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In this paper, an integrable (2 + 1)-dimensional KdV4 equation is considered. By considering variable transformation and Bell
polynomials, an effective and straightforward way is presented to derive its bilinear form. -e homoclinic breather test method is
employed to construct the breather wave solutions of the equation. -en, the dynamic behaviors of breather waves are discussed
with graphic analysis. Finally, the (G′/G2) expansion method is employed to obtain traveling wave solutions of the (2 + 1)-
dimensional integrable KdV4 equation, including trigonometric solutions and exponential solutions.

1. Introduction

In the research of nonlinear science, more and more at-
tention has been paid to the nonlinear evolution equations
[1–3], which can depict many important phenomena in
physics and other related fields. In order to describe these
nonlinear phenomena, it is very necessary to seek exact
solutions for nonlinear evolution equations in mathe-
matical physics [4–6]. Over the last few decades, there exist
a lot of methods to deal with nonlinear models, including
Hirota bilinear method [7], the (G′/G)-expansion method
[8], and the (G′/G2)-expansion method [9, 10]. Particu-
larly, Hirota bilinear method is one of the most direct and
effective methods to search for the solitary wave solutions
of nonlinear evolution equations. Recently, Yuan derived
exact solutions of a (2 + 1)-dimensional extended shallow
water wave equation by using Hirota bilinear method in
[11]. Tao presented abundant soliton wave solutions for the
(3 + 1)-dimensional variable-coefficient nonlinear wave
equation in [12] by considering the Hirota bilinear oper-
ators. Meanwhile, breather waves and rouge waves also
have attracted growing attention on both experimental
observations and theoretical predictions [13, 14]. -ese
giant wave phenomena have been found in different fields
such as the plasmas, deep ocean, nonlinear optic, bio-
physics, and even finance. Particularly, based on Hirota

bilinear method, there are a number of works to study
breather waves [15–17] and rouge waves [18, 19].

For KdV series equations, many meaningful results
have been presented. Dai et al. discussed interactions
between exotic multivalued solitons of the (2 + 1)-di-
mensional Korteweg–De Vries equation describing
shallow water wave in [20]. In [21], Abdul-Majid Wazwaz
derived a (2 + 1)-dimensional Korteweg De Vries 4
(KdV4) equation by using the recursion operator of the
KdV equation as follows:

vxy + vxxxt + vxxxx + 3 v
2
x 

x
+ 4vxvxt + 2vxxvt � 0. (1)

Multiple soliton solutions, traveling wave solutions, and
other periodic solutions for the (2 + 1)-dimensional KdV4
equation were derived in [21]. Inspired by the ideas in above
literature, we would like to consider the breather wave
solutions, trigonometric solutions, and exponential solu-
tions to the KdV4 equation.

-e rest of this paper is organized as follows. In Section
2, the bilinear form of KdV4 equation is derived via using
variable transformation and Bell’s polynomials. In Section 3,
the homoclinic breather limit method is employed to
construct the breather wave solutions of KdV4. -en, the
(G′/G2) expansion method is applied to obtain traveling
wave solutions of the (2 + 1)-dimensional integrable KdV4
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equation, including trigonometric solutions and exponential
solutions. Finally, some remarks are given.

2. Bilinear Forms of the (2+ 1)-Dimensional
KdV4 Equation

-rough calculation, we find it is impossible to the obtain the
Hirota bilinear form of KdV4. So, we introduce the de-
pendent variable transformation ξ � x − kt in (1); then, the
(2 + 1)-dimensional KdV4 equation (1) can be transformed
into

vξy + kvξξξξ + vξξξξ + 3 v
2
ξ ξ − 4kvξvξξ − 2kvξξvξ � 0, (2)

where k is a real constant. Integrating the obtained equation
with respect to ξ once, one obtains

vy +(1 − k)vξξξ +(3 − 3k)v
2
ξ � 0. (3)

Let us introduce a potential transformation

v � cqξ . (4)

Substituting (4) into (3), we have

E(q) � cPξy + c(1 − k)Pξξξξ � 0. (5)

Based on the results about Bell polynomials in [22],
equation (5) yields the following bilinear formalism:

DξDy +(1 − k)D
4
ξ f · f � 0, (6)

with the aid of the following transformation:

q � 2 log(f)⟺ v � cqξ � 2 log (f)ξ . (7)

