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A determinant representation of the n-fold Darboux transformation for the integrable nonlocal derivative nonlinear Schödinger
(DNLS) equation is presented. Using the proposed Darboux transformation, we construct some particular solutions from zero
seed, which have not been reported so far for locally integrable systems. We also obtain explicit breathers from a nonzero seed
with constant amplitude, deduce the corresponding extended Taylor expansion, and obtain several first-order rogue wave
solutions. Our results reveal several interesting phenomena which differ from those emerging from the classical DNLS equation.

1. Introduction

It is well known that the derivative nonlinear Schrödinger
(DNLS) equation [1]

iqt x, tð Þ = qxx x, tð Þ + iε q x, tð Þ2q∗ x, tð Þ� �
x
ε = ±1ð Þ, ð1Þ

has many physical applications, e.g., in analyzing the propa-
gation of circular polarized nonlinear Alfvén waves and
radiofrequency waves in plasmas [1, 2]. Equation (1) is local;
that is, the evolution only depends on the value of its local
time and space [3]. In the recent years, some new integrable
nonlocal equations have been introduced and several inter-
esting results have been obtained [4–12]. These nonlocal
equations are significantly different from the local one due
to their particular spatiotemporal coupling, which may stim-
ulate new physical applications, as they describe novel phys-
ical effects [3].

Since the nonlinearity-induced potentials satisfy the
PT -symmetric condition, the nonlocal NLS equation is
often referred to as PT -symmetric [4]. The dynamics aris-

ing from the nonlocal NLS equation leads to several phenom-
ena, including dark solitons [13] and rogue waves [14, 15].
This also fostered interest in other nonlocal integrable equa-
tions [15–18], which are generally obtained by using parity
(P̂, P̂ = −x), time inversion (T̂ , T̂ = −t), and charge conjuga-
tion (Ĉ) symmetries. The symmetry P̂ − T̂ − Ĉ has in turn
an important role in quantum physics [19] and in many
other fields of physics [20–22]. In addition, an important
physical link between the nonlocally integrable reduction of
the newly discovered AKNS system and physically
interesting equations has been established [23]. Overall, there
are several reasons motivating further studies of these nonlo-
cal systems.

Recently, Zhou presented an integrable nonlocal DNLS
equation [24]

iqt x, tð Þ = qxx x, tð Þ + ε q x, tð Þ2q∗ −x, tð Þ� �
x
ε = ±1ð Þ, ð2Þ

where the symbol ∗ denotes complex conjugation. Equation
(2) has a PT -symmetric conserved density q∗ð−x, tÞqðx, tÞ,
that is,
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i q∗ −x, tð Þq x, tð Þð Þt = q∗ −x, tð Þqx x, tð Þ − q∗ −x, tð Þð Þxq x, tð Þ� �
x

+ 3ε
2 q2 x, tð Þq∗2 −x, tð Þ� �

x
:

ð3Þ

By the transformations x⟶ −ix, t⟶ −t, Equation (2)
can be obtained from Equation (1) [3], and as a matter of
fact, it is more accurate to call Equation (2) P̂Ĉ symmetric
[25]. In addition, Ablowitz and Musslimani have presented
a real space-time reversal DNLS equation [5].

In recent years, there are many new results in obtaining
nonlinear waves. Based on the characteristic lines and phase
shift analysis, Yin and Tian studied the transitions and
mechanisms of nonlinear waves in the ð2 + 1Þ-dimensional
Sawada-Kotera (2DSK) equation [26]. According to the
characteristic lines of breath, various nonlinear waves are
obtained, including quasi-anti-dark soliton, M-shaped
soliton, W-shaped soliton, multi-peak soliton, and quasi-
periodic wave. The dynamic properties of these nonlinear
waves are analyzed in detail by means of characteristic lines.
Wang et al. have constructed the three-component coupled
Hirota hierarchy and have obtained its soliton solutions by
using the �∂-dressing method [27]. By using the Riemann-
Hilbert method, Li et al. systematically investigated the general
n-component nonlinear Schödinger equations. The multisoli-
ton solutions of two-component nonlinear Schödinger equa-
tions have been detailedly analyzed by means of parameter
modulation. Many interesting new phenomena are presented,
including elastic collision, parallel propagation, soliton reflec-
tion, and time-periodic propagation [28].

