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In this article, we study quantization of super-BMS3 algebraW. We quantizeW by the Drinfel’d twist quantization technique and
obtain a class of noncommutative and noncocommutative Hopf superalgebras.

1. Introduction

Lie (super-)bialgebras as well as their quantizations provide
important tools in searching for solutions of quantum
Yang-Baxter equations and in producing new quantum
groups [1, 2]. The notion of Lie bialgebras was introduced
by Drinfel’d in 1983 [1, 3]. In 1992, the problem that
whether there exists a general approach to quantize all Lie
(super-)bialgebras was posed by Drinfel’d in [4]. Later, a
positive answer was given by Etingof and Kazhdan in [5],
but they did not present a uniform method to realize quan-
tizations for all Lie (super-)bialgebras. Since then, the study
of quantizations of Lie (super-)bialgebras has attracted more
and more attention. A growing number of people studied the
structure theory of Lie (super-)bialgebras, such as [6–11].

The “quantum group” appeared in the work of Drinfel’d
as a deformation of the universal enveloping algebra of a Lie
algebra in the category of Hopf algebras. In the theory of
Hopf algebras and quantum groups, there exist two standard
methods to yield new bialgebras from old ones. Twisting the
product by a 2-cocycle but keeping the coproduct
unchanged is one way; using a Drinfel’d twist element to
twist the coproduct but preserving the product is the other
approach. Constructing quantizations of Lie bialgebras is
an important approach to producing new quantum groups
[1, 2, 12].

As an application of quantum groups, quantizations of
Lie (super-)bialgebra structures were intensively investi-
gated. Recently, some authors have considered the quantiza-
tion of several algebras, such as [11–18]. These algebras are
all centerless. The case with center is similar.

In order to study the precise boundary conditions for the
gauge field describing the theory, the super-BMS3 algebra
was introduced in [19, 20]. In [19], the author applies the
construction to three-dimensional asymptotically flat N = 1
supergravity, whose algebra of surface charges has been
shown to realize the centrally extended super-BMS3 algebra.
In this article, we study quantization of centerless super-
BMS3 algebra W.

The centerless super-BMS3 algebra W is an infinite-
dimensional Lie superalgebra over ℂ with basis fLm, Pm,
Qp ∣m ∈ℤ, p ∈ ε +ℤg (ε = 0 or 1/2) and satisfying the fol-
lowing relations:

Lm, Ln½ � = m − nð ÞLm+n, Lm, Pn½ � = m − nð ÞPm+n,

Lm,Qp

� �
= m

2 − p
� �

Qm+p, Qp,Qq

� �
= Pp+q,

Pm, Pn½ � = Pm,Qp

� �
= 0,

ð1Þ

for anym, n ∈ℤ and p, q ∈ ε +ℤ(ε = 0 or 1/2). The fermionic
generators Qp are labeled by (half-)integers in the case of
(anti)periodic boundary conditions for the gravitino [19].
Clearly, the ℤ2-graded W is defined by W =W �0 ⊕W �1,
where W �0 = fLm, Pm ∣m ∈ℤg and W �1 = fQp ∣ p ∈ ε +ℤg.
W contains the Witt algebra. The Lie super-bialgebra struc-
tures of W have been determined in [21]. The non weight
modules of W have been studied in [20].

In this article, we study quantization of centerless super-
BMS3 algebra W. In Section 2, we use the general method of
quantization by Drinfel’d twist to quantize explicitly the Lie
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bialgebra structures on W and obtain a family of noncom-
mutative and noncocommutative Hopf superalgebras. The
main result of the article is stated in Theorem 18.

2. Quantization of W

Theorem 1 (see [21]). Every Lie super-bialgebra structure on
W is a triangular coboundary Lie super-bialgebra.

Proof. The super-BMS3 algebra W in this article is the cen-
terless case of that. By [21], we can deduce that every Lie
super-bialgebra structure on W is a triangular coboundary
Lie super-bialgebra.