3. Breather Wave Solutions of the (2+ 1)-
Dimensional KdV4 Equation

In this section, we will construct the breather wave solutions
of the KdV4 equation (1) by using the homoclinic breather
test method [23]. It is not hard to check that equation (1)
does not exist an equilibrium solution. So, we suppose

v � 2 log (f)ξ , (8)

where f � f(ξ, y) is a real function to be known later.
According to the extended homoclinic test method, we seek
for the breather wave solution of equation (6) in the fol-
lowing form:

f � exp − p1(ξ + αy)(  + ϵ1 cos(p(ξ + βy))

+ ϵ2 exp p1(ξ + αy)( ,
(9)

where p1, p, α, β, ϵ1, and ϵ2 are real constants to be deter-
mined later. Substituting equation (9) into equation (6) leads
to an algebraic equation and equating each coefficient for the
powers of exp(±p1(ξ + αy)), sin(p(ξ + βy)), and
cos(p(ξ + βy)) to zero, we obtain some algebraic equations.
Taking p � p1, we have

− 8p
4
kϵ21 − 32p

4
kϵ2 + 8p

4ϵ21 − 2p
2ϵ21β + 32p

4ϵ2 + 8p
2ϵ2α � 0,

8p
4
kϵ1 − 8p

4ϵ1 + 2p
2ϵ1α − 2p

2ϵ1β � 0,

8p
4
kϵ1ϵ2 − 8p

4ϵ1ϵ2 + 2p
2ϵ1ϵ2α − 2p

2ϵ1ϵ2β � 0,

2p
2ϵ1ϵ2α + 2p

2ϵ1ϵ2β � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

Solving the obtained equations in (10) with the help of
Maple, we have

ϵ1 � ± 2 ���
− ϵ2

√
,

α � 2(1 − k)p
2
,

β � 2(k − 1)p
2
,

(11)

in which k, p, and ϵ2 are arbitrary real numbers with
p≠ 0 and ϵ2 ≤ 0. In addition, equation (9) can be written as

f � exp − p ξ + 2(1 − k)p
2
y   + ϵ1 cos p ξ + 2(k − 1)p

2
y   + ϵ2 exp p ξ + 2(1 − k)p

2
y  

� − 2
���
− ϵ2

√
sinh p ξ + 2(1 − k)p

2
y  + ln

���
− ϵ2

√
  ± 2

���
− ϵ2

√
cos p ξ + 2(k − 1)p

2
y  .

(12)

-en, substituting the obtained results (12) and ξ � x − kt

into equation (6) yields the solutions of equation (1) as
follows:
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v1 �
2pcosh Ω1(  − 2p sin Ω2( 

sinh Ω1(  + cos Ω2( 
, (13)

v2 �
2pcosh Ω1(  + 2p sin Ω2( 

sinh Ω1(  − cos Ω2( 
, (14)

where

Ω1 � p x + 2(1 − k)p
2
y − kt  + ln

���
− ϵ2

√
,

Ω2 � p x + 2(k − 1)p
2
y − kt .

(15)

-e wave v1 given via solution (13) would be closing to a
point 2p as t⟶ +∞, and it would be closing to a point
− 2p as t⟶ − ∞. While the wave v2 given via solution (14)
would also be closing to a point 2p as t⟶ +∞, and it
would be closing to a point − 2p as t⟶ − ∞. -is is the
reason why we could not find an equilibrium solution at the
beginning. v1 and v2 are the breather waves which can
propagate with periodic oscillation. It indicates that the
homoclinic breather wave can be spanned by the interaction
between homoclinic wave and breather wave in a direction.
Taking ϵ2 � − 1, ln(

���
− ϵ2

√
) � 0 in equations (13) and (14); so,

v can be rewritten as follows:

v1 �
2pcosh p x + 2(1 − k)p

2
y − kt   − 2psin p x + 2(k − 1)p

2
y − kt  

sinh p x + 2(1 − k)p
2
y − kt   + cos p x + 2(k − 1)p

2
y − kt  

, (16)

v2 �
2pcosh p x + 2(1 − k)p

2
y − kt   + 2psin p x + 2(k − 1)p

2
y − kt  

sinh p x + 2(1 − k)p
2
y − kt   − cos p x + 2(k − 1)p

2
y − kt  

, (17)

when p⟶ 0,

2pcosh p x + 2(1 − k)p
2
y − kt   ± 2p sin p x + 2(k − 1)p

2
y − kt  

sinh p x + 2(1 − k)p
2
y − kt   ± cos p x + 2(k − 1)p

2
y − kt  

⟶ 0. (18)

