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*e nonlinear autoregressive models under normal innovations are commonly used for nonlinear time series analysis in various
fields. However, using this class of models for modeling skewed data leads to unreliable results due to the disability of these models
for modeling skewness. In this setting, replacing the normality assumption with a more flexible distribution that can accom-
modate skewness will provide effective results. In this article, we propose a partially linear autoregressive model by considering the
skew normal distribution for independent and dependent innovations. A semiparametric approach for estimating the nonlinear
part of the regression function is proposed based on the conditional least squares approach and the nonparametric kernel method.
*en, the conditional maximum-likelihood approach is used to estimate the unknown parameters through the expectation-
maximization (EM) algorithm. Some asymptotic properties for the semiparametric method are established. Finally, the per-
formance of the proposed model is verified through simulation studies and analysis of a real dataset.

1. Introduction

One of the most widely used classes for time series analysis is
the class of autoregressive models. *e normality of inno-
vations is a common assumption for autoregressive models.
However, such an assumption may be unrealistic in many
empirical situations. In recent years, more attention has
focused on nonnormal innovations rather than normal
innovations. Tarami and Porahmadi [1] considered multi-
variate autoregressive processes with the t distribution for
modeling volatile time series data. Jacobs and Lewis [2]
analyzed an autoregressive model with nonnormal inno-
vations. Ghasemi et al. [3] considered autoregressive models
with generalized hyperbolic innovations. *e most impor-
tant limitation of the normal distribution is that it cannot
model skewness. In this article, we consider the skew normal
(SN) distribution (Azzalini [4]) for modeling the uncertainty
of the innovations in the time series analysis. *is skew-

symmetric distribution is a generalization of the normal
distribution that enables it to model asymmetric observa-
tions as well as the symmetric data. A non-Gaussian
autoregressive model with epsilon SN innovations is con-
sidered by Bondon [5]. Sharafi and Nematollahi [6] intro-
duced an autoregressive model of order one with SN
innovations and proposed some methods for parameters
estimation.

Many researchers have recently studied nonlinear
autoregressive models in various fields of science. For ex-
ample, Tsay [7]; Farnoosh and Mortazavi [8]; Hajrajabi and
Mortazavi [9]; Farnoosh et al. [10] and Ortega Contreras
et al. [11] considered nonlinear time series models and
analyzed various datasets. Farnoosh and Mortazavi [8]
considered the Gaussian first-order nonlinear autoregressive
model with dependent innovations to estimate the yearly
amount of deposit in Iran’s Tejarat-Bank. Hajrajabi and
Mortazavi [9] proposed a nonlinear autoregressive model
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with SN innovations and presented asymptotic behaviors of
the estimators. Tong [12] and Haggen and Ozaki [13] in-
vestigated nonlinear models for modeling sound vibrations.
A class of nonlinear additive autoregressive models with
exogenous variables to analyze the nonlinear time series is
proposed by Chen and Tsay [14]. In addition, the estimation
of autoregression function in nonlinear autoregressive
models through semiparametric methodology is interested in
literature. Fan and Yao [15] discussedmodern parametric and
nonparametric approaches for estimating nonlinear models.
Zhuoxi et al. [16] proposed a semiparametric approach for a
nonlinear autoregressive model considering the innovations
are normal distribution with mean zero and fixed variance.
Hajrajabi and Fallah [17] followed Zhuoxi et al. [16] by as-
suming the SN innovations. Farnoosh et al. [10] studied a
partially linear autoregressive model by considering inde-
pendent innovations with mean zero and fixed variance. To
estimate the regression function, similarly to Zhuoxi et al.
[16], they used a semiparametric approach.

*is article aims at developing a partially linear autor-
egressive model with SN innovations for both independent
and dependent innovations. *is model is an extension of
the proposed model by Farnoosh et al. [10]. *e estimation
of our proposed model consists of two parts. In the first part,
we use a semiparametric approach consisting of parametric
estimation and nonparametric adjustment introduced by
Zhuoxi et al. [16]. For parametric estimation, the conditional
least squares approach is used to estimate the model’s
nonlinear function. Also, the smooth kernel approach is
used to estimate the nonparametric adjustment. *e second
part is to compute the conditional maximum-likelihood
(CML) estimators of parameters using the EM algorithm.
We also derived the closed iterative forms for the CML
estimators of parameters.

*e plan of the article proceeds as follows: Section 2
covers the brief properties of the SN distribution. In Section
3, the SN partially linear autoregressive models with inde-
pendent and dependent innovations are introduced. *is
section also shows how to estimate the nonlinear part of the
models considering the semiparametric approach. In Section

4, the CML estimation of the model parameters via the EM
algorithm is discussed. *e performance of suggested
methods is investigated by simulation in Section 5. A real
dataset is also considered in this section to explain the
applicability of the proposed models. Finally, conclusions
are provided in Section 6. Some asymptotic behaviors of the
estimators are given in the Appendix.

2. A Brief Introduction about the
SN Distribution

Let Z be a random variable with univariate SN distribution,
denoted by Z ∼ SN(μ, σ2, λ), where μ, σ2, and λ indicate the
location, scale, and skewness parameters, respectively. *en,
the density function of Z is

fSN(Z) �
2
σ
φ

z − μ
σ

􏼒 􏼓ϕ λ
z − μ
σ

􏼒 􏼓, z ∈ R, (1)

where φ(·) is the density function of the standard normal
distribution and ϕ(·) is its cumulative distribution function,
μ ∈ R, σ > 0, and λ ∈ R.

Lemma 1. If Z ∼ SN(μ, σ2, λ), then

(a) E(Z) � μ + σ
���
2/π

√
δ(λ)

(b) Var(Z) � σ2 1 − 2/πδ2(λ)􏽮 􏽯

(c) SK(Z) �
�
2

√
(4 − π)λ3/ π + (π − 2)λ2􏽮 􏽯

1.5

(d) KU(Z) � 3 + 8(π − 2)λ4/ π + (π − 2)λ2􏽮 􏽯
2

where δ(λ) � λ/
�����
1 + λ2

􏽰
, and SK(Z) and KU(Z) are the

coefficients of skewness and kurtosis, respectively.

Lemma 2. From [18] (:eorem 1) and [19] (p. 201), if
U ∼ TN(0, σ2)I u>0{ }, V ∼ N(0, σ2) and U and V be inde-
pendent, then

Z � μ + δ(λ)U + V

��������

1 − δ2(λ)

􏽱

, (2)

distributed as SN(μ, σ2, λ). Also, the joint density of Z and U

is

fZ,U(z, u) �

�����
1 + λ2

􏽰

πσ2
exp

− 1
2σ2

(z − μ)
2

+(1 + λ)
2

u −
λ

�����
1 + λ2

􏽰 (z − μ)􏼠 􏼡

2
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭. (3)

Lemma 3. Suppose U ∼ TN(0, σ2)I u>0{ }, V ∼ N(0, σ2), and

Z is defined as Z � μ + δ(λ)U + V

��������

1 − δ2(λ)

􏽱

, then

U|Z � z ∼ TN μU, σ2U􏼐 􏼑Ia1�0< u< a2�∞, (4)

and also

E(U|Z � z) � μU +
φ μU/σU( 􏼁

ϕ μU/σU( 􏼁
σU,

E U
2
|Z � z􏼐 􏼑 � μ2U + σ2U +

φ μU/σU( 􏼁

ϕ μU/σU( 􏼁
σUμU.