In mathematical physics, N-soliton solutions are very
helpful in exploring nonlinear wave phenomena. Breather,
rogue wave, and lump solutions, etc. are all special reduc-
tions of N-soliton solutions [29]. Ma et al. studies the soliton
solutions of many famous nonlinear equations and presents
an algorithm to verify the Hirota N-soliton conditions
[29–31]. The existence of N-soliton solutions of two kinds
of generalized KdV equations is verified by the common fac-
torization of Hirota functions of N wave vectors and the
comparison of the degrees of polynomials containing
common factors [30]. And then, a weight number is used
in the above algorithm to verify the Hirota N-soliton condi-
tion for the B-type Kadomtsev-Petviashvili equation and
three integrable equations in (2 + 1) dimensions [29, 31].
Breathers and rogue waves have been the subject of large
interest in the recent years. Breathers have been found in
many physically related models such as Bose-Einstein con-
densates [32], higher-order integrable systems [33], and
reaction-diffusion systems [34]. The observation of rogue
waves and the study of their formation and their dynamics
have been experimentally performed in diverse physical media,
such as optical fibers, water wave tanks, and plasmas [35–37].

In this paper, we focus on studying breathers and rogue
waves of the nonlocal DNLS Equation (2). We first construct
an n-fold Darboux transformation for Equation (2) in Section
2, from which we obtain two particular solutions that are
obtained from zero seed. In Section 3, breathers by nonzero
seeds with constant amplitude are studied, and their typical

dynamics are analyzed. By Taylor expansion on the breather,
we obtain and analyze the rogue wave of Equation (2). Section
4 closes the paper with some concluding remarks.

2. Darboux Transformation and
Particular Solutions

In this part, we first construct the Darboux transformation
of Equation (2), which is then exploited to obtain two novel
solutions that are not soliton solutions, of which we analyze
the asymptotic behavior.

Our Darboux transformation is mostly determined by
the seed solutions and eigenvalues corresponding to the
Lax pair and by the relationship between the potential func-
tion q and r. According to the form of the first-order
Darboux matrix, we then provide the n-order Darboux
matrix and finally obtain the n-order Darboux transforma-
tion of Equation (2).

Let us sketch the main steps as follows: first, given an
eigenvalue λ in the Lax equation of Equation (2) and being
q = 0 be a zero seed solution, we seek the eigenfunction cor-
responding to the seed solution of the Lax equation, then
substitute it into the first-order Darboux transformation,
and get a novel solution. Using the same steps, we select
two different eigenvalues, so that we can get four eigenvalues
according to the conjugate relation. We still take the seed
solution q = 0, and solving the Lax equation, we can obtain
four eigenfunctions f iði = 1,⋯, 4Þ. According to the
relationship among the potential functions, we can get the
other four eigenfunctions giði = 1,⋯, 4Þ and bring them into
the second-order Darboux transformation to obtain the
second-order novel solutions.

According to the above method, we can get higher-order
new solutions and study more interesting phenomena by
analyzing their properties.

2.1. Darboux Transformation. The integrability of Equation
(2) is guaranteed by the Lax pair [1]

ψx =Uψ =
λ2 λq

λr −λ2

 !
ψ, ð4Þ

ψt =Vψ =
−2iλ4 + iλ2qr −2iλ3q + −iqx + iq2r

� �
λ

−2iλ3r + irx + iqr2
� �

λ 2iλ4 − iλ2qr

 !
ψ,

ð5Þ

where λ is the spectral parameter, q = qðx, tÞ, r = rðx, tÞ, and
r = −ε�q∗ = −εq∗ð−x, tÞ, ψ = ðψ1ðx, tÞ, ψ2ðx, tÞÞT . Refering to
the construction of Darboux transformation of classical inte-
grable equations [38], we could obtain a Darboux transfor-
mation of Equation (2).

Consider a canonical transformation

ψ 1½ � = Tψ: ð6Þ
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Equations (4) and (5) become

ψ 1½ �
x = Tx + TUð ÞT−1ψ 1½ � ≜U 1½ �ψ 1½ �,

ψ
1½ �
t = Tt + TVð ÞT−1ψ 1½ � ≜V 1½ �ψ 1½ �:

ð7Þ

Substituting potential functions q, r with the new ones
q½1�, r½1�, we can determine T such that U ½1� and V ½1� have
the same forms of U and V , respectively.