Definition 2 (see [11]). Let W be a Lie superalgebra con-
taining linearly independent elements a and b satisfying
½a, b� = kb with jaj = jbj = �0 and 0 ≠ k ∈ℂ. Then, we set r = a
⊗ b − b ⊗ a and define a linear map δ = δr : L⟶ L ⊗ L by
requiring that

δr xð Þ = −1ð Þ rj j xj jx · r = −1ð Þ rj j xj j x, a½ �ð ⊗ b + −1ð Þ aj j xj ja ⊗ x, b½ �
− x, b½ � ⊗ a − −1Þ bj j xj jb ⊗ x, a½ �

� �
ð2Þ

for all x ∈W. Then, δr equipsW with the structure of a trian-
gular coboundary Lie super-bialgebra.

Definition 3 (see [11]). A superalgebra (H, μ, ι) is a super-
space H equipped with a unit ι : ℂ⟶H, an associative
product μ : H ⊗H ⟶H respecting the grading, and the
identity element 1 ∈H �0. A Hopf superalgebra
(H, μ, ι, Δ, S, ε) is a superalgebra (H, μ, ι) equipped with a
coproduct Δ : H⟶H ⊗H, a counit ε : H ⟶ℂ, and an
antipode S : H⟶H, satisfying certain compatible condi-

tions. Note that the antipode S satisfies SðxyÞ = ð−1ÞjxjjyjSðyÞ
SðxÞ, ∀x, y ∈H.

Definition 4 (see [12, 15]). For any element x of a unital R
-algebra (R is a ring) and a ∈ R, r, k ∈ℕ+, we set

x rð Þ
a = x + að Þ x + a + 1ð Þ⋯ x + a + r − 1ð Þ,
x r½ �
a = x + að Þ x + a − 1ð Þ⋯ x + a − r + 1ð Þ,

a

r

 !
= a a − 1ð Þ⋯ a − r + 1ð Þ

r!
,

a

r

 !
k

= a a − kð Þ⋯ a − r − 1ð Þkð Þ
r!

:

ð3Þ

In particular, we set xðrÞ0 = xðrÞ, x½r�0 = x½r�, and xð0Þa = 1,
x½0�a = 1.

Lemma 5 (see [12, 15]). For any element x of a unital ℂ
-algebra and a ∈ℂ, r, s, t ∈ℕ+, one has

x s+tð Þ
a = x sð Þ

a x tð Þ
a+s, x s+t½ �

a = x s½ �
a x

t½ �
a+s, x s½ �

a = x sð Þ
a−s+1,

〠
s+t=r

−1ð Þt
s!t!

x s½ �
a x

tð Þ
b =

a − b

r

 !
= a − bð Þ⋯ a − b − r + 1ð Þ

r!
,

〠
s+t=r

−1ð Þt
s!t!

x s½ �
a x

t½ �
b−s =

a − b + r − 1

r

 !
= a − bð Þ⋯ a − b + r − 1ð Þ

r!
:

ð4Þ

Definition 6 (see [1]). Let (H, μ, ι, Δ0, S0, ε) be a Hopf super-
algebra. A Drinfel’d twist F on H is an invertible element in
H ⊗H such that

F ⊗ 1ð Þ Δ0 ⊗ Idð Þ Fð Þ = 1 ⊗Fð Þ Id ⊗ Δ0ð Þ Fð Þ, ε ⊗ Idð Þ Fð Þ
= 1 ⊗ 1 = Id ⊗ εð Þ Fð Þ:

ð5Þ

Lemma 7 (see [22]). Let (H, μ, ι, Δ0, S0, ε) be a Hopf superal-
gebra and F be a Drinfel’d twist on H. Then, w = μðId ⊗ S0
ÞF is invertible in H with w−1 = μðId ⊗ S0ÞF−1. Moreover,
we denote Δ : H ⟶H ⊗H and S : H ⟶H by

Δ xð Þ =FΔ0 xð ÞF−1,
S xð Þ =wS0 xð Þw−1, ∀x ∈H:

ð6Þ

Then, (H, μ, ι, Δ, S, ε) is a new Hopf superalgebra, which
is called twisting of H by the Drinfel’d twist F .