(5)

3. Semiparametric Approach in the
Proposed Model

In this section, we consider partially linear autoregressive
models of the following forms.

3.1. Model with Independent Innovations (Model I).
Consider the following model:

zt � czt− 1 + f zt− 2( 􏼁 + ]t, t � 2, 3, . . . , n, |c|< 1, (6)
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where ]t ∼ SN(μ, σ2, λ), f(·) is a nonlinear autoregressive
function, and c is an unknown parameter. Also, ]t and yt

are independent for each t.
At first, we estimate f(x) by an initial guess r(x, β) as a

known function of x and β. *e parameter β can be esti-
mated by using the conditional nonlinear least squares er-
rors (CNLSE) method based on data z0, z1, . . . , zn as follows:

􏽢β � argmin
β∈Θ

􏽘

n

t�2
zt − E zt|zt− 1, zt− 2( 􏼁( 􏼁

2
,

� argmin
β∈Θ

􏽘

n

t�2
zt − czt− 1 − r zt− 2, β( 􏼁 − μ]t

􏼐 􏼑
2
,

(7)

where μ]t
� μ + σ

���
2/π

√
δ(λ) (see Lemma 1).

We use the semiparametric form of r(x, β)ξ(x) to adjust
the initial approximation, where ξ(x) shows a nonpara-
metric adjustment.

For estimating ξ(x), we use the following local L2-fitting
criterion:

qn(x, ξ) �
1
hn

􏽘

n

t�2
k

zt− 2 − x

hn

􏼠 􏼡 f zt− 2( 􏼁 − r zt− 2,
􏽢β􏼐 􏼑ξ􏼐 􏼑

2
, (8)

where k(·) and hn are the kernel function and bandwidth,
respectively. We get the estimator 􏽢ξ(x) of ξ(x) by mini-
mizing (2) with respect to ξ(x) as follows:

􏽢ξ(x) �
􏽐

n
t�2 K zt− 2 − x/hn( 􏼁r zt− 2,

􏽢β􏼐 􏼑f zt− 2( 􏼁􏽨 􏽩

􏽐
n
t�2 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢β􏼐 􏼑
, (9)

and the estimator of autoregression function of the model is

􏽢f(x) � r(x, 􏽢β)􏽢ξ(x). (10)

However, the function f(x) in the formula 􏽢ξ(x) in
equation (9) is unknown. *erefore, by using

􏽥]t � ]t − μ]t
,

� zt − czt− 1 − f zt− 2( 􏼁 − μ]t
,

(11)

and regarding the fact that 􏽥]t are small values, one can obtain

􏽥ξ(x) �
􏽐

n
t�2 K zt− 2 − x/hn( 􏼁r zt− 2,

􏽢β􏼐 􏼑 zt − 􏽢czt− 1 − 􏽢μυt
􏼐 􏼑􏽨 􏽩

􏽐
n
t�2 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢β􏼐 􏼑􏽨 􏽩
.

(12)

Finally, the estimator of f(x) is
􏽥f(x) � r(x, 􏽢β)􏽥ξ(x). (13)

3.2. Model with Dependent Innovations (Model II). By
considering the partially linear autoregressive model in
equation (6) with dependent innovations as first-order
autoregressive AR(1), we have

zt � czt− 1 + f zt− 2( 􏼁 + εt,

εt � ρεt− 1 + ]t, |ρ|< 1,
(14)

where ]t ∼ SN(μ, σ2, λ) and f(·) is a nonlinear autore-
gression function similar to Model (I). Also, ]t and yt are
independent for each t.

From (14), we can write

εt � zt − czt− 1 − f zt− 2( 􏼁⟶ εt− 1 � zt− 1 − czt− 2 − f zt− 3( 􏼁.

(15)

And, therefore,

zt � czt− 1 + f zt− 2( 􏼁 + ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 + vt.

(16)

We want to estimate the unknown regression functions
f(zt− 2) and f(zt− 3) that can be formed as r(zt− 2, β) and
r(zt− 3, β), respectively. As it is shown in Section 3.1, to
estimate β, we can apply the CNLSE approach as follows:

􏽢β � argmin
β∈Θ

􏽘

n

t�2
zt − czt− 1 − r zt− 2, β( 􏼁 − ρ zt− 1 − czt− 2 − r zt− 3, β( 􏼁 − μ]t

􏼐 􏼑􏼐 􏼑
2
, (17)

where μ]t
� μ + σ

���
2/π

√
δ(λ) (see Lemma 1). By applying the same idea as in Model (I), the local L2-

fitting criterion is

qn(x, ξ) �
1
hn

􏽘

n

t�3
k

zt− 2 − x

hn

􏼠 􏼡 f zt− 2( 􏼁 − r zt− 2,
􏽢β􏼐 􏼑ξ􏼐 􏼑

2
+

1
hn

􏽘

n

t�3
k

zt− 3 − x

hn

􏼠 􏼡 f zt− 3( 􏼁 − r zt− 3,
􏽢β􏼐 􏼑ξ􏼐 􏼑

2
. (18)
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By minimizing (18) with respect to ξ(x), one can write

􏽢ξ(x) �
􏽐

n
t�3 K zt− 2 − x/hn( 􏼁r zt− 2,

􏽢β􏼐 􏼑f zt− 2( 􏼁 + K zt− 3 − x/hn( 􏼁r zt− 3,
􏽢β􏼐 􏼑f zt− 3( 􏼁􏽨 􏽩

􏽐
n
t�3 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢β􏼐 􏼑 + K zt− 3 − x/hn( 􏼁r
2

zt− 3,
􏽢β􏼐 􏼑􏽨 􏽩

. (19)

Unfortunately, equation (19) includes the unknown
function f(·). *erefore, by using

􏽥εt � εt − μεt
� zt − czt− 1 − f zt− 2( 􏼁 − μεt

,

􏽥εt− 1 � εt− 1 − μεt− 1
� zt− 1 − czt− 2 − f zt− 3( 􏼁 − μεt− 1

,
(20)

and regarding the fact that 􏽥εt are small values, we have

􏽥ξ(x) �
􏽐

n
t�3 K zt− 2 − x/hn( 􏼁r zt− 2,

􏽢β􏼐 􏼑 zt − 􏽢czt− 1 − 􏽢μεt
􏼐 􏼑 + K zt− 3 − x/hn( 􏼁r zt− 3,

􏽢β􏼐 􏼑 zt− 1 − 􏽢czt− 2 − 􏽢μεt− 1
􏼐 􏼑􏽨 􏽩

􏽐
n
t�3 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢β􏼐 􏼑 + K zt− 3 − x/hn( 􏼁r
2

zt− 3,
􏽢β􏼐 􏼑􏽨 􏽩

. (21)

Finally, the estimator of f(x) is obtained as
􏽥f(x) � r(x, 􏽢β)􏽥ξ(x). (22)

4. Conditional Maximum-
Likelihood Estimation

*ere are several methods for estimating the parameters in
time series models. *is article implements the CML esti-
mation method. *e conditional likelihood function of the
Model (II) given the observed data are defined by

L(θ|z) � 􏽙
n

t�3
fSN zt|zt− 2, zt− 3, θ( 􏼁,

� 􏽙
n

t�3

2
σ
ϕ

zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ
σ

􏼠 􏼡

×Φ λ
zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ

σ
􏼠 􏼡􏼠 􏼡

�
2
σ

􏼒 􏼓
n− 2

exp
− 1
2

􏽘

n

t�3
zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁

2⎧⎨

⎩

⎫⎬

⎭

× 􏽙
n

t�3
Φ λ

zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ
σ

􏼠 􏼡􏼠 􏼡.