Let

T = λI − P, ð8Þ

where I is unit matrix and P = ðpijÞ2×2 with pij = pijðx, tÞ
ði, j = 1, 2Þ. The relation between the old potentials and
new ones is given by

q 1½ � = q + 2p12, r 1½ � = r − 2p21: ð9Þ

According to the relation between q and r

r = −ε�q∗ = −εq∗ −x, tð Þ, ð10Þ

we have the following constraint

p21 x, tð Þ = εp∗12 −x, tð Þ: ð11Þ

For the sake of convenience, we use the notation
�f ðx, tÞ = f ð−x, tÞ.

In order to determine T in Equation (8), one may set

P =HΛH−1, ð12Þ

with

H =
f1 g1

f2 g2

 !
,Λ =

λ1 0
0 λ2

 !
, ð13Þ

where ð f1, f2ÞT = ð f1ðx, tÞ, f2ðx, tÞÞT is a solution of
Equations (4) and (5) corresponding to the seed solution
and the eigenvalue λ = λ1. According to (10), we know that

ðg1, g2ÞT = ð�f ∗2 , ε�f
∗
1 Þ

T
is a solution of Equations (4) and (5)

when λ = λ∗1 ≜ λ2.
Then, we get

P = 1
Δ

ελ1 f1�f
∗
1 − λ∗1 f2�f

∗
2 λ∗1 − λ1ð Þf1�f

∗
2

λ1 − λ∗1ð Þεf2�f
∗
1 ελ∗1 f1�f

∗
1 − λ1 f2�f

∗
2

 !
, ð14Þ

with Δ = εf1�f
∗
1 − f2�f

∗
2 . From (14), we can directly verify the

constraint (11). Therefore, from (9) and (14), a new solution
of Equation (2) is obtained as follows:

q 1½ � = q + 2
Δ

λ∗1 − λ1ð Þf1�f
∗
2 : ð15Þ

The n-fold Darboux transformation of Equation (2) can
be written in the following determinant representation:

q n½ � = q + 2 P2n
W2n

, ð16Þ

where

P2n =

f1 f2 λ1 f1 λ1 f2 ⋯ λn−11 f1 λn1 f1

g1 g2 λ2g1 λ2g2 ⋯ λn−12 g1 λn2g1

f3 f4 λ3 f3 λ3 f4 ⋯ λn−13 f3 λn3 f3

g3 g4 λ4g3 λ4g4 ⋯ λn−14 g3 λn4g3

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

g2n−1 g2n λ2ng2n−1 λ2ng2n ⋯ λn−12n g2n−1 λn2ng2n−1

�����������������

�����������������

,

W2n =

f1 f2 λ1 f1 λ1 f2 ⋯ λn−11 f1 λn−11 f2

g1 g2 λ2g1 λ2g2 ⋯ λn−12 g1 λn−12 g2

f3 f4 λ3 f3 λ3 f4 ⋯ λn−13 f3 λn−13 f4

g3 g4 λ4g3 λ4g4 ⋯ λn−14 g3 λn−14 g4

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

g2n−1 g2n λ2ng2n−1 λ2ng2n ⋯ λn−12n g2n−1 λn−12n g2n

�����������������

�����������������

:

ð17Þ

By using (16), we can obtain multiple particular solu-
tions, multibreathers, and higher-order rogue waves of
Equation (2). The determinant representation of the DT
provides a powerful tool to calculate this tedious expansion.

2.2. One-fold Particular Solution. In order to construct one-
fold particular solutions of Equation (2) using the above
Darboux transformation, one may start from the zero seed
solution q = 0 in Equations (4) and (5). Then, the eigenfunc-
tions corresponding to the seed solution are given by

f1 = eλ
2
1x−2iλ41t , f2 = e−λ

2
1x+2iλ41t: ð18Þ

Setting λ1 = a + ib and substituting (18) into (15), one
can easily get the one-fold particular solution

q 1½ � = −4ibe2x a2−b2ð Þ−4it a4−6a2b2+b4ð Þ
εe−4iab 4ita2−4itb2−xð Þ − e4iab 4ita2−4itb2−xð Þ : ð19Þ

Solution (19) is a complex function whose modulus is
given by

q 1½ �
��� ��� = 4 bj je2x a2−b2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosh 32abt a2 − b2
� �� �

− 2ε cos 8abxð Þ
q , ð20Þ

with singularities at fðx, tÞ ∣ 2 cosh ½32abtða2 − b2Þ� − 2ε cos
ð8abxÞ = 0g. From (20), it can be found that when a2 > b2,
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jq½1�j⟶ +∞ as x⟶ +∞, and jq½1�j⟶ 0 as x⟶ −∞.
We also see that ∣q½1� ∣⟶0 as t⟶ ±∞. By setting ε = 1,
a = 0:2, b = 0:01, Figures 1(a) and 1(b) illustrate the behav-
iour jq½1�j given in (20). By choosing t = 0 in (20) and using
the previous parameters, one can get a one-fold particular
solution with singularity. Figure 1(c) illustrates this case.
For t = 1, we can see that ∣q½1� ∣ reaches the maximum at x
= 0. The maximum amplitude is 15:66400782.

