We have

from (11)

ϕ
1
b
d Fsi, Fsi+1ð Þ

� �
= ϕ

1
b
d Tsi−1, Tsið Þ

� �

≤Θ ϕ ϑ Fsi−1, Fsið Þð Þ, ψ ϑ Fsi−1, Fsið Þð Þ½ �,
ð55Þ

d Ts1, Ts2ð Þ ≤ η sup
1
b
d Fs1, Fs2ð Þ, 1

b
d Fs1, Ts1ð Þ, 1

b
d Fs2, Ts2ð Þ, d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Fs1, Fs2ð Þ ,
d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Ts1, Ts2ð Þ
� 	

ð49Þ

ϑ Fs1, Fs2ð Þ ≤ η
1
b
d Fs1, Fs2ð Þ, 1

b
d Fs1, Ts1ð Þ, 1

b
d Fs2, Ts2ð Þ, d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Fs1, Fs2ð Þ ,
d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Ts1, Ts2ð Þ
� 	

: ð52Þ

ϑ Fs1, Fs2ð Þ ≤ sup
1
b
d Fs1, Fs2ð Þ, 1

b
d Fs2, Ts2ð Þ b + bd Fs1, Ts1ð Þ

b + bd Fs1, Fs2ð Þ ,
d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Fs1, Fs2ð Þ ,
d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Ts1, Ts2ð Þ
� 	

: ð54Þ
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where

ϑ Fsi−1, Fsið Þ ≤ sup

1
b
d Fsi−1, Fsið Þ, 1

b
d Fsi, Tsið Þ b + bd Fsi−1, Tsi−1ð Þ

b + bd Fsi−1, Fsið Þ ,

d Fsi−1, Tsi−1ð Þd Fsi, Tsið Þ
b + bd Fsi−1, Fsið Þ ,

d Fsi−1, Tsi−1ð Þd Fsi, Tsið Þ
b + bd Tsi−1, Tsið Þ

8>>><
>>>:

9>>>=
>>>;

= sup

1
b
d Fsi−1, Fsið Þ, 1

b
d Fsi, Fsi+1ð Þ b + bd Fsi−1, Fsið Þ

b + bd Fsi−1, Fsið Þ ,

d Fsi−1, Fsið Þd Fsi, Fsi+1ð Þ
b + bd Fsi−1, Fsið Þ ,

d Fsi−1, Fsið Þd Fsi, Fsi+1ð Þ
b + bd Fsi, Fsi+1ð Þ

8>>><
>>>:

9>>>=
>>>;

= sup
1
b
d Fsi−1, Fsið Þ, 1

b
d Fsi, Fsi+1ð Þ

� 	
:

ð56Þ

The remainder of the proof is identical as the proof of
Theorem 16.

4. Applications

Definition 22. Let Γ be the class of functions τ : ½0,∞Þ⟶
½0,∞Þ such the following are satisfying

(i) τ is Lebesgue integral function for all compact subset
of ½0,∞Þ

(ii)
Ð ε
0τðxÞdx > 0 for each ε > 0

Theorem 23. Let ðX, dÞ be a complete Hausdorff rectangular
b-metric space, with b ≥ 1. Let T , F : X ⟶ X be a self-
mappings. Assume that ðFX, dÞ is a complete rectangular b
-metric space and that the next condition holds

ð 1/bð Þd Ts1 ,Ts2ð Þ

0
τ sð Þd sð Þ ≤

ðϑ Fs1 ,Fs2ð Þ

0
τ sð Þd sð Þ −

ðϑ Fs1 ,Fs2ð Þ

0
χ sð Þd sð Þ:

ð57Þ

∀s1, s2 ∈ X and τ, χ ∈ Γ, such that T and F satisfy
inequality (11), where

Then, T and F have a unique coincide fixed point.

Proof. Let that ϕðsÞ = Ð s
0τðuÞdu and ψðsÞ = Ð s

0χðuÞdu. Then,
ϕ andψ ∈Φ. Hence, by Theorem 16, T and F have a unique
coincide fixed point.