(23)

where f(zt− 2) � r(zt− 2,β)ξ(zt− 2), f(zt− 3) � r(zt− 3,β)ξ(zt− 3)

and θ� (β,μ,σ2,λ,c,ρ) is the unknown parameters vector.
Since the likelihood function in equation (23) is compli-
cated, we need a computational approach to maximize it.

*erefore, an EM algorithm is developed to calculate the ML
estimate of the parameters. To do this, we consider the
missing data problem. By defining the variables
Ut ∼TN(0,σ2)I ut>0{ }, Vt ∼N(0,σ2), and

zt � czt− 1 + f zt− 2( 􏼁 + ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 + μ + δ(λ)Ut +

��������

1 − δ2(λ)

􏽱

Vt,
(24)

4 Advances in Mathematical Physics



and using Lemma 2, the conditional distribution of obser-
vation in the Model (II) is given by

zt|zt− 1, zt− 2, zt− 3 ∼ SN czt− 1 + f zt− 2( 􏼁 + ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 + μ( 􏼁, σ2, λ􏼐 􏼑, t � 3, . . . , n. (25)

Let z and ut; t � 3, . . . , n􏼈 􏼉 be the incomplete and
missing data, respectively, and using Lemma 2, the joint
density function of the complete data can be written as

fZt,Ut
zt, ut( 􏼁 �

�����
1 + λ2

􏽰

πσ2
exp

− 1
2σ2

zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁
2

􏽨􏼨

+(1 + λ)
2

ut −
λ

�����
1 + λ2

􏽰 zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁􏼠 􏼡

2
⎤⎦
⎫⎬

⎭

�
1

πσ2
��������

1 − δ2(λ)

􏽱 exp
− 1

2σ2 1 − δ2(λ)􏼐 􏼑
× zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁

2
􏽨

⎧⎨

⎩

− 2uδ(λ) zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁 + u
2
t 􏽩

⎫⎬

⎭.

(26)

*erefore, the complete data likelihood and log likeli-
hood functions are, respectively,

LC(θ|z, u) � 􏽙
n

t�3
fZt,Ut

zt, ut( 􏼁 � πσ2􏼐 􏼑
− (n− 2)

1 − δ2(λ)􏼐 􏼑
− n− 2/2

× exp
− 1

2σ2 1 − δ2(λ)􏼐 􏼑

⎧⎨

⎩

· 􏽘
n

t�3

zt − czt− 1 − f zt− 2( 􏼁 − ρzt− 1 − czt− 2 − f zt− 3( 􏼁 − μ( 􏼁
2

− 2utδ(λ) zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁 + u
2
t

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
⎫⎪⎬

⎪⎭
,

lC(θ|z, u) � − (n − 2)log σ2􏼐 􏼑 −
n − 2
2

log 1 − δ2(λ)􏼐 􏼑 −
1

2σ2 1 − δ2(λ)􏼐 􏼑

× 􏽘
n

t�3
zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁

2⎡⎣

− 2δ(λ) 􏽘
n

t�3
ut zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁 + 􏽘

n

t�3
u
2
t
⎤⎦.

(27)

*e EM algorithm iterates between E andM steps. *e E
step obtains the conditional expectation of lC(θ|z,u) given
the observed data and current parameters. Based on Lemma
3, we have

Ut|Zt � zt ∼ TN μUt
, σ2U􏼐 􏼑Iut > 0, (28)

where

μUt
� δ(λ) zt − czt− 1 − f zt− 2( 􏼁 − ρ zt− 1 − czt− 2 − f zt− 3( 􏼁( 􏼁 − μ( 􏼁,

σU � σ
��������

1 − δ2(λ)

􏽱

.
(29)

Advances in Mathematical Physics 5



Calculating the conditional expectation of (27) yields

E lc(
􏽢θ|z, u)|z􏽨 􏽩 � − (n − 2)log 􏽢σ2􏼐 􏼑 −

(n − 2)

2
log 1 − δ2(􏽢λ)􏼐 􏼑

−
1

2􏽢σ2 1 − δ2(􏽢λ)􏼐 􏼑
􏽘

n

t�3
zt − 􏽢czt− 1 − 􏽥f zt− 2( 􏼁 − 􏽢ρzt− 1 − 􏽢czt− 2 − 􏽥f zt− 3( 􏼁 − 􏽢μ􏼐 􏼑

2⎡⎣

− 2δ(􏽢λ) 􏽘
n

t�3
a1t zt − 􏽢czt− 1 − 􏽥f zt− 2( 􏼁 − 􏽢ρ zt− 1 − 􏽢czt− 2 − 􏽥f zt− 3( 􏼁􏼐 􏼑 − 􏽢μ􏼐 􏼑 + 􏽘

n

t�3
a2t

⎤⎦,

(30)

where

a1t � E􏽢θ
Ut|Zt− 2, Zt− 3 � zt− 2, zt− 3􏼂 􏼃

� 􏽢μUt
+
ϕ 􏽢μUt

/􏽢σU􏼐 􏼑

Φ 􏽢μUt
/􏽢σU􏼐 􏼑

􏽢σU,

a2t � E􏽢θ
U

2
t |Zt− 2, Zt− 3 � zt− 2, zt− 3􏽨 􏽩

� 􏽢μ2Ut
+ 􏽢σ2U +

ϕ 􏽢μUt
/􏽢σU􏼐 􏼑

Φ 􏽢μUt
/􏽢σU􏼐 􏼑

􏽢σU􏽢μUt
,

(31)

with

􏽢μUt
� δ(􏽢λ) zt − 􏽢czt− 1 − 􏽥f zt− 2( 􏼁􏼐

− 􏽢ρ zt− 1 − 􏽢czt− 2 − 􏽥f zt− 3( 􏼁􏼐 􏼑 − 􏽢μ􏼑,

􏽢σU � 􏽢σ
����������

1 − δ2(􏽢λ)􏼐 􏼑

􏽱

,

(32)

where 􏽥f(zt− 2) � r(zt− 2,
􏽢β)􏽥ξ(zt− 2) and 􏽥f(zt− 3) � r(zt− 3,

􏽢β)
􏽥ξ(zt− 3) are given in (22).

*e M step of the algorithm maximizes the expectation
computed in (30).