Lemma 8 (see [12, 15]). For any elements x, y in an associa-
tive algebra, p ∈ℕ, one has

xyp = 〠
p

k=0
−1ð Þk

p

k

 !
yp−k adyð Þk xð Þ: ð7Þ

Definition 9. Let UðWÞ be the universal enveloping algebra
ofW and (UðWÞ, μ, ι, Δ0, S0, ε) be the standard Hopf algebra
structure on UðWÞ. Then, the coproduct Δ0, the antipode S0,
and the counit ε are defined by

Δ0 Xð Þ = X ⊗ 1 + 1 ⊗ X,
S0 Xð Þ = −X,

ε Xð Þ = 0, ∀X ∈W:

ð8Þ

In particular, Δ0ð1Þ = 1 ⊗ 1 and S0ð1Þ = εð1Þ = 1.

Lemma 10. Let X = −ð1/mÞL0 and Y = Pm (m ∈ℤ∗); we have
½X, Y � = Y ; then, X and Y generate a two-dimensional nona-
belian subalgebra of W.

Proof. For any m ∈ℤ∗, by ½L0, Pm� = −mPm, we can get
½X, Y � = Y . Then, we set r = X ⊗ Y − Y ⊗ X. By Definition
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2, δr equips W with the structure of a triangular coboundary
Lie super-bialgebra.

Lemma 11. For any a ∈ℂ, n ∈ℤ, p ∈ ε +ℤ, m ∈ℤ∗, and
r ∈ℕ+, we have

LnX
rð Þ
a = X rð Þ

a− n/mð ÞLn, LnX r½ �
a = X r½ �

a− n/mð ÞLn, ð9Þ

PnX
rð Þ
a = X rð Þ

a− n/mð ÞPn, PnX
r½ �
a = X r½ �

a− n/mð ÞPn, ð10Þ

QpX
rð Þ
a = X rð Þ

a− n/mð ÞQp,QpX
r½ �
a = X r½ �

a− n/mð ÞQp: ð11Þ

Proof. We only prove that (9), (10), and (11) can be
obtained similarly. We prove (9) by induction on r. It is
true for the case of r = 1. Assume the case of r is also true;
then, we consider the case of r + 1; we have

LnX
r+1ð Þ
a = LnX

rð Þ
a X + a + rð Þ = X rð Þ

a− n/mð ÞLn X + a + rð Þ, ð12Þ

X, Ln½ � = −
1
m

L0, Ln½ �: ð13Þ

By (12) and (13), we have

X rð Þ
a− n/mð ÞLn X + a + rð Þ = X rð Þ

a− n/mð Þ XLn −
n
m
Ln + a + rð ÞLn

� �
= X rð Þ

a− n/mð Þ X + a −
n
m

+ r
� �

Ln

= X r+1ð Þ
a− n/mð ÞLn:

ð14Þ

Therefore, we deduce that LnX
ðr+1Þ
a = Xðr+1Þ

a−ðn/mÞLn, which

means that LnX
ðrÞ
a = XðrÞ

a−ðn/mÞLn is true. The proof of Ln

X½r�
a = X½r�

a−ðn/mÞLn is similar.

Lemma 12. For any a ∈ℂ, s, r ∈ℕ+, we have

YsX rð Þ
a = X rð Þ

a−sY
s, YsX r½ �

a = X r½ �
a−sY

s: ð15Þ

Proof. The case of s = r = 1 is clear. If s = 1, we prove (15) by
induction on r. We have

YX r+1ð Þ
a = YX rð Þ

a X + a + rð Þ = X rð Þ
a−1Y X + a + rð Þ

= X rð Þ
a−1 XY − Y + a + rð ÞYð Þ

= X rð Þ
a−1 X + a + r − 1ð ÞY = X r+1ð Þ

a−1 Y ,

ð16Þ

which means that

YX rð Þ
a = X rð Þ

a−1Y : ð17Þ

Suppose that YsXðrÞ
a = XðrÞ

a−sY
s. By (17), we have

Ys+1X rð Þ
a = YX rð Þ

a−sY
s = Xr

a− s+1ð ÞYY
s = Xr

a− s+1ð ÞY
s+1: ð18Þ

The proof of YsX½r�
a = X½r�

a−sY
s is similar.