So, we could not obtain the rouge wave solutions of
KdV4 by Taylor expansion in (14) at p � 0. By choosing the
suitable parameters, we present the breather wave solutions
of (16) and (17) in Figures 1 and 2, respectively. -e evo-
lution of v1 with x and y at t � 0 is demonstrated in Figure 1.
Figure 1(a) clearly shows the interactions of different waves.
Figure 1(b) shows the overhead view of Figure 1(a).
Figure 1(c) demonstrates the wave along the x axis with
y � 0. -e evolution of breather wave v2 with x and y at
t � 0 is demonstrated in Figure 1. Figure 2(a) clearly shows
the interactions of different waves. Figure 2(b) shows the
overhead view of Figure 2(a). Figure 2(c) demonstrates the
wave along the x axis with y � 0. It is clear that v1 and v2 are
much similar.

4. Traveling Wave Solutions of the (2+ 1)-
Dimensional KdV4 Equation

In this section, we will construct the traveling wave solutions
of the KdV4 equation (1) by using the (G′/G2) expansion
method [10]. Considering traveling wave transformation
η � lx + my − ct, (1) is converted into the following ODE in
the variable V � V(η):

lmV″ − l
3
cV

(4)
+ l

4
V

(4)
+ 3l

3
V′V″ − 6l

2
cV′V″ � 0. (19)

Eliminating l and then integrating (19) with respect to η
once, by choosing the constant of integration to be zero, we
obtain the following ODE:

mV′ − l
2
cV
‴

+ l
3
V
‴

+ 3l
2

V′( 
2

− 3lc V′( 
2

� 0, (20)

for which the homogeneous balance principle is applied.-e
highest order derivative V‴ and the nonlinear term of the
highest order (V′)2 are balanced as follows:

deg V
‴

  � N + 3 � deg V′( 
2

  � 2N + 2, (21)

which leads to N � 1. -erefore, the form of exact solutions
of the ODE in (20) using G′/G2 expansion method can be
expressed as

V(η) � a− 1
G′
G2 

− 1

+ a0 + a1
G′

G
2 , (22)

where a− 1, a0, and a1 are undetermined constants with

G′
G2 
′

� μ + λ
G′
G2 

2

, (23)

in which λ≠ 1 and μ≠ 0 are arbitrary real numbers.
Substituting (22) into (20) along with (23), then collecting all
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the coefficients with the same power of
(G′/G2)j, (j � 0, ± 1, ± 2, . . .), and finally setting these
resulting coefficients to be zero, we consequently obtain the

following system of algebraic equation in
a− 1, a0, a1, l, m, c, λ, and μ:

G′
G2 

4

: 6l
3λ3a1 − 6l

2
cλ3a1 + 3l

2λ2a2
1 − 3lcλ2a2

1,

G′
G2 

2

: 8l
3λ2μa1 − 8l

2
cλ2μa1 + 6clλ2a1a− 1 − 6l

2λ2a1a− 1 − 6lcλμa
2
1 + 6l

2λμa
2
1 + λma1,

G′
G2 

0

: 2l
2
cλ2μa− 1 − 2l

3λ2μa− 1 − 2l
2
cλμ2a1 + 2l

3λμ2a1 − 3lcλ2a2
− 1 + 3l

2λ2a2
− 1 + 12lcλμa1a− 1

− 12l
2λμa1a− 1 − 3lcμ2a2

1 + 3l
2μ2a2

1 − λma− 1 + μma1,

G′
G2 

− 2

: μa− 1 8l
2
cλμ − 8l

3λμ − 6lcλa− 1 + 6l
2λa− 1 + 6lcμa1 − 6l

2μa1 − m ,

G′
G2 

− 4

: 3lμ2a− 1 2lcμ − 2l
2μ − ca− 1 + la− 1 .

(24)

Solving the obtained algebraic system (24) by using
Maple, we obtain the following three cases.
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Figure 1: Breather wave (16) for equation (1) with ϵ1 � 2, ϵ2 � − 1, p � 2, α � − 4, β � 4, and k � (3/2) at time t � 0. (a) Perspective view of
the real part of the wave. (b) -e overhead view of the wave. (c) -e wave propagation pattern of the wave along the x axis with y � 0.
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Figure 2: Breather wave (17) for equation (1) with ϵ1 � − 4, ϵ2 � − 4, p � 2, α � 4, β � − 4, and k � (1/2) at time t � 0. (a) Perspective view of
the real part of the wave. (b) -e overhead view of the wave. (c) -e wave propagation pattern of the wave along the x axis with y � 0.
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Case 1: a0 � a0,

a1 � − 2lλ,

a− 1 � 2lmμ,

c �
16λμl

3
− m

16λμl
2 ,

l � l,

m � m,

(25)

where a0, l, m, λ, and μ are arbitrary constants.

