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This article investigates the new results of three nonlinear conformable models (NLCMs). To study such varieties of new soliton
structures, we perform the generalized Kudryashov (GK) method. The obtained new results are defined in the styles of the
exponential and rational functions. The derived new soliton structures are stable, serviceable, and fitting to embrace the
conformable dynamics, chaotic vibrations, global bifurcations, optimal control problems, fluid mechanics, plasma physics,
system identification, local bifurcations, control theory and resonances, and so many. The outcomes declare that the process is
hugely valuable and accessible for investigating nonlinear conformable order models treated in theoretical physics.

1. Introduction

Conformable calculus is a part of an analytical investigation that
scrutinizes the actual or complicated number order integral or
differential supervisors. It is a presently debated problem with
scientists since many multidimensional operations could be
formed through conformable derivatives in numerous disci-
plines of implemented science which as solid-state physics, frac-
tional dynamics, fluid mechanics, control theory, geochemistry,
plasma physics, astrophysics, system identification, chemical
physics, and many more. The various appeals of conformable
derivatives show that there is an essential requirement for better
numerical and analytical algorithms including real objects and
methods. Consequently, the examination of the soliton solu-
tions for nonlinear conformable models expresses a critical
function for the research of nonlinear wave phenomena.

Numerous mathematical procedures have been presented to
get results of NLCMs, for example, homotopy perturbation
method [1], residual power series method [2], Shifted Jacobi
spectral collocation method [3], reproducing kernel Hilbert
space method [4], modified generalized Taylor fractional series
method [5], the improved fractional Riccati extension scheme
[6], method of separation variables [7], generalized ðG′/GÞ
-extension scheme [8], Chebyshev collocation way [9], rational
ðG′/GÞ-extension scheme [10], the first integral way [11], mod-
ified exp-task way [12], variational iteration method [13], mod-
ified Khater method [14], and iterative reproducing kernel
Hilbert space approach [15].

The paper applied the GK method [16] to derive the differ-
ent types of solitary wave structures for the conformable Duff-
ing equation (DE) [8], the conformable Riccati equation (RE)
[8], and the conformable biological population model (BPM)
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[6, 10]; in [17], it is examined time-fractional biological popula-
tion model and gained some new solitary wave structures
through the modified ðG′/GÞ-expansion method.

Firstly, the conformable RE [8] is as follows:

∂ϖZ x, tð Þ
∂tϖ

= β0 + β1Z x, tð Þ + β2Z
2 x, tð Þ, t > 0, ϖ ∈ 0, 2ð Þ,

ð1Þ

where

∂ϖZ x, tð Þ
∂tϖ

= limε⟶0
Z x, t + εt1−ϖ
� �

− Z x, tð Þ
ε

, t > 0, ϖ ∈ 0, 1ð Þ,
ð2Þ

and β0, β1, and β2 are constants. If ϖ = 1, then the Eq.
(1) decreases to the classical RE. The significance of the Eq.
(1) normally occurs in optimal control difficulties. The result

of the linear-quadratic optimal control depends on a RE,
which has to be observed for the control rule’s all-time hori-
zon. The present research on conformable RE leads to con-
centrate on accurate values for ϖ. ϖ = 1/2 is remarkably
familiar. This is because, in classical conformable calculus,
numerous of the models were improved applying these
appropriate orders of derivatives. In current attention, many
further usual values of the ϖ arrive in the models. Conse-
quently, one requires to analyze mathematical processes to
determine the RE of arbitrary order. Inserting appropriate
values of β0 = 1, β1 = 0, and β2 = −1 in (1), the general con-
formable RE uses