Lemma 13. For any m ∈ℤ∗, n ∈ℤ, p ∈ ε +ℤ, and r ∈ℕ+, we
have

LnY
r = YrLn + rYr−1 n −mð ÞPm+n, ð19Þ

PnY
r = YrPn, ð20Þ

QpY
r = YrQp: ð21Þ

Proof. We only prove (19) and (21). The proof of (20) is
similar.

LnY
r = 〠

r

k=0
−1ð Þk

r

k

 !
Yr−k adYð ÞkLn = YrLn + rYr−1 n −mð ÞPm+n,

QpY
r = 〠

r

k=0
−1ð Þk

r

k

 !
Yr−k adYð ÞkQp = YrQp:

ð22Þ

Definition 14 (see [12, 15]). For a ∈ℂ, set

Fa = 〠
∞

r=0

−1ð Þr
r!

X r½ �
a ⊗ Yrtr ,

Fa = 〠
∞

r=0

1
r!
X rð Þ
a ⊗ Yrtr ,

ð23Þ

Ua = μ S0 ⊗ Idð ÞFa,
Va = μ Id ⊗ S0ð ÞFa:

ð24Þ

In particular, we set F =F0, F = F0, u = u0, and v = v0.
Since S0ðXðrÞ

a Þ = ð−1ÞrX½r�
−a and S0ðYrÞ = ð−1ÞrYr , we have

Ua = 〠
∞

r=0

−1ð Þr
r!

X r½ �
−aY

rtrVa = 〠
∞

r=0

1
r!
X r½ �
a Y

rtr: ð25Þ

Lemma 15. For a, b ∈ℂ, we have FaFb = 1 ⊗ ð1 − YtÞa−b and
VaUb = ð1 − YtÞ−a−b; Fa, Fa, Ua, and Va are invertible ele-
ments with Fa = F−1

a and Ua =V−1
a .
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Proof. By (23) and Lemma 5, we have

FaFb = 〠
∞

r,s=0

−1ð Þr
r!s!

X r½ �
a X

sð Þ
b ⊗ YrYstrts

= 〠
∞

k=0
−1ð Þk 〠

r+s=k

−1ð Þs
r!s!

X r½ �
a X

sð Þ
b ⊗ Yktk

= 〠
∞

k=0
−1ð Þk

a − b

k

 !
⊗ Yktk = 1 ⊗ 1 − Ytð Þa−b:

ð26Þ

From (15), (25), and Lemma 5, we obtain

VaUb = 〠
∞

r,s=0

−1ð Þr
r!s!

X r½ �
a Y

rX s½ �
−bY

str+s

= 〠
∞

k=0
−1ð Þk 〠

r+s=k

−1ð Þs
r!s!

X r½ �
a X

s½ �
−b−rY

ktk

= 〠
∞

k=0

a + b + k − 1

k

 !
Yktk = 1 − Ytð Þ−a−b:

ð27Þ

Then, we can deduce that Fa = F−1
a , Ua =V−1

a , F = F−1,
and U =V−1.

Lemma 16. For any m ∈ℤ∗, n ∈ℤ, p ∈ ε +ℤ, and a ∈ℂ, we
have

Ln ⊗ 1ð ÞFa = Fa− n/mð Þ Ln ⊗ 1ð Þ, ð28Þ

Pn ⊗ 1ð ÞFa = Fa− n/mð Þ Pn ⊗ 1ð Þ, ð29Þ

Qp ⊗ 1
� �

Fa = Fa− n/mð Þ Qp ⊗ 1
� �

, ð30Þ

1 ⊗ Lnð ÞFa = Fa 1 ⊗ Lnð Þ + n −mð ÞFa+1 X 1ð Þ
a ⊗ Pm+nt

� �
,

ð31Þ

1 ⊗ Pnð ÞFa = Fa 1 ⊗ Pnð Þ, ð32Þ

1 ⊗Qp

� �
Fa = Fa 1 ⊗Qp

� �
: ð33Þ

Proof. We only prove (28), (31), and (32); the proof of other
equations is similar.

By (9) and (23), we have

Ln ⊗ 1ð ÞFa = 〠
∞

r=0

1
r!
LnX

rð Þ
a ⊗ Yrtr = 〠

∞

r=0

1
r!
X rð Þ
a− n/mð ÞLn ⊗ Yrtr

= Fa− n/mð Þ Ln ⊗ 1ð Þ:
ð34Þ

The proof of (29)–(30) is similar to (28).