Given the values of the parameters in kth iteration,
equating the first-order derivatives of (30) to zero and
solving the resulted system of equations, the maximum-
likelihood estimates of model parameters in k+1th iteration
of the algorithm are obtained to be

􏽢μ(k+1)
�

1
n − 2

􏽘

n

t�3
zt − 􏽢c

(k)
zt− 1 − 􏽥f

(k)
zt− 2( 􏼁 − 􏽢ρ(k)

zt− 1 − 􏽢c
(k)

zt− 2 − 􏽥f
(k)

zt− 3( 􏼁􏼒 􏼓􏼒 􏼓 − δ 􏽢λ
(k)

􏼒 􏼓 􏽘

n

t�3
a

(k)
1t ,⎡⎣

􏽢σ2(k+1)
�

1

2(n − 2) 1 − δ2 􏽢λ
(k)

􏼒 􏼓􏼒 􏼓
􏽘

n

t�3
a

(k)
2t − 2δ 􏽢λ

(k)
􏼒 􏼓⎡⎣

· 􏽘
n

t�3
a

(k)
1t zt − 􏽢c

(k)
zt− 1 − 􏽥f

(k)
zt− 2( 􏼁 − 􏽢ρ(k)

zt− 1 − 􏽢c
(k)

zt− 2
􏽥f

(k)
zt− 3( 􏼁􏼒 􏼓 − 􏽢μ(k+1)

􏼒 􏼓

+ 􏽘
n

t�3
zt − 􏽢c

(k)
zt− 1 − 􏽥f

(k)
zt− 2( 􏼁 − 􏽢ρ(k)

zt− 1 − 􏽢c
(k)

zt− 2
􏽥f

(k)
zt− 3( 􏼁􏼒 􏼓 − 􏽢μ(k+1)

􏼒 􏼓
2
⎤⎦,

􏽢c
(k+1)

�
􏽐

n
t�3 zt− 1 − 􏽢ρ(k)

zt− 2􏼐 􏼑 zt − 􏽥f
(k)

zt− 2( 􏼁 − 􏽢ρ(k)
zt− 1 − 􏽥f

(k)
zt− 3( 􏼁􏼒 􏼓 − 􏽢μ(k+1)

􏼒 􏼓

􏽐
n
t�3 zt− 1 − 􏽢ρ(k)

zt− 2􏼐 􏼑
2 −

δ 􏽢λ
(k)

􏼒 􏼓 􏽐
n
t�3 a

(k)
1t zt− 1 − 􏽢ρ(k)

zt− 3􏼐 􏼑

􏽐
n
t�3 zt− 1 − 􏽢ρ(k)

zt− 2􏼐 􏼑
2 ,

􏽢ρ(k+1)
�

􏽐
n
t�3 zt− 1 − 􏽢c

(k+1)
zt− 2 − 􏽥f

(k)
zt− 3( 􏼁􏼒 􏼓 zt − 􏽢c

(k+1)
zt− 1 − 􏽥f

(k)
zt− 2( 􏼁 − 􏽢μ(k+1)

􏼒 􏼓

􏽐
n
t�3 zt− 1 − 􏽢c

(k+1)
zt− 2 − 􏽥f

(k)
zt− 3( 􏼁􏼒 􏼓

2 −
δ 􏽢λ

(k)
􏼒 􏼓 􏽐

n
t�3 a

(k)
1t zt− 1 − 􏽢c

(k+1)
zt− 2 − 􏽥f

(k)
zt− 3( 􏼁􏼒 􏼓

􏽐
n
t�3 zt− 1 − 􏽢c

(k+1)
zt− 2 − 􏽥f

(k)
zt− 3( 􏼁􏼒 􏼓

2 ,

􏽢λ
(k+1)

� argmax
λ

􏽘

n

t�3
Φ λ

zt − 􏽢c
(k+1)

zt− 1 − 􏽥f
(k)

zt− 2( 􏼁 − 􏽢ρ(k+1)
zt− 1 − 􏽢c

(k+1)
zt− 2

􏽥f
(k)

zt− 3( 􏼁􏼒 􏼓 − 􏽢μ(k+1)

􏽢σ(k+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(33)
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*en, updating the parameter β from equation (17)
yields

􏽢β
(k+1)

� argmin
β∈Θ

􏽘

n

t�3
zt − 􏽢c

(k+1)
zyt− 1 − r zt− 2, β( 􏼁 − 􏽢ρ(k+1)

zt− 1 − 􏽢c
(k+1)

zt− 2 − r zt− 3, β( 􏼁􏼐 􏼑 − 􏽢μ(k+1)
]t

􏼐 􏼑
2
, (34)

where

􏽢μ(k+1)
]t

� 􏽢μ(k+1)
+ 􏽢σ(k+1)

��
2
π

􏽲

δ 􏽢λ
(k+1)

􏼒 􏼓, (35)

*erefore, the nonparametric estimator of ξ(x) is
updated as follows:

􏽥ξ
(k+1)

(x) �
􏽐

n
t�3 K zt− 2 − x/hn( 􏼁r zt− 2,

􏽢β
(k+1)

􏼒 􏼓 zt − 􏽢c
(k+1)

zt− 1 − 􏽢μ(k+1)
εt

􏼐 􏼑

􏽐
n
t�3 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢β
(k+1)

􏼒 􏼓 + K zt− 3 − x/hn( 􏼁r
2

zt− 3,
􏽢β

(k+1)
􏼒 􏼓􏼔 􏼕

+
􏽐

n
t�3 K zt− 3 − x/hn( 􏼁r zt− 3,

􏽢β
(k+1)

􏼒 􏼓 zt− 1 − 􏽢c
(k+1)

zt− 2 − 􏽢μ(k+1)
εt− 1

􏼐 􏼑

􏽐
n
t�3 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢β
(k+1)

􏼒 􏼓 + K zt− 3 − x/hn( 􏼁r
2

zt− 3,
􏽢β

(k+1)
􏼒 􏼓􏼔 􏼕

.

(36)

Finally, the semiparametric estimation of autoregression
function in the k + 1 th iteration is

􏽥f
(k+1)

zt− 2( 􏼁 � r zt− 2,
􏽢β

(k+1)
􏼒 􏼓􏽥ξ

(k+1)
zt− 2( 􏼁,

􏽥f
(k+1)

zt− 3( 􏼁 � r zt− 3,
􏽢β

(k+1)
􏼒 􏼓􏽥ξ

(k+1)
zt− 3( 􏼁.

(37)

As it can be seen, there is no closed iterative form for the
ML estimator of parameter λ. *erefore, an iterative pro-
cedure similar to Newton–Raphson should be employed to
calculate the corresponding value for this parameter.

5. Simulation Study

5.1. Simulation Study 1. We present a simulation study to
examine the performance of the suggested methods by using
the R programming environment. Two partially linear
autoregressive models are considered with the different
situations of independent and dependent innovations, re-
spectively, as

Model(I): zt � czt− 1 + f zt− 2( 􏼁 + ]t,

Model(II): zt � czt− 1 + f zt− 2( 􏼁 + εt, εt � ρεt− 1 + υt,

(38)

where υt ∼ SN(0.1, 0.25, 0.85). *e data were simulated
from Model (II) in (14) with sample sizes n� 100, 200, 400,
and 500 iterations considering the nonlinear function
f(x) � 5e− x2 . We assume r(x, β) � βe− x2 . Also, for
choosing the bandwidth hn, we perform an opening window
method, that is, considering several bandwidths [20].

Table 1 presents some descriptive statistics for the
simulated data from Model (II). *e Kolmogorov–Smirnov

(K–S) test is also provided. *e test statistics and p-value
reject the normality of the datasets.