Theorem 24. Let ðX, dÞ be a complete bRMS Hausdorff with
b ≥ 1. Let T , F : X⟶ X be a self-mappings, such that

ð 1/bð Þd Ts1 ,Ts2ð Þ

0
τ rð Þd rð Þ ≤ η

ðϑ Fs1 ,Fs2ð Þ

0
τ rð Þd rð Þ: ð59Þ

For all s1, s2 ∈ X and τ ∈ Γ and 0 ≤ η < 1, such that T and
F satisfy inequality (11), where

ϑ Fs1, Fs2ð Þ ≤ sup

1
b
d Fs1, Fs2ð Þ, 1

b
d Fs1, Ts1ð Þ, b + bd Fs1, Ts1ð Þ

b + bd Fs1, Fs2ð Þ d Fs2, Ts2ð Þ,

d Fs1, Ts1ð Þd Fs2, Ts2ð Þ
b + bd Fs1, Fs2ð Þ ,

d Fs1, Ts1ð Þd Fs2, Ts2ð Þ
b + bd Ts1, Ts2ð Þ

8>>><
>>>:

9>>>=
>>>;
:

ð60Þ

Then, T and F have a unique coincide fixed point.

Proof. Suppose gðsÞ = τðsÞ − ητðsÞ. Hence, by Theorem 23, T
and F have a unique fixed point.

Theorem 25. Let ðX, dÞ be a complete Hausdorff rectangular
b-metric space, with b ≥ 1. Assume that T , F : X ⟶ X be a
self-mappings. Let

ð 1/bð Þd Ts1 ,Ts2ð Þ

0
τ sð Þd sð Þ ≤

ðϑ Fs1 ,Fs2ð Þ

0
τ sð Þd sð Þ −

ðϑ Fs1 ,Fs2ð Þ

0
χ sð Þd sð Þ:

ð61Þ

For all s1, s2 ∈ X and τ, χ ∈ Γ, such that T and F satisfy
inequality (11), where

ϑ Fs1, Fs2ð Þ ≤ sup

1
b
d Fs1, Fs2ð Þ + 1

b
d Fs1, Ts1ð Þ + 1

b
d Fs2, Ts2ð Þ +

d Fs1, Ts1ð Þd Fs2, Ts2ð Þ
b + bd Fs1, Fs2ð Þ +

d Fs1, Ts1ð Þd Fs2, Ts2ð Þ
b + bd Ts1, Ts2ð Þ

8>><
>>:

9>>=
>>;
:

ð62Þ

Then T and F have a unique coincide fixed point.

Proof. Suppose ϕðsÞ = Ð s
0ζðuÞdu and ψðsÞ = Ð s

0 f ðuÞdu. Then,
ϕ andψ ∈Φ. Hence, by Theorem 21, T and F have a unique
coincide fixed point.

ϑ Fs1, Fs2ð Þ ≤ sup
1
b
d Fs1, Fs2ð Þ, 1

b
d Fs1, Ts1ð Þ, 1

b
d Fs2, Ts2ð Þ, d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Fs1, Fs2ð Þ ,
d Fs1, Ts1ð Þd Fs2, Ts2ð Þ

b + bd Ts1, Ts2ð Þ
� 	

: ð58Þ
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Example 3. Suppose X = ½0, 1� and define T , F : X ⟶ X
such that

Ts1 =
s1 +

1
2
, s1 ∈ 0,

1
2


 �
,

1
2
, s1 ∈

1
2
, 1


 �
:

8>>><
>>>:

ð63Þ

Consider α, η : X × X ⟶ ½0,∞Þ since αðFs1, Fs2Þ = 3
and ηðFs1, Fs2Þ = 2, for all s1, s2 ∈ X. Assume d : X × X ⟶
½0, 1Þ be rectangular b-metric space, with b = 3, where

1
b
d Fs1, Fs2ð Þ =

1
5
, s1, s2 ∈ 0,

1
2


 �
,

1
20

, s1, s2 ∈
1
2
, 0


 �
,

1
9

s1 ∈ 0,
1
2


 �
, s2 ∈ 0,

1
2


 �
:

8>>>>>>>><
>>>>>>>>:

ð64Þ

It is very well maybe the next step is to:

(i) dðTs1, Ts2Þ = 1/20 and ϑðFs1, Fs2Þ = 1/5, if s1, s2 ∈ ½
0, 1/2�

(ii) dðTs1, Ts2Þ = 0 and ϑðFs1, Fs2Þ = 1/20, if s1, s2 ∈ ½1/
2, 1�

(iii) dðFs1, Fs2Þ = 1/20 and ϑðFs1, Fs2Þ = 1/9, if s1 ∈ ½0, 1
/2�, s2 ∈ ½0, 1�

Consider the function Θ : ½0,∞Þ × ½0,∞Þ⟶ℝ and ϕ,
ψ : ½0,∞Þ⟶ ½0,∞Þ defined as Θðs1, s2Þ = s1 − s2, ϕðs2Þ = 4
s2/5 and ψðs2Þ = s2/3. Then, Theorem 16 has been fulfilled.
Hence, v1 = 1/2 is a unique coincide fixed point of T and F.
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