2.3. Two-fold Particular Solution. In order to proceed
further, we still choose zero seed solution q = 0 and use the
2-fold Darboux transformation, to obtain a two-fold
particular solution of Equation (2) as follows:

q 2½ � = q + 2 P4
W4

, ð21Þ

where

P4 =

f1 f2 λ1 f1 λ21 f1

g1 g2 λ2g1 λ22g1

f3 f4 λ3 f3 λ23 f3

g3 g4 λ4g3 λ24g3

�����������

�����������
,W4 =

f1 f2 λ1 f1 λ1 f2

g1 g2 λ2g1 λ2g2

f3 f4 λ3 f3 λ3 f4

g3 g4 λ4g3 λ4g4

�����������

�����������
:

ð22Þ

Let λ1 = λ∗2 = a + ib and λ3 = λ∗4 = c + id. By solving
Equations (4) and (5), we obtain the eigenfunctions

f1 = e a+ibð Þ2x−2i a+ibð Þ4t , f2 = e− a+ibð Þ2x+2i a+ibð Þ4t ,

f3 = e c+idð Þ2x−2i c+idð Þ4t , f4 = e− c+idð Þ2x+2i c+idð Þ4t:
ð23Þ

According to (10), we get g1 = �f
∗
2 , g2 = ε�f

∗
1 , g3 = �f

∗
4 , g4

5

4

3

2

1

–30 –20 –10 0 10 20 30
t

|q|

30

30
20

𝜒
10

–10
–20
–30

0

(a)

3020 400
𝜒

t

10

–20

20

–40

40

0

(b)

3020100
𝜒

–10

1

2

3

–20–30

|q|

(c)

1050
𝜒

–5–10

2

10

8

6

4

12

14

|q|

(d)

Figure 1: The one-fold particular solution evolution graph (a) and contour plot (b) for (20) with ε = 1, a = 0:2, b = 0:01. (c) The waveform
at t = 0 and (d) the waveform at t = 1.
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= ε�f
∗
3 . Hence, a two-fold particular solution can be given

explicitly by Equation (21). We take some special parameter
values for the solution (21) and show the resulting behavior
in Figure 2. Figure 2(a) reveals that there are two crests
above the x − t plane. We also found jq½2�j⟶ +∞ as x
⟶ −∞, and jq½2�j⟶ 0 as x⟶ +∞ as it can be seen from
Figure 2(a). Figures 2(b) and 2(c) show beautiful butterfly
contour graphs.

3. Breather and Rogue Wave Solutions

In this section, we construct breathers and rogue wave solu-
tions of Equation (2) using the Darboux transformation
illustrated in the previous one. At first, we construct breather
solution from a nonzero seed. Then, we use the extended
Taylor expansion method to reveal rogue wave solution of
Equation (2) from breather ones.
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Figure 2: The two-fold particular solution evolution graph of (21) with parameters: ε = 1, a = 0:1, b = 0:2, c = 0:01, d = 0:35. (a) ∣q½2� ∣ . (c)
Re ðq½2�Þ. (e) Im ðq½2�Þ. (b, d, f) Contour plots corresponding to (a, c, e), respectively.
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3.1. Breather Solution. To obtain nontrivial periodic solu-
tions, we choose a nonzero seed q = ρekx+iωt , where ρ, k,
andω are all real constants and ω = −kðk + ερ2Þ. Substituting
q = ρekx+iωt into Equations (4) and (5) and solving them, we
get the eigenfunctions

f1 =
ε

2λ1ρ
C1 k − 2λ21 + θ1
� �

e1/2 k−θ1ð Þx+ 1/2ð Þi ρ2ε+k+2λ21ð Þθ1− k2+ρ2εkð Þ½ �th
+C2 k − 2λ21 − θ1

� �
e1/2 k+θ1ð Þx− 1/2ð Þi ρ2ε+k+2λ21ð Þθ1+ k2+ρ2εkð Þ½ �ti,

ð24Þ

f2 = C1e
− 1/2ð Þ k+θ1ð Þx+ 1/2ð Þi k2+ρ2εkð Þ+ ρ2ε+k+2λ21ð Þθ1½ �t

+ C2e
− 1/2ð Þ k−θ1ð Þx+ 1/2ð Þi k2+ρ2εkð Þ− ρ2ε+k+2λ21ð Þθ1½ �t ,

ð25Þ

where C1, C2 are constants and θ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 4λ41 − 4ελ21ρ2 − 4kλ21

q
.