*e values of f(zt) and their semiparametric estimates
from Model (II) are displayed in Figure 1(a) with selected
bandwidth. *is figure presents that the semiparametric
estimator of the autoregression function with AR(1) inno-
vation performs well.

As can be seen from Figure 1(b), the estimated values of
data zt are close to the exact values of data. Figure 1(c)
presents the autocorrelation function (ACF) of the residuals
of the model with AR(1) innovations. *is figure illustrates
that the residuals of the model are uncorrelated.

Finally, we calculate the root of mean squared error
(RMSE) for comparing the efficiency and accuracy of the
suggested partially linear autoregressive models as

RMSE �

������������������
1

n − 2
f zt( 􏼁 − 􏽥f zt( 􏼁􏼐 􏼑

2
􏽲

. (39)

Table 2 reports the RMSE of Model (I) and Model (II)
with three values of hn ∈ 0.02, 0.04, 0.06{ } and different
sample sizes n ∈ 100, 200, 400{ }. As we can see from Table 2,
the simulation results show that the model with AR(1) in-
novations has more performance in comparison to the
model with independent innovations. Also, the results show
that the RMSE decreases when the sample size increases for
all sample sizes n and all values of hn.

Also, the values of f(zt) and their semiparametric es-
timates under two abovemodels with selected bandwidth are
displayed in Figure 2(a). *e solid line is the regression
function f(zt), and the blue line and red line are the
semiparametric fitted function of Models I and II,
respectively.
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Figure 2(b) presents the exact and estimated values of
data under Models I and II. *e solid line corresponds to
exact values of zt, and the blue line and red line correspond
to semiparametric estimates of zt from Models I and II,
respectively. We can see that the estimation results of Model
II are very close.

5.2. Simulation Study 2. *is section presents a simulation
study to compare the performance of the proposed model
with normal model in modeling time series data with SN
innovations. We consider a partially linear autoregressive
model of the following form:

zt � czt− 1 + f zt− 2( 􏼁 + ]t, t � 3, . . . , n, (40)

where υt ∼ SN(1, 1, λ) and chose two different functions
f1(x) � 5e− x2 by assuming r(x, β1) � β1e− x2 ,
f2(x) � 0.7 sin x + 0.1x by assuming r(x, β2) � β2 sin x.

*e datasets are generated with sample sizes
n � 50, 100, 200 and different values of λ � − 2, − 1, 0, 1, 2{ }.
Also, the bandwidth hn is chosen by an opening the window
technique [20].

*e values of RMSE of the model in equation (40) under
normal and SN innovations are presented in Tables 3 and 4.

*e RMSE results show the SN model has a better
performance than the normal model for positive and neg-
ative skewness parameters. Also, there are no significant

Table 1: Descriptive statistics for the simulated data from Model (II).

Data set n Min Max Mean Standard deviation Skewness K–S (statistics) K–S (p-value)
1 100 0.4143 5.5 2.0569 1.2471 1.1899 0.7159 <2.2e-16
2 200 0.1489 5.5541 1.9708 1.1528 1.1981 0.7187 <2.2e-16
3 400 0.2380 5.9470 1.9462 1.1483 1.1851 0.7041 <2.2e-16
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Figure 1: (a) Exacts and estimated values of f(zt). (b) Exact and estimated values of Z. (c) ACF of residuals, hn � 0.06, n � 100.

Table 2: Values of the RMSE for Model I and Model II, with AR(1)
innovations and 500 iterations.

n hn RMSE (model II) RMSE (model I)

100
0.02 0.5198 1.4865
0.04 0.6305 1.7414
0.06 0.6824 2.0679

200
0.02 0.4723 1.4131
0.04 0.5563 1.7014
0.06 0.6674 1.9159

400
0.02 0.3916 1.3632
0.04 0.5463 1.6686
0.06 0.5593 1.8909
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differences between the RMSE values of normal and SN
models when λ � 0.

Figures 3(a) and 4(a) show the values of f(zt) and its
semiparametric estimator under the normal and SNmodel with

selected bandwidth hn � 0.12, λ � 2 and sample size 100 for two
functions f1(x) and f2(x). Also, the exacted and estimated
values of data are shown in Figures 3(b) and 4(b). *e figures
show that the SNmodel performs better than the normalmodel.
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Figure 2: (a) Exact and estimated values of f(zt) from Model I and Model II. (b) Exact and estimated values of data from Model I and
Model II, hn � 0.04, n � 100.

Table 3: RMSE for different values of λ under the normal and SN
innovations, f1(x).

n λ
Model

Skew normal Normal

50

− 2 2.1273 2.2415
− 1 2.2927 2.4291
0 2.3441 2.3605
1 1.8298 2.21151
2 1.2074 1.8185

100

− 2 1.9364 2.0192
− 1 2.0985 2.2491
0 2.3092 2.3405
1 1.3833 1.9486
2 1.1510 1.8178

200

− 2 1.9129 2.0187
− 1 2.0211 2.1326
0 2.1266 2.1683
1 1.3339 1.8965
2 1.1431 1.7354

Table 4: RMSE for different values of λ under the normal and SN
innovations, f2(x).

n λ
Model

Skew normal Normal

50

− 2 0.9397 1.0150
− 1 0.9716 1.0148
0 1.5302 1.5306
1 1.2725 1.7291
2 1.2526 1.7133

100

− 2 0.9239 0.9821
− 1 0.9441 1.009
0 1.5051 1.5177
1 1.2598 1.7216
2 1.1280 1.7044

200

− 2 0.8601 0.9152
− 1 0.9092 0.9500
0 1.4758 1.4871
1 1.1902 1.6908
2 1.0654 1.6690
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Figure 3: (a) Exact and estimated values of f(zt) from normal and SN models. (b) Exact and estimated values of data from normal and SN
models, hn � 0.12, n � 100, λ � 2.f1(x) � 5e− x2 .
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Figure 4: Continued.
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Table 5: *e descriptive statistics of the values for ARW data, 1974–2008.

n Mean Min Max Variance Skewness Sum
35 3.74 1.08 7.75 2.77 0.37 131.12

Table 6: *e ML estimates and the RMSE value for ARW data with independent innovations.

n 􏽢μ 􏽢σ2 􏽢λ 􏽢c RMSE
35 0.7596 0.4989 2.3339 0.6293 1.7314
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Figure 4: (a) Exact and estimated values of f(zt) from normal and SN models. (b) Exact and estimated values of data from normal and SN
models, hn � 0.12, n � 100 λ � 2, f2(x) � 0.7 sin x + 0.1x.

Table 7: *e ML estimates and the RMSE value for ARW data with AR(1) innovations.

n 􏽢μ 􏽢σ2 􏽢λ 􏽢c 􏽢ρ RMSE
35 − 0.6299 2.7006 2.7227 − 0.33 0.6998 1.5411
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Figure 5: (a) Exact and estimated values of data based on Model (I). (b) ACF of residuals, hn � 0.04.
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6. Empirical Application

*is section analyzes an application of the partially linear
autoregressive model with SN innovations to a real-world
data set. *is dataset consists of three Pinus eldarica trees
randomly selected from a plantation at Garagpas-Kelardasht
site, located in the western part of the Mazandaran province
in the north of Iran. Farnoosh et al. [10] and Hajrajabi and
Mortazavi [9] studied this dataset by applying different
autoregressive models. Considering the proposed semi-
parametric approach and by assuming r(x, β) � βe− x2 , we
estimate autoregression function in two models (i.e., par-
tially linear autoregressive models with AR(1) and inde-
pendent innovations) for the ARW data from 1974 to 2008
using the SN innovations.

