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In this article, with the aid of Maple software, the exact solutions to the space-time fractional symmetric regularized long wave
(SRLW) equation are successfully examined by ðG′/G2Þ-expansion and extended complex methods. Consequently, three types
of traveling wave solutions are found such as Weierstrass double periodic elliptic functions, simply periodic functions, and the
rational function solutions. The obtained results will play an important role in understanding and studying SRLW equation. It
is easy to see that the extended complex and ðG′/G2Þ-expansion methods are reliable and will be used extensively to seek exact
solutions of any other fractional nonlinear partial differential equations (FNPDE).

1. Introduction

Fractional calculus is a 300-year-old mathematical problem.
Despite its long history, its research has focused on the purely
theoretical field of mathematics. However, in the recent
decades, with the continuous expansion of fractional calculus
applications, such as having memory and genetic characteris-
tics, rheology, material and mechanical systems, electrical engi-
neering, electromagnetism, signal processing and system
identification, ANN (neural networks), and fractal and chaos,
fractional partial differential equations have been developed
into effective methods to unfold a series of strange events and
processes [1]. Considerable physical phenomena are well mod-
elled as FNPDE such as acoustic waves, acoustic gravity waves,
hydromagnetic waves, fluid flow, chemistry, and other areas
[2–6]. Due to the fast rapid development of computer comput-
ing power and with the help of symbolic computation software
likeMaple, Mathematica, andMatlab, the study of explicit solu-
tions about FNPDE is deeply studied by both mathematicians
and physicists. A great number of analytical and numerical
solutions have been well established and applied to solve these
FNPDE. Here are many methods as follows: homotopy anal-

ysis [7, 8], fractional ðG′/G2Þ-expansion [9, 10], tanh-
function [11–13], extended tanh [14, 15], the fractional
sub-equation [16–18], first integral [19, 20], functional vari-
able [21], modified trial equation [22], finite-difference [23],
and so on. In 2021, W. X. Ma et al. systematically studied
N-soliton solutions to integrable equations with the help of
Hirota direct method for both (1+1)-dimensional and (2
+1)-dimensional integrable equations [24–26]. These have
greatly promoted the study of nonlinear wave phenomena.

In 1984, inspired by weak nonlinear ionic acoustic and spa-
tially charged wave models, Seyler and Fenstermacher [27]
summed up the space-time fractional symmetric regularized
long wave (SRLW) equation. This equation can summarize
many physical phenomena, for instance: ion-acoustic waves in
plasma and solitary waves with shallow water waves, shallow
water waves. Since these equations are important in physics
interpretation, a great number of ascendant and powerful
methods have been proposed to obtain exact solutions of
SRLW. In 2014, O. Gunerl and D. Eser applied functional var-
iable, exp-function, and ðG′/G2Þ-expansion three methods to
obtain the exact solutions of SRLW in the sense of the modified
Riemann-Liouville derivative [28]. In 2015,M. Shakeel and S. T.
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Mohyud-Din [29] used the fractional novel ðG′/G2Þ-expansion
method to look for the exact solutions of SRLW and obtained
many exact analytical solutions like hyperbolic function solu-
tions, trigonometric function solutions, and rational solutions.
In 2018, O. Guner and A. Bekir [30] presented exact analytical
solutions of SRLW equation by using solitay wave ansatz
method. In 2019, D. Yaroa et al. [31] used fractional complex
transform and the revised Riemann-Liouville derivative to
change the SRLW equation into the ordinary differential equa-
tions, and applied the improved F-expansion method to obtain
the exact solutions which include hyperbolic and trigonometric
solutions. In 2021, M. A. Khan, M. A. Akbar, and N. A. Hamid
[32] applied the new auxiliarymethod to solve for the SRLW. In
2021, N. Maarouf et al. [33] investigated the Lie group analysis
method of the SRLW equation and obtained the vector fields
and similarity reductions of the equation. It showed that we
can use a new independent variable to transform the governing
FNPDE into a fractional nonlinear ordinary differential equa-
tion (FNODE). In 2021, N. Maarouf et al. [33] also obtained
the exact solutions by using the power series expansionmethod.
In 2021, S. C. Ünal et al. [34] got the exact solutions of SRLW
equation inspired by a direct method based on the Jacobi elliptic
functions ideas; furthermore, S. C. Ünal et al. [34] also obtained
some general form solutions which include rational, trigono-
metric, and hyperbolic functions.