∂ϖZ x, tð Þ
∂tϖ

+ Z2 x, tð Þ − 1 = 0, t > 0, ϖ ∈ 0, 1ð Þ: ð3Þ

Eq. (3) exposes numerous charming soliton structures
that have not yet been confirmed. In the equations modeling
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Figure 1: 3D and density pictures of Z1ðξÞ for p = 1, B0 = 0:6, c = −2, and ϖ = 0:5.
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wave phenomena, one of the key goals is the soliton struc-
tures, maintaining results of the constant form with a con-
stant velocity. Soliton constructions, together with their
result definitions, are in explicit or implicit ways and are
pretty fantastic from the perspective of applications. Such a
diversity of soliton constructions is instantly named because
they do not exchange their sketches when propagation. Our
attention in this investigation is to analyze the soliton con-
structions; the solitary waves enclosed through asymptoti-
cally zero at a substantial distance, traveling waves, the
kink variety waves, and the periodic waves, which increase
or run down from one asymptotic state to other states.

Secondly, the conformable DE [8] is as follows:

∂2ϖV x, tð Þ
∂t2ϖ

+ γ0V x, tð Þ + γ1V
3 x, tð Þ = 0, t > 0, ϖ ∈ 0, 1ð Þ,

ð4Þ

where ϖ is a conformable constant. In the model, the damp-
ing force is proportionate to the initial order derivative of the
displacement. Numerous prosperous importance in
manufacturing engineering have been informed by main-
taining the integral form damping to a conformable form
one because it can describe the compound frequency of
damping materials. The display of fusion phenomena and
the manifestation of fission aspects for solitons have been
introduced theoretically and experimentally.

Finally, the conformable BPM [6, 10] is as follows:

Dϖ
t W −D2

xW −D2
yW − S1 W2 − S2

� �
= 0: ð5Þ

Here W describes the population density, S1 and S2 are
free parameters, and s1ðW2 − s2Þ expresses the population
supply owing to births and deaths. The solutions obtained
exhausting the mentioned procedure can be expressed in
the form of trigonometric, hyperbolic, and rational type
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Figure 2: 3D and density pictures of Z2ðξÞ for p = 100, B0 = −10, c = −2, and ϖ = 0:5.
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functions. These arrangements of the solutions are reason-
able for revising convinced real type physical phenomena.
However, there are various types of models that are useful
for computing different models, for instance, ranking
extreme efficient decision?, new extended rational SGEEM
for construction of optical solitons?, the time nonlinear frac-
tional generalized equal width model arising in shallow
water channel?, an efficient alternating direction explicit
method?, the variable coefficients generalized shallow water
wave equation?, M-fractional solitary wave solutions and
convergence analysis for Boussinesq equations?, the solving
the Volterra integral equations with a weakly singular ker-
nel? and an analytical analysis to solve the fractional differ-
ential equations? In the literature, these nonlinear model of
equations for natural models are well used. These nonlinear
models can be used alone or in combination to model

physical processes relevant to engineering, technology, and
sciences.

2. Glimpse of the GK Method

Step 1. Suppose a conformable PDE for Wðx, tÞ takes the
form

R
∂ϖW
∂tϖ

, ∂W
∂t

, ∂
2ϖW
∂t2ϖ

, ∂
2W
∂t2

,⋯
 !

= 0, ð6Þ

where R represents a polynomial in W, and ∂ϖW/∂tϖ and
∂2ϖW/∂t2ϖ are conformable derivatives of W. (7).
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Figure 3: 3D and density pictures of Z3ðξÞ for p = 100, B0 = 100, c = −1, and ϖ = 0:5.
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To locate the transformation of Eq. (6),

W=W x, tð Þ =W ξð Þ, ξ = x −
ctϖ

ϖ
: ð7Þ

From Eq. (6) and Eq. (7), we locate the following ODE:

S W,W ′,W ′′,W ′′′,⋯
� �

= 0: ð8Þ

Step 2. Compute M and N on Eq. (8).