Table 5 shows descriptive statistics for the ARWdata.We
can see that the data have skewness.

Tables 6 and 7 report the ML estimates and RMSE values
for the models with independent and AR(1) innovations,
respectively.

Figures 5(a) and 6(a) show the exact values of the ARW
data and their estimates in the partially linear autoregressive
models with independent and AR(1) innovations, respec-
tively. For diagnostic checking of the fitted models, the
residuals of models are analyzed by using ACF plot.
Figures 5(b) and 6(b) show the ACF of residuals in the
partially linear autoregressive models with independent and
AR(1) innovations, respectively. *e residuals of the models
are almost uncorrelated. As we can see from these figures,
the model with AR(1) innovations fits better than the model
with independent innovations in describing the ARW data.
Also, the comparison of RMSE for the two discussed models
shows that the suggested semiparametric approach for a
partially linear autoregressive model with AR(1) innovations
is more efficient.

7. Conclusion

*is article suggested the partially linear autoregressive
model with SN innovations from a semiparametric point of
view. Both independent and dependent innovations are
considered. *e CNLSE approach and the local L2-fitting
criterion are used to estimate the regression function. For
parameter estimation, we applied the CMLmethod using the
EM algorithm. *e findings of the simulation studies in-
dicated the proposed model is quite flexible for modeling
skewed data. Furthermore, the proposed semiparametric
method is used to show that the partially linear autore-
gressive model under SN innovations is an efficient model
for modeling the ARW data of Kelardasht site. *e results of
the study verified the effectiveness of the proposed model.

Appendix

A. The Asymptotic Behaviors of Estimators

To investigate asymptotic behaviors of the estimators, we
consider the following assumptions A1-A12 of Farnoosh
et al. [21]:

(A1) f(·) is Lipschitz continuous and all moments of
innovations are finite with Lipschitz density
function. Also, the sequence Zt􏼈 􏼉 is a stationary
ergodic sequence of integrable random variables.

(A2) zr/zβi, z2r/zβizβj, z3r/zβizβjzβk exist and are
continuous for all β ∈ Θ, where i, j, k � 1, . . . , m.

(A3) E(Zt|Zt− 1, . . . , Z0) � E(Zt|Zt− 1, . . . , Zt− k), a.s.
t≥ k≥ 1, where k is constant.

(A4) E(U2
t (μ0, σ0, λ0, β0, c0)|zr(β0, zt− 1)/zβi, zr(β0,

zt− 2)/zβj)< +∞E(U2
t (μ0, σ0, λ0, β0, c0, ρ0)|

zr(β0, zt− l)/zβi, zr(β0, zt− l)/zβj)< +∞, l � 2, 3
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Figure 6: (a) Exact and estimated values of data based on Model (II). (b) ACF of residuals, hn � 0.04.
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where Ut in the independent innovation case is
given by

Ut μ0, σ0, λ0, β0, c0( 􏼁 � Zt − E Zt|Zt− 1, Zt− 2( 􏼁

� Zt − c0Zt− 1 − f Zt− 2( 􏼁 − μ0

−

��
2
π

􏽲

σ0
λ0�����

1 + λ20
􏽱 ,

(A.1)

and in the dependent innovation case is as

Ut μ0, σ0, λ0, β0, c0, ρ0( 􏼁 � Zt − c0Zt− 1 − f Zt− 2( 􏼁

− ρ Zt− 1 − c0Zt− 2 − f Zt− 3( 􏼁( 􏼁

− μ0 −

��
2
π

􏽲

σ0
λ0�����

1 + λ20
􏽱 ,

(A.2)

and consider the following matrices:

Bl � E
zr β0, zt− l( 􏼁

zβi

,
zr β0, zt− l( 􏼁

zβj

􏼠 􏼡, i, j � 1, . . . , m, l � 2, 3,

D � E U
2
t μ0, σ0, λ0, β0, c0( 􏼁

zr β0, zt− 2( 􏼁

zβi

,
zr β0, zt− 2( 􏼁

zβj

􏼠 􏼡􏼠 􏼡, i, j � 1, . . . , m,

Dl � E U
2
t μ0, σ0, λ0, β0, c0, ρ0( 􏼁

zr β0, zt− l( 􏼁

zβi

,
zr β0, zt− l( 􏼁

zβj

􏼠 􏼡􏼠 􏼡, i, j � 1, . . . , m, l � 2, 3.

(A.3)

Wewill assume throughout that Bl, D , and Dl(l �

1, 2) are positive definite matrices.
(A5) For i, j � 1, . . . , m, the expectations

E|(zt − r)zr/zβi|, E|(zt − r)z2r/zβizβj| and
E|zr/zβi.zr/zβj| are finite, where r and its partial
derivatives are evaluated at β0 and Zt− 2, Zt− 3.

(A6) For i, j, k � 1, . . . , m, there exist functions:

G
(0)

Zt − l( 􏼁, G
(1)
i Zt − l( 􏼁, G

(2)
i,j Zt − l( 􏼁, G

(3)
i,j,k Zt − l( 􏼁,

l � 2, 3,

(A.4)

such that

|r|≤G
(0)

,

zr

zβi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤G

(1)
i ,

z
2
r

zβizβj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤G

(2)
i,j ,

z
3
r

zβiβjβk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤G

(3)
i,j,k,

(A.5)

for all β ∈ Θ, and we assume

E G
(3)
i,j,k Zt − l( 􏼁.Zt􏼐 􏼑,

E G
(3)
i,j,k Zt − l( 􏼁.G

(0)
Zt − l( 􏼁􏽮 􏽯,

E G
(2)
i,j Zt − l( 􏼁.G

(1)
i Zt − l( 􏼁􏽮 􏽯,

(A.6)

are finite for l � 2, 3.

(A7) *e sequence (Zt)t∈Ζ is α-mixing (see [22]).
(A8) *e random variables Z0 and Z1 have the same

distribution π(·) such that the density m(·) of π(·)

exists, bounded, continuous, and strictly positive
in a neighborhood of the point x.

(A9) Functions f(x) and r(x, β) are bounded and
continuous with respect to x, in a neighborhood
of the point x away from 0. Set r(x, β0) � rβ0(x).

(A10) Function r(x, β) has a continuous derivative with
respect to β and its derivative at the point β0 is
uniformly bounded with respect x.

(A11) *e kernel function K: R1⟶ R+ is a compactly
symmetric bounded function, such that K(x)> 0
for x in a set of positive Lebesgue measures.

(A12) hn � τn− 1/5, where τ > 0.