According to g1 = �f
∗
2 , g2 = ε�f

∗
1 , we get

g1 = C1e
1/2ð Þ k+θ2ð Þx− 1/2ð Þi k2+ρ2εkð Þ+ ρ2ε+k+2λ22ð Þθ2½ �t

+ C2e
1/2ð Þ k−θ2ð Þx− 1/2ð Þi k2+ρ2εkð Þ− ρ2ε+k+2λ22ð Þθ2½ �t ,

g2 =
1

2λ2ρ
C1 k − 2λ22 + θ2
� �

e− 1/2ð Þ k−θ2ð Þx− 1/2ð Þi ρ2ε+k+2λ22ð Þθ2− k2+ρ2εkð Þ½ �th
+ C2 k − 2λ22 − θ2

� �
e− 1/2ð Þ k+θ2ð Þx+ 1/2ð Þi ρ2ε+k+2λ22ð Þθ2+ k2+ρ2εkð Þ½ �ti,

ð26Þ

where θ2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 4λ42 − 4ελ22ρ2 − 4kλ22

q
and λ1 = λ∗2 = a + ib.

According to the principle of linear superposition, the
new eigenfunctions associated to λ1 of Equations (4) and
(5) may be expressed by

F1 = f1 + g1, F2 = f2 + g2: ð27Þ

Next, we use Equations (24)–(27) to produce a new
breather solution of Equation (2)

q 1½ � = q + 2
Δ

λ∗1 − λ1ð ÞF1�F
∗
2 , ð28Þ

where q = ρekx+iωt and Δ = εF1�F
∗
1 − F2�F

∗
2 . By tedious calcula-
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Figure 3: Evolution graph of the breather solution (32), (a) jq½11�breatherj, (b) contour plot corresponding to (a) and (c, d) the waveform at t = 0
and t = 1, respectively.
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tions, the breather solution is obtained as follows:

q 1½ �
breather = ekx−i k2+ρ2εkð Þt

� ρ + 2λ2 λ2 − λ1ð Þ 2λ1ρ 1 + εð Þ cosh d2ð ÞA + 4λ21ερ2 cosh2 d2ð Þ + A2� �
λ1ε ε − 1ð Þ AB + 4λ1λ2ρ2 cosh d1ð Þ cosh d2ð Þ½ �

" #
:

ð29Þ

In fact ε = ±1, but we only take ε = −1 in Equation (29)
and the breather solution is given by

q 1½ �
breather = ekx−i k2−ρ2kð Þt ρ + λ2 λ2 − λ1ð Þ A2 − 4λ21ρ2 cosh2 d2ð Þ� �

λ1 AB + 4λ1λ2ρ2 cosh d1ð Þ cosh d2ð Þ½ �

" #
,

ð30Þ

where

A = k − 2λ21
� �

cosh d1ð Þ − θ1 sinh d1ð Þ, B = k − 2λ22
� �

cosh d2ð Þ
+ θ2 sinh d2ð Þ,

d1 =
1
2 θ1 x − it k − ρ2 + 2λ21

� �� �
, d2 =

1
2 θ2 x − it k − ρ2 + 2λ22

� �� �
,

θ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 4λ41 + 4λ21ρ2 − 4kλ21

q
, θ2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 4λ42 + 4λ22ρ2 − 4kλ22

q
,

λ1 = λ∗2 = a + ib: ð31Þ

Specifically, choosing some specific parameter values
k = −0:02, ρ = 1, a = 0, b = 0:1, we get

q 1½ �
breather = e−0:02x−0:0204it

� 1 + 0:2i cos2 0:1x + 0:104itð Þ + sin2 0:1x + 0:104itð Þ� �
cos2 0:1x + 0:104itð Þ − sin2 0:1x + 0:104itð Þ� �

" #
,

ð32Þ

Figure 3 illustrates this solution. From Figure 3(a), we
see that the amplitude of (32) is increasing for x⟶ −∞.
Moreover, we find that the breather solution (32) has

periodic singularities at t = 0 and Figure 3(c) depicts this
phenomenon. Figure 3(d) depicts the wave shape at t = 1.