By (19) and (23), we have

1 ⊗ Lnð ÞFa = 〠
∞

r=0

1
r!
X rð Þ
a ⊗ YrLn + rYr−1 n −mð ÞPm+n

� �
tr

= 〠
∞

r=0

1
r!
X rð Þ
a ⊗ YrLnt

r + n −mð Þ〠
∞

r=1

1
r − 1ð Þ!X

rð Þ
a ⊗ Yr−1Pm+nt

r

= 〠
∞

r=0

1
r!
X rð Þ
a ⊗ Yrtr

 !
1 ⊗ Lnð Þ + n −mð Þ〠

∞

r=0

1
r!
X r+1ð Þ
a ⊗ YrPm+nt

r+1

= Fa 1 ⊗ Lnð Þ + n −mð Þ〠
∞

r=0

1
r!
X 1ð Þ
a X rð Þ

a+1 ⊗ YrPm+nt
r · t

= Fa 1 ⊗ Lnð Þ + n −mð Þ 〠
∞

r=0

1
r!
X rð Þ
a+1 ⊗ Yrtr

 !
X 1ð Þ
a ⊗ Pm+nt

� �

= Fa 1 ⊗ Lnð Þ + n −mð ÞFa+1 X 1ð Þ
a ⊗ Pm+nt

� �
:

ð35Þ

By (21) and (25), we have

1 ⊗Qp

� �
Fa = 1 ⊗Qp

� �
〠
∞

r=0

1
r!
X rð Þ
a ⊗ Yrtr

 !
= 〠

∞

r=0

1
r!
X rð Þ
a ⊗QpY

rtr

= 〠
∞

r=0

1
r!
X rð Þ
a ⊗ YrQpt

r = Fa 1 ⊗Qp

� �
:

ð36Þ

Lemma 17. For any m ∈ℤ∗, n ∈ℤ, p ∈ ε +ℤ, and a ∈ℂ, we
have

LnUa =Ua+ n/mð ÞLn + m − nð ÞUa+ n/mð ÞX
1½ �
−a− n/mð ÞPm+nt, ð37Þ

PnUa =Ua+ n/mð ÞPn, ð38Þ

QpUa =Ua+ n/mð ÞQp: ð39Þ

Proof. We only prove (37) and (39); the case of (38) is sim-
ilar. By (9), (11), (15), (19), and (24), we have

LnUa = Ln 〠
∞

r=0

−1ð Þr
r!

X r½ �
−aY

rtr
 !

= 〠
∞

r=0

−1ð Þr
r!

LnX
r½ �
−aY

rtr

= 〠
∞

r=0

−1ð Þr
r!

X r½ �
−a− n/mð ÞLnY

rtr

= 〠
∞

r=0

−1ð Þr
r!

X r½ �
−a− n/mð Þ YrLn + rYr−1 n −mð ÞPm+n

� �
tr

= 〠
∞

r=0

−1ð Þr
r!

X r½ �
−a− n/mð ÞY

rLnt
r + 〠

∞

r=1

−1ð Þr
r − 1ð Þ!X

r½ �
−a− n/mð ÞY

r−1 n −mð ÞPm+nt
r

=Ua+ n/mð ÞLn + 〠
∞

r=0

−1ð Þr+1
r!

X r+1½ �
−a− n/mð ÞY

r n −mð ÞPm+nt
r+1

=Ua+ n/mð ÞLn + m − nð Þ〠
∞

r=0

−1ð Þr
r!

X r½ �
−a− n/mð ÞX

1½ �
−a− n/mð Þ−rY

rPm+nt
r · t

=Ua+ n/mð ÞLn + m − nð Þ〠
∞

r=0

−1ð Þr
r!

X r½ �
−a− n/mð ÞY

rX 1½ �
−a− n/mð ÞPm+nt

r · t

=Ua+ n/mð ÞLn + m − nð ÞUa+ n/mð ÞX
1½ �
−a− n/mð ÞPm+nt,
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QnUa =Qn 〠
∞

r=0

−1rð Þ
r!