Considering the assumptions A1–A12, we have the
following theorems and lemmas:

Lemma 4. Under the assumptions of A1–A12, as n⟶∞,
we have

(a) n− 4/5 􏽐
n
t�2 K(zt− 2 − x/hn)f(zt− 2)r(zt− 2,

􏽢βn)

⟶p τm(x)f(x)rβ0(x)

(b) n− 4/5 􏽐
n
t�3 K(zt− 3 − x/hn)f(zt− 3)r(zt− 3,

􏽢βn)

⟶p τm(x)f(x)rβ0(x)

(c) n− 4/5 􏽐
n
t�2 K(zt− 2 − x/hn)r2(zt− 2,

􏽢βn) ⟶p τm(x)

r2β0
(x)

(d) n− 4/5 􏽐
n
t�3 K(zt− 3 − x/hn)r2(zt− 3,

􏽢βn)⟶p τm(x)

r2β0
(x)

where m(x) and r2β0
(x) are defined in (A8) and (A9),

respectively.
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Theorem 1. Consider the estimator 􏽢f(x) in equation (10).
:en, 􏽢f(x)⟶p f(x), as n⟶∞.

Proof. Using Lemma 4 and the strong consistency of 􏽢βn, 􏽢cn

and 􏽢μ]tN

� 􏽢μN + 􏽢σN

�����

2/π􏽢λN

􏽱

/
������

1 + 􏽢λ
2
N

􏽱

, we can prove
*eorem 1. □

Theorem 2. Let 􏽥f(x) be the autoregression function esti-
mator given in equation (13) for the model with independent
innovations. :en, |􏽥f(x) − 􏽢f(x)|⟶p 0 as n⟶∞.

Proof. We can obtain the following equality for independent
innovations:

􏽥f(x) − 􏽢f(x) � r x, 􏽢βn􏼐 􏼑
􏽐

n
t�2 K zt− 2 − x/hn( 􏼁􏽥]tr zt− 2,

􏽢βn􏼐 􏼑

􏽐
n
t�2 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢βn􏼐 􏼑
.

(A.7)

One can write

n
− 4/5

􏽘

n

t�2
K

zt− 2 − x

hn

􏼠 􏼡􏽥]tr zt− 2,
􏽢βn􏼐 􏼑 � n

− 4/5
􏽘

n

t�2
K

zt− 2 − x

hn

􏼠 􏼡􏽥]t r zt− 2,
􏽢βn􏼐 􏼑 − r zt− 2, β0( 􏼁􏼐 􏼑 + n

− 4/5
􏽘

n

t�2
K

zt− 2 − x

hn

􏼠 􏼡􏽥]tr zt− 2, β0( 􏼁,

� Cn + Dn.

(A.8)

It is known that max
1≤t≤n

|􏽥]t| � Ο((log n)1/2) a.s. as n⟶∞
(see [23]). *en,

Cn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ n

− 4/5
􏽘

n

t�2
k0 􏽥]t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 r zt− 2,

􏽢βn􏼐 􏼑 − r zt− 2, β0( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

≤ n
− 4/5

nΟ (log n)
1/2

􏼐 􏼑.Ο
log2 n

n
􏼠 􏼡

1/2
⎛⎝ ⎞⎠

�
Ο log2 n log n( 􏼁

1/2
􏼐 􏼑

n
3/10 ,

(A.9)

where k0 is an upper bound of the kernel function. Hence,
Cn⟶ 0 a.s. as n⟶∞. Since

E Dn( 􏼁 � n
− 4/5

E 􏽘
n

t�2
K

zt− 2 − x

hn

􏼠 􏼡􏽥]tr zt− 2, β0( 􏼁 } � 0,

E n
− 4/5

􏽘

n

t�2
K

zt− 2 − x

hn

􏼠 􏼡􏽥]tr zt− 2, β0( 􏼁
⎧⎨

⎩

⎫⎬

⎭

2

� n
− 8/5

E 􏽘
n

t�2
K

zt− 2 − x

hn

􏼠 􏼡􏽥]2t r
2

zt− 2, β0( 􏼁⎛⎝ ⎞⎠
⎧⎨

⎩

+ 2 􏽘

1≤ t≤ t′ ≤ n

E K
zt− 2 − x

hn

􏼠 􏼡􏽥]tr zt− 2, β0( 􏼁 × K
zt′− 2 − x

hn

􏼠 􏼡􏽥]t′r zt′− 2, β0( 􏼁􏼢 􏼣}≤ n
− 8/5

.n.k
∗
.σ2 � Ο

1
n
3/5􏼠 􏼡.

(A.10)

where k∗ > 0 is a constant, and Dn⟶p 0 as n⟶∞.

Hence, by lemma A.1 and the strong consistency of 􏽢βn and
􏽢μ]tn

, we have

|􏽥f(x) − 􏽢f(x)|⟶
p

0. (A.11)
□

Theorem 3. Let 􏽥f(x) be the defined estimator in equation
(22) for the model with dependent innovations. :en
|􏽥f(x) − 􏽢f(x)|⟶p 0, as n⟶∞.

Proof. For the dependent innovations, we have
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􏽥f(x) − 􏽢f(x) � r x, 􏽢βn􏼐 􏼑
􏽐

n
t�3 K zt− 2 − x/hn( 􏼁􏽥εtr zt− 2,

􏽢βn􏼐 􏼑 + 􏽐
n
t�3 K zt− 3 − x/hn( 􏼁􏽥εt− 1r zt− 3,

􏽢βn􏼐 􏼑

􏽐
n
t�3 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢βn􏼐 􏼑 + K zt− 3 − x/hn( 􏼁r
2

zt− 3,
􏽢βn􏼐 􏼑􏽨 􏽩

,

� r x, 􏽢βn􏼐 􏼑
En + Fn

􏽐
n
t�3 K zt− 2 − x/hn( 􏼁r

2
zt− 2,

􏽢βn􏼐 􏼑 + K zt− 3 − x/hn( 􏼁r
2

zt− 3,
􏽢βn􏼐 􏼑􏽨 􏽩

,

(A.12)

where εt is a stationary AR(1) process given by
εt � ρεt− 1 + ]t, and ε0 � ]0 ≈ 0. To finish the proof, it is

enough to prove En⟶p 0, and Fn⟶p 0 as n⟶∞. We
have

En � n
− 8/5

􏽘

n

t�3
􏽥εtK

zt− 2 − x

hn

􏼠 􏼡r zt− 2,
􏽢βn􏼐 􏼑,

≤ n
− 8/5

􏽘

n

t�3
􏽘

t

j�0
K

zt− 2 − x

hn

􏼠 􏼡􏽢ρt− j]jr zt− 2,
􏽢βn􏼐 􏼑

≤ n
− 8/5

􏽘

n

t�3
􏽘

t

j�0
K

zt− 2 − x

hn

􏼠 􏼡]jr zt− 2,
􏽢βn􏼐 􏼑.

(A.13)

*e last term in (A.13) can be written as

n
− 8/5

􏽘

n

t�3
􏽘

t

j�0
K

zt− 2 − x

hn

􏼠 􏼡]jr zt− 2,
􏽢βn􏼐 􏼑,

� n
− 8/5

􏽘

n

t�3
􏽘

t

j�0
K

zt− 2 − x

hn

􏼠 􏼡]j r zt− 2,
􏽢βn􏼐 􏼑 − r zt− 2, β0( 􏼁􏼐 􏼑 + n

− 8/5
􏽘

n

t�3
􏽘

t

j�0
K

zt− 2 − x

hn

􏼠 􏼡]jr zt− 2, β0( 􏼁

� Gn + Hn.