3.2. Rogue Wave Solution. Motivated by recent findings [37,
39], we shall use the extended Taylor expansion method to
construct the rogue wave solutions of Equation (2). At first,
we need to find the parameters a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k − ρ2

p
/2, b = ρ/2 in

the eigenvalues λ1, λ2 such that θ1 ⟶ 0, θ2 ⟶ 0 (i.e.,
d1 ⟶ 0, d2 ⟶ 0) in the breather solution (29), and, in
turn, to put the breather into the indeterminate form 0/0,
which is a critical point to transform a first-order breather into
a first-order rogue wave. However, due to the complexity of the
breather solution, we perform Taylor expansion at d1 = 0,
d2 = 0 directly. The Taylor expansion of (30) at d1 = 0,
d2 = 0 gives a first-order rogue wave solution of Equation (2)

q 1½ �
rogue = ekx−i k2−ρ2kð Þt

� ρ +
λ2 λ2 − λ1ð Þ k − 2λ21

� �
k1 − θ1k2

� �2 − 4λ21ρ2k23
h i

λ1 k − 2λ21
� �

k1 − θ1k2
� �

k − 2λ22
� �

k3 + θ2k4
� �

+ 4λ21λ2ρ2k1k3

2
4

3
5,

ð33Þ

where

k1 = 1 + θ21
8 x − it k − ρ2 + 2λ21

� �� �2,
k2 =

θ1
2 x − it k − ρ2 + 2λ21

� �� �
+ θ31
48 x − it k − ρ2 + 2λ21

� �� �3,
k3 = 1 + θ22

8 x − it k − ρ2 + 2λ22
� �� �2,

k4 =
θ2
2 x − it k − ρ2 + 2λ22

� �� �
+ θ32
48 x − it k − ρ2 + 2λ22

� �� �3,
ð34Þ

and θ j, λj ðj = 1, 2Þ satisfy (31). Next, we show the shape of

∣q½1�rogue ∣ in Figure 4(a) by selecting some special parameter
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Figure 4: The first-order rogue wave for ∣q½1�rogue ∣ with parameter selections: k = 0:05, ρ = 0:001, a = 1, b = 0:01. (a) ∣q½1�rogue ∣ and (b) its
profiles at different times t = −0:5 (red), t = 0 (blue), and t = 1 (green).
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values. From Figure 4(a), we can see that jq½1�roguej⟶ +∞ as

x⟶ +∞, and ∣q½1�rogue ∣⟶0 as x⟶ −∞. The evolution of
this rogue wave at different times is shown in Figure 4(b),

where we can see that jq½1�roguej achieves its maximum
at ðx = 1:63698271, t = 0Þ. The maximum amplitude is
4.448628515. It is shown that rogue waves exist in inte-
grable systems.

4. Summary

In summary, a determinant representation of n-fold
Darboux transformation for the integrable nonlocal DNLS
equation has been obtained. The determinant representation
provides a powerful tool to calculate otherwise tedious
expansion and it is very useful to calculate the higher-
order Taylor expansion in an indeterminate form 0/0 from
the double degeneration of eigenvalues. Armed with the
Darboux transformation, we have got two particular solu-
tions from zero seed, which are not soliton solutions, and
then, their dynamics patterns are analyzed in some details.
We show that the properties of these solutions crucially
depend on the selection of the parameter values. By choosing
different parameter values, we obtain several interesting and
novel solutions, which are different from those of the previ-
ously studied locally integrable systems. Breather solution is
given explicitly by a nonzero seed with constant amplitude.
The variable x in the breather solution (30) may be referred
to as the ‘transverse variable,’ and the breather periodic in
the ‘transverse variable’ corresponds to the so-called ‘Akh-
mediev’ breather [40]. Finally, we have got a rogue wave
solution of Equation (2) from the breather by an extended
Taylor expansion method. We have analyzed the dynamical
features of the rogue wave and have shown the evolution at
different times. Our results pave the way for further studies
on higher-order rogue waves of the nonlocal DNLS Equa-
tion (2) from the determinant representation (16) of the
Darboux transformation. More generally, we hope that our
results can enrich the study of nonlocal integrable systems.
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