X r½ �
−aY

rtr
 !

= 〠
∞

r=0

−1rð Þ
r!

QnX
r½ �
−aY

rtr

= 〠
∞

r=0

−1ð Þr
r!

X r½ �
−a− n/mð ÞQnY

rtr = 〠
∞

r=0

−1ð Þr
r!

X r½ �
−a− n/mð ÞY

rQnt
r

=Ua+ n/mð ÞQn:

ð40Þ

Theorem 18. With the choice of two distinguished elements X
= −ð1/mÞL0 and Y = Pm (m ∈ℤ∗) such that ½X, Y � = Y in W,
there exists a structure of noncommutative algebra and nonco-
commutative Hopf algebra structure (UðWÞ½½t��, μ, ι, Δ, S, ε)
onUðWÞ½½t��, such thatUðWÞ½½t��/tUðWÞ½½t�� ≅UðWÞ, which
preserve the product and counit ofUðWÞ½½t��; the coproduct and
antipode are defined by

Δ Lnð Þ = Ln ⊗ 1 − Ytð Þn/m + 1 ⊗ Ln + n −mð Þ X 1ð Þ ⊗ 1 − Ytð Þ−1Pm+nt
� �

,

ð41Þ

Δ Pnð Þ = Pn ⊗ 1 − Ytð Þn/m + 1 ⊗ Pn, ð42Þ

Δ Qp

� �
=Qp ⊗ 1 − Ytð Þn/m + 1 ⊗Qp, ð43Þ

S Lnð Þ = − 1 − Ytð Þ−n/m Ln + m − nð ÞX 1½ �
− n/mð ÞPm+nt

� �
, ð44Þ

S Pnð Þ = − 1 − Ytð Þ− n/mð ÞPn, ð45Þ

S Qp

� �
= − 1 − Ytð Þ− n/mð ÞQp, ð46Þ

where m ∈ℤ∗, n ∈ℤ, and p ∈ ε +ℤ.

Proof. We only prove (41), (43), (44), and (46); the cases of
(42) and (45) are similar. By Definition 14 and Lemmas
15–17, we have

Δ Lnð Þ =FΔ0 Lnð ÞF−1 =F Ln ⊗ 1 + 1 ⊗ Lnð ÞF−1

=F Ln ⊗ 1ð ÞF +F 1 ⊗ Lnð ÞF
=FF− n/mð Þ Ln ⊗ 1ð Þ +F F 1 ⊗ Lnð Þ + n −mð ÞF1 X 1ð Þ ⊗ Pm+nt

� �� �
= 1 ⊗ 1 − Ytð Þn/m� �

Ln ⊗ 1ð Þ + 1 ⊗ Ln + n −mð Þ
� X 1ð Þ ⊗ 1 − Ytð Þ−1Pm+nt
� �

= Ln ⊗ 1 − Ytð Þn/m + 1 ⊗ Ln

+ n −mð Þ X 1ð Þ ⊗ 1 − Ytð Þ−1Pm+nt
� �

,

Δ Qnð Þ =FΔ0 Qnð ÞF−1 =F Qn ⊗ 1 + 1 ⊗Qnð ÞF−1

=F Qn ⊗ 1ð ÞF +F 1 ⊗Qnð ÞF
=FF− n/mð Þ Qn ⊗ 1ð Þ +FF 1 ⊗Qnð Þ
=Qn ⊗ 1 − Ytð Þn/m + 1 ⊗Qn,

S Lnð Þ = −VLnU = −V Un/mLn + m − nð ÞUn/mX
1½ �
− n/mð ÞPm+nt

� �
= −VUn/m Ln + m − nð ÞX 1½ �

− n/mð ÞPm+nt
� �

= − 1 − Ytð Þ− n/mð Þ Ln + m − nð ÞX 1½ �
− n/mð ÞPm+nt

� �
,

S Qnð Þ = −VQnU = −VUn/mQn = − 1 − Ytð Þ− n/mð ÞQn: ð47Þ

Remark 19.We can use the method in this paper to study the
quantization of other Lie (super-)algebras in the future.

Remark 20. The case with center is similar, because the cen-
ter element C can be exchanged. Namely, ½C,W� = 0.
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