In our paper, the conformable fractional derivative of a
function f : ½0,∞Þ⟶ R of order α is defined as

Dα
z fð Þ zð Þ = lim

ε⟶0

f z + εz1−α
� �

− f zð Þ
ε

, z > 0, α ∈ 0, 1ð �: ð1Þ

If the above limitations exist, then f is called α-differ-
entiable. Let α ∈ ð0, 1� and f , g be α at point z > 0 differentia-
ble, then Dα satisfies the following properties:

1ð ÞDα af + bgð Þ = aDα fð Þ + bDα gð Þ, for every a, b ∈ R
2ð ÞDα znð Þ = nzn−α, for all n ∈ R

3ð ÞDα λð Þ = 0, then the constant function f zð Þ = λ

4ð ÞDα f gð Þ = f Dα gð Þ + gDα fð Þ,
5ð ÞDα f /gð Þ = gDα fð Þ − f Dα gð Þf g/g2,

6ð ÞIf , in addition, f is differentiable, thenDα fð Þ zð Þ = z1−α
df
dz

zð Þ:
ð2Þ

The nonlinear SRLW equation appears in several physi-
cal applications containing ion sound waves in plasma. This
equation is an interesting model to describe ion-acoustic and
space change waves and the real-valued uðx, tÞ with weak
nonlinearity. Now, let us study the SRLW equation ([35, 36])

D2α
t u +D2α

x u + uDα
t Dα

xuð Þ +Dα
xuD

α
t u +D2α

t D2α
x u

� �
= 0, 0 < α ≤ 1: ð3Þ

Using the fractional transformation

u x, tð Þ = u ξð Þ, ξ = kxα

Γ 1 + αð Þ + ctα

Γ 1 + αð Þ , ð4Þ

here k, c are constants, then equation (7) turns into

c2u″ + k2u″ + ckuu″ + ck u′
� �2

+ c2k2uiv = 0: ð5Þ

Integration (4) twice yields

c2k2u″ + c2 + k2 + r
� �

u + 1
2 cku

2 + s = 0, ð6Þ

here r, s are integral constants.
In order to obtain the exact solution of SRLW equation,

the extended complex method is employed by us to seek the
exact solutions of equation (6), and another way we use the
ðG′/G2Þ-expansion method to get some exact solutions of
SRLW equation.

Considering the following form of a NFPDE

P u, ux, ut , uxt , uαx , uαt , u2αxx , u2αtt , u2αxt ⋯
� �

= 0, 0 < α ≤ 1: ð7Þ

in equation (7), P is a polynomial with an unknown function
μðx, tÞ and its fractional derivatives, involving non-
nonlinear terms and the highest order derivatives.

In order to verify the accuracy of the obtained results, we
define accuracy analysis of error function (AAEF) as follows

AAEF = c2k2u″ + c2 + k2 + r
� �

u + 1
2 cku

2 + s: ð8Þ

It should be noted that the smaller the AAEF, the
closer the approximate solution is to the exact solution.
When the error infinitely approaches zero, we consider
the result to be closer to the true value. Therefore, we
use AAEF to indicate the accuracy of the results.

The structure of this article is as follows: in Section 2, we
probe the modified ðG′/G2Þ-expansion method to the SRLW
equation; in Section 3, we discuss the extended complex
method and main result; in Sections 4 and 5, we give the detail
proof of the main results in this paper; in Section 6, we give the
specific form of accuracy analysis of error function to show the
accuracy of our results; in Section 7, we compared our
methods and results with others in detail; in Section 8, through
computer simulation images, we further analyze