(A.14)

Notice that max
1≤j≤n

|]j| � Ο((log n)1/2) a.s. as n⟶∞ (see
[8]). *en,

Gn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ n

− 8/5
􏽘

n

t�3
􏽘

t

j�0
K

zt− 2 − x

hn

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
]j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 r zt− 2,
􏽢βn􏼐 􏼑 − r zt− 2, β0( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

≤ 􏽘
n

t�3
􏽘

n

j�0
k0.Ο (log n)

1/2
􏼐 􏼑.Ο

log2 n

n
􏼠 􏼡

1/2
⎛⎝ ⎞⎠

�
Ο log2 n log n( 􏼁

1/2
􏼐 􏼑

n
1/10 ,

(A.15)

where k0 is an upper bound of the kernel. *erefore,
Gn⟶ 0 a.s. as n⟶∞.
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Since

E Hn( 􏼁 � n
− 8/5

E 􏽘

n

t�3
􏽘

t

j�0
K

zt− 2 − x

hn

􏼠 􏼡]jr zt− 2, β0( 􏼁

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� 0

E n
− 8/5

􏽘

n

t�3
􏽘

t

j�0
K

zt− 2 − x

hn

􏼠 􏼡]jr zt− 2, β0( 􏼁

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

2

� n
− 16/5

􏽘

n

t�3
􏽘

t

j�0
K

2 zt− 2 − x

hn

􏼠 􏼡E ]j􏼐 􏼑
2
r
2

zt− 2, β0( 􏼁

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ 2n
− 16/5

E 􏽘

n

t′ ,t�3

􏽘

t′ ,t

j′,j�0

K
zt− 2 − x

hn

􏼠 􏼡]jr zt− 2, β0( 􏼁]j′K
zt′ − 2 − x

hn

􏼠 􏼡r zt′− 2, β0( 􏼁

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

≤ n
− 16/5

.n
2
.k
∗
.σ2

� Ο
1

n
6/5􏼠 􏼡.

(A.16)

where k∗ > 0 is a constant.*erefore, Hn⟶
p

0, as n⟶∞.

Using the equality En � Gn + Hn, it is found that En⟶
p

0 as
n⟶∞. Similarly, we can prove Fn⟶

p
0 as n⟶∞.

*us,

|􏽥f(x) − 􏽢f(x)|⟶
p

0. (A.18)
□

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that there are no conflicts of interest in
the publication of this article.

Authors’ Contributions

All authors contributed equally. All authors read and ap-
proved the final manuscript.

References

[1] B. Tarami and M. Pourahmadi, “Multi-variate t autore-
gressions: innovations, prediction variances and exact like-
lihood equations,” Journal of Time Series Analysis, vol. 24,
no. 6, pp. 739–754, 2003.

[2] P. A. Jacobs and P. A. W. Lewis, “A mixed autoregressive-
moving average exponential sequence and point process,”
J Time Ser Anal, vol. 24, pp. 739–754, 2003.

[3] S. Ghasemi, Z. Khodadadi, and M. Maleki, “Autoregressive
processes with generalized hyperbolic innovations,” Com-
munications in Statistics - Simulation and Computation, vol. 1-
13, 2019.

[4] A. Azzalini, “A class of distribution which includes the normal
ones,” Scandinavian Journal of Statistics, vol. 12, pp. 171–178,
1985.

[5] P. Bondon, “Estimation of autoregressive models with epsi-
lon-skew-normal innovations,” Journal of Multivariate
Analysis, vol. 100, no. 8, pp. 1761–1776, 2009.

[6] M. Sharafi and A. R. Nematollahi, “AR(1) model with skew-
normal innovations,” Metrika, vol. 79, no. 8, pp. 1011–1029,
2016.

[7] R. S. Tsay, An Introduction to Analysis of Financial Data with
R, John Wiley & Sons, New Jersey, USA, 2013.

[8] R. Farnoosh and S. J. Mortazavi, “A semiparametric method
for estimating nonlinear autoregressive model with depen-
dent errors,” Nonlinear Analysis: :eory, Methods & Appli-
cations, vol. 74, no. 17, pp. 6358–6370, 2011.

[9] A. Hajrajabi and S. J. Mortazavi, “*e first-order nonlinear
autoregressive Model with skew normal innovations: a
semiparametric approach,” Iranian Journal of Science and
Technology Transaction A-Science, vol. 43, no. 2, pp. 579–587,
2019.

[10] R. Farnoosh, M. Hajebi, and S. J. Mortazavi, “A semi-
parametric estimation for regression functions in the partially
linear autoregressive time series models,” Appl Appl Math,
vol. 9, no. 2, pp. 573–591, 2014.

[11] J. A. Ortega-Contreras, Y. S. Shmaliy, and J. A. Andrade-
Lucio, “*ree-Wheeled omnidirectional robot localization in
RFID-Tag environments using UFIR filtering,” Wseas
Transactions on Signal Processing, vol. 17, pp. 16–21, 2021.

[12] H. Tong, Nonlinear Time Series, *e Clarendon Press Oxford
University Press, New York. NY. USA, 1990.

[13] V. Haggen and T. Ozaki, “Modeling nonlinear random vi-
brations using an amplitude-dependent autoregressive time
series model,” Biometrika, vol. 68, no. 1, pp. 189–196, 1981.

[14] R. Chen and R. S. Tsay, “Functional-coefficient autoregressive
models,” Journal of the American Statistical Association,
vol. 88, no. 421, pp. 298–308, 1993.

[15] J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and
Parametric Methods, Springer, NewYork, USA, 2003.

[16] Y. Zhuoxi, W. Dehui, and S. Ningzhong, “Semiparametric
estimation of regression function in autoregressive models,”
J Stat Prob Lett, vol. 79, no. 2, pp. 165–172, 2009.

[17] A. Hajrajabi and A. Fallah, “Nonlinear semiparametric AR(1)
model with skew-symmetric innovations,” Communications

16 Advances in Mathematical Physics



in Statistics - Simulation and Computation, vol. 47, no. 5,
pp. 1453–1462, 2018.

[18] N. Henz, “A probabilistic representation of the skew-normal,”
Scand Stat, vol. 13, pp. 171–178, 1986.

[19] A. Azzalini, “Further results on a class of distributions which
includes the normal ones,” Scand Stat, vol. 12, pp. 171–178,
1986.

[20] R. Farnoosh and A. Nademi, “Mixture of autoregressive-
autoregressive conditionally heteroscedastic models: semi-
parametric approach,” Journal of Applied Statistics, vol. 41,
no. 2, pp. 271–275, 2014.

[21] R. Farnoosh, M. Hajebi, and S. Y. Samadi, “A semiparametric
estimation for the first-order nonlinear autoregressive time
series model with independent and dependent errors,” Ira-
nian Journal of Science and Technology Transaction A-Science,
vol. 43, no. 3, pp. 905–917, 2019.

[22] Y. A. Davydov, “Mixing conditions for Markov chains,”
:eory Probab Appl, vol. 18, pp. 312–328, 1973.

[23] Z. Yu, D. Wang, and N. Shi, “Semiparametric estimation of
regression functions in autoregressive models,” Statistics &
Probability Letters, vol. 79, no. 2, pp. 165–172, 2009.

Advances in Mathematical Physics 17