Step 3. We examine the following:

W ξð Þ = ∑N
i=0AiΦ

i

∑M
j=0BjΦ

j
: ð9Þ

Here, Ai and Bj are constants as well as AN , BM ≠ 0 and
Φ:

Φ′ ξð Þ =Φ2 ξð Þ −Φ ξð Þ: ð10Þ
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Figure 4: 3D and density pictures of Z4ðξÞ for p = −1000, B0 = −5000, c = 1, and ϖ = 0:5.
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Eq. (10) provides

Φ ξð Þ = 1
1 + peξ

: ð11Þ

Step 4. Compute N andM in Eq. (9) with the nonlinear term
of WðξÞ in Eq. (6) or Eq. (8).

Step 5. From Eq. (9), Eq. (8), and Eq. (11), we could be
solved to determine ΦðξÞ through MAPLE.

3. Solitons to the Conformable RDE

Using ξ = x + ðctϖ/ϖÞ, then Eq. ((1)) changes for Zðx, tÞ = Z
ðξÞ:

cZ ′2 ξð Þ − 1 = 0: ð12Þ

From Eq. (12), ðZ ′ðξÞ andZ2ðξÞÞ⇒ ð2ðN −MÞ =N −
M + 1Þ⇒ ðN =M + 1Þ. SettingM = 1, then N = 2. Therefore,
we get

Z ξð Þ = A0 + A1Φ + A2Φ
2

B0 + B1Φ
: ð13Þ

Through Eq. (13) and Eq. (12), we find the following:
The first set:

c = −2, A0 = −B0, A1 = −B1 + 2B0, A2 = 2B1, ð14Þ

where B0 and B1 are constants. From the first set, Eq. (13)
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and Eq. (12), we have

Z1 ξð Þ =
−B0 + −B1 + 2B0ð Þ × 1/1 + pex+ct

ϖ/ϖ
� �

+ 2B1 1/1 + pex+ct
ϖ/ϖ

� �2
B0 + B1 1/1 + pex+ctϖ/ϖ

� � :

ð15Þ

The second set:

c = 2, A0 = B0, A1 = −2B0 + 2B1, A2 = −2B1, ð16Þ

where B0 and B1 are constants.
Similarly, we get

Z2 ξð Þ =
B0 + −2B0 + 2B1ð Þ × 1/1 + pex+ct

ϖ/ϖ
� �

− 2B1 1/1 + pex+ct
ϖ/ϖ

� �2
B0 + B1 1/1 + pex+ctϖ/ϖ

� � :

ð17Þ

The third set:

c = −1, A0 = −B0, A1 = 2B0, A2 = −2B0, B1 = −2B0, ð18Þ

where B0 is constants. Similarly, we get

Z3 ξð Þ =
−B0 + 2B0 1/1 + pex+ct

ϖ/ϖ
� �

− 2B0 1/1 + pex+ct
ϖ/ϖ

� �2
B0 − 2B0 1/1 + pex+ctϖ/ϖ

� � :

ð19Þ

The fourth set:

c = 1, A0 = B0, A1 = −2B0, A2 = 2B0, B1 = −2B0, ð20Þ
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Figure 6: 3D and density pictures of V2ðξÞ for p = −0:5, a = −0:03, b = −0:005, ϖ = 0:5, and B1 = −0:5.
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where B0 is constants. Similarly, we get:

Z4 ξð Þ =
B0 − 2B0 1/1 + pex+ct

ϖ/ϖ
� �

+ 2B0 1/1 + pex+ct
ϖ/ϖ

� �2
B0 − 2B0 1/1 + pex+ctϖ/ϖ

� � :

ð21Þ

4. Solitons to the Conformable DE

Using ξ = x + ðctϖ/ϖÞ, then Eq. (4) changes for Vðx, tÞ =
VðξÞ:

c2V″3 ξð Þ = 0: ð22Þ

From Eq. (22), ðV″ðξÞ andV3ðξÞÞ⇒ ð3ðN −MÞ =N −

M + 2Þ⇒ ðN =M + 1Þ. Setting M = 1, then N = 2. There-
fore, we get

V ξð Þ = A0 + A1Φ + A2Φ
2

B0 + B1Φ
: ð23Þ

Through Eq. (23) and Eq. (22), we have the following
sets:

The first set:

c =
ffiffiffiffiffiffi
−a

p
, A0 = 0, A1 = −B1

ffiffiffiffiffi
2a
b

r
, A2 = B1

ffiffiffiffiffi
2a
b

r
, B0 = −

1
2B1:

ð24Þ
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Figure 7: 3D and density pictures of W1ðξÞ for p = 1, ϖ = 1/2, y = −100, B1 = 0:6, A1 = 2, S1 = 2, S2 = 1, and S3 = 3.
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From the first set, Eq. (13) and Eq. (12), we have

V1 ξð Þ =
−B1

ffiffiffiffiffiffiffiffiffi
2a/b

p
1/1 + pex+ct

ϖ/ϖ
� �

+ B1
ffiffiffiffiffiffiffiffiffi
2a/b

p
1/1 + pex+ct

ϖ/ϖ
� �2

−1/2B1 + B1 1/1 + pex+ctϖ/ϖ
� � :

ð25Þ

The second set:

c = −
ffiffiffiffiffiffi
−a

p
, A0 = 0, A1 = B1

ffiffiffiffiffi
2a
b

r
, A2 = −B1

ffiffiffiffiffi
2a
b

r
, B0 = −

1
2B1:

ð26Þ

Similarly, we get

V2 ξð Þ =
B1

ffiffiffiffiffiffiffiffiffi
2a/b

p
1/1 + pex+ct

ϖ/ϖ
� �

− B1
ffiffiffiffiffiffiffiffiffi
2a/b

p
1/1 + pex+ct

ϖ/ϖ
� �2

−1/2B1 + B1 1/1 + pex+ctϖ/ϖ
� � :

ð27Þ

5. Solitons to the Conformable BPM

Let us consider the Eq. (5).
Making Wðx, y, tÞ =WðξÞ,ξ = S3ðx + iyÞ − S0t

ϖ/ϖ, and i2

= −1 into the Eq. (5), we derive

S0W ′ − S1 W2 − S2
� �

= 0: ð28Þ
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From Eq. (28), ðV ′′ðξÞ andV3ðξÞÞ⇒ ð3ðN −MÞ =N −
M + 2Þ⇒ ðN =M + 1Þ. SettingM = 1, then N = 2. Therefore,
we get

W ξð Þ = A0 + A1Φ + A2Φ
2

B0 + B1Φ
: ð29Þ

Through Eq. (29) and Eq. (28), we have the following
sets:

The first set:

S0 = 2
ffiffiffiffiffiffiffi
−S2

p
S1, A0 = −

ffiffiffiffiffiffiffi
−S2

p
A1 − B1S2

2 ffiffiffiffiffiffiffi
−S2

p , A2 = 2
ffiffiffiffiffiffiffi
−S2

p
B1, B0 =

ffiffiffiffiffiffiffi
−S2

p
B1 + A1

2 ffiffiffiffiffiffiffi
−S2

p :

ð30Þ

From the first set, Eq. (29) and Eq. (28), we have
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Figure 9: 3D and density pictures of W3ðξÞ for p = 1, ϖ = 1/2, y = 1, B1 = 0:6, S1 = −2, S2 = 0:5, and S3 = 0:5.

W1 ξð Þ =
ffiffiffiffiffiffiffi
−S2

p
A1 − B1S2/2

ffiffiffiffiffiffiffi
−S2

p� �
+ A1 1/1 + peS3 x+iyð Þ−S0tϖ/ϖ

� �
+ 2 ffiffiffiffiffiffiffi

−S2
p

B1 1/1 + peS3 x+iyð Þ−S0tϖ/ϖ
� �2

ffiffiffiffiffiffiffi
−S2

p
B1 + A1/2

ffiffiffiffiffiffiffi
−S2

p� �
+ B1 1/1 + peS3 x+iyð Þ−S0tϖ/ϖ

� � : ð31Þ
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The second set:

Similarly, we get

The third set:
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S0 = −2
ffiffiffiffiffiffiffi
−S2

p
S1, A0 =

−
ffiffiffiffiffiffiffi
−S2

p
A1 − B1S2

2 ffiffiffiffiffiffiffi
−S2

p , A2 = −2
ffiffiffiffiffiffiffi
−S2

p
B1, B0 =

−
ffiffiffiffiffiffiffi
−S2

p
B1 + A1

2 ffiffiffiffiffiffiffi
−S2

p : ð32Þ

W2 ξð Þ =
−
ffiffiffiffiffiffiffi
−S2

p
A1 − B1S2/2

ffiffiffiffiffiffiffi
−S2

p� �
+ A1 1/1 + peS3 x+iyð Þ−S0tϖ/ϖ

� �
− 2 ffiffiffiffiffiffiffi

−S2
p

B1 1/1 + peS3 x+iyð Þ−S0tϖ/ϖ
� �2

−
ffiffiffiffiffiffiffi
−S2

p
B1 + A1/2

ffiffiffiffiffiffiffi
−S2

p� �
+ B1 1/1 + peS3 x+iyð Þ−S0tϖ/ϖ

� � : ð33Þ

S0 = −2
ffiffiffiffiffiffiffi
−S2

p
S1, A0 =

B1S2
2 ffiffiffiffiffiffiffi

−S2
p , A1 =

ffiffiffiffiffiffiffi
−S2

p
B1, A2 = −

ffiffiffiffiffiffiffi
−S2

p
B1, B0 = −

B1
2 : ð34Þ
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Similarly, we get

The fourth set:

Similarly, we get

The physical meaning of solutions is as follows: this seg-
ment will examine the physical explanation of the time-
fractional biological population model of the acknowledged
exact influencing wave equation. The three-dimensional
(3D) charts and density plots including real and imaginary
parts of the newest fractional BPM equations’ travelling
wave solutions are discussed in this subsection. A three-
dimensional plot depicts the extent of divergence across time
or relates many wave issues. Wave facts are arranged in a
logical order with equally spaced disturbances and con-
nected by a line to show the relationships between them.
The diagram’s pictorial value is enhanced by the 3D style.
The density plot and 3D plot are designed to show the low
and high frequency and amplitude extremely clearly.

6. Conclusion

In the current work, we have secured the exact traveling
wave answers in the novel method, for instance, kink variety
traveling wave answers, double soliton, multiple solitons,
periodic, and singular soliton of the Eqs. (1), (4), and (5).
The two models’ established answers, as mentioned above,
are applicable to search the fusion and fission aspects. This
natural phenomenon happens for solitons, electromagnetic
interactions, scalar electrodynamics, quantum relativistic
one-particle theory, relativistic energy-momentum relation,
etc. The magnitude of the Eq. (1) usually rises in determin-
ing the optimal control difficulties. In the echo region, the
oscillation of vibration depends on the damping exponent

in a nontrivial way. So, to reduce severe fluctuation is an
introductory presentation of the Eq. (4). The picture is a cru-
cial device for information and to express the answers to the
difficulties lucidly. When performing the calculation in daily
life, we need a fundamental knowledge of building graphs.
Subsequently, the graphical displays of a few answers are
illustrated in Figures 1–10, respectively. We displayed
Figures 1–10, respectively, for a few of the derived answers
to reveal more features for the prescribed model. The GK
method’s performance is more accessible and reliable than
the other approaches to define the exact answers derived in
this research. The technique can be significant for further
examining distinct conformable PDEs in high energy phys-
ics, mathematical physics, quantum gravity, and numerous
nonlinear physics branches. It is obvious that the technique
we suggest is successful, dependable, and easy to use, and
that it provides enough well-matched answers for NLFPDEs
that emerge in engineering, applied mathematics, and math-
ematical physics.
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