Case 2: a0 � a0,

a1 � 0,

a− 1 � 2lμ,

c �
4λμl

3
− m 

4λμl
2 ,

l � l,

m � m,

(26)

where a0, l, m, λ, and μ are arbitrary constants.

Case 3: a0 � a0,

a1 � − 2lλ,

a− 1 � 0,

c �
4λμl

3
− m 

4λμl
2 ,

l � l,

m � m,

(27)

where a0, l, m, λ, and μ are arbitrary constants. When we
substitute the above three cases of the obtained parameters
along with the functions (G′/G2) specified in reference [7],
into the solution form (22), we can write three results of
solutions of (1) as follows.

Result 1. For case 1 in (25), we have
η � lx + my − ((16λμl3 − m)/16λμl2)t. When λμ> 0, the
trigonometric function solution corresponding to the pa-
rameter values can be written as

v3 � 2lm

��

λμ
 C cos(

��
λμ


η) + D sin(

��
λμ


η)

D cos(
��
λμ


η) − C sin(

��
λμ


η)

 

− 1

+ a0 − 2l

��

λμ
 C cos(

����
λμη


) + D sin(

����
λμη


)

D cos(
����
λμη


) − C sin(

����
λμη


)

 . (28)

-e fashions of solutions (28) are displayed in Figure 3
by choosing suitable parameters.

When λμ< 0, the exponential function solution corre-
sponding to the parameter values can be written as

v4 �
lmμ
λ

2
����

|λμ|



−
4C

����
|λμ|


e2

���
|λμ|

√
η

Ce2
���
|λμ|

√
η − D

⎛⎝ ⎞⎠

− 1

+ a0 − l 2
����

|λμ|



−
4C

����
|λμ|


e
2

���
|λμ|

√
η

Ce
2

���
|λμ|

√
η

− D

⎛⎝ ⎞⎠. (29)

-e fashions of solutions (29) are displayed in Figure 4
by choosing suitable parameters.

Result 2. For case 2 in (26), we have
η � lx + my − ((4λμl3 − m)/4λμl2)t. When λμ> 0, the trig-
onometric function solution corresponding to the parameter
values can be written as

v5 � 2l

��

λμ
 C cos(

��
λμ


η) + D sin(

��
λμ


η)

D cos(
��
λμ


η) − C sin(

��
λμ


η)

 

− 1

+ a0, (30)

and when λμ< 0, the exponential function solution corre-
sponding to the parameter values can be written as

v6 �
lμ
λ

2
����

|λμ|



−
4C

����
|λμ|


e2

���
|λμ|

√
η

Ce2
���
|λμ|

√
η − D

⎛⎝ ⎞⎠

− 1

+ a0. (31)

Result 3. For case 3 in (27), we have
η � lx + my − ((4λμl3 − m)/4λμl2)t. When λμ> 0, the trig-
onometric function solution corresponding to the parameter
values can be written as

v7 � a0 − 2l

��

λμ
 C cos(

��
λμ


η) + D sin(

��
λμ


η)

D cos(
��
λμ


η) − C sin(

��
λμ


η)

 

− 1

. (32)

When λμ< 0, the exponential function solution corre-
sponding to the parameter values can be written as
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v8 � a0 − l 2
����

|λμ|



−
4C

����
|λμ|


e
2

���
|λμ|

√
η

Ce
2

���
|λμ|

√
η

− D

⎛⎝ ⎞⎠. (33)

It is clear that (28) is the superimposition of (30) and
(32), while (29) is the superimposition of (31) and (33).

5. Remarks

In this paper, we introduced a dependent variable
transformation to obtain the bilinear form of KdV4
equation. It is very interesting, although we applied
homoclinic breather limit method to construct the
breather wave solutions of the equation, we cannot obtain
the rouge waves of KdV4 equation through Taylor ex-
pansion via breather waves. -en, the (G′/G2) expansion
method was employed to obtain traveling wave solutions
of the (2 + 1)-dimensional integrable KdV4 equation,
including trigonometric solutions and exponential solu-
tions. It is necessary to point out that the solutions of
Riccati equation (23) were derived by Ma in [24]. -ese
solutions which we obtained in this paper are new, and
they are different from the ones in [21]. Moreover, the
method could also be employed efficiently for a broad
range of nonlinear evolution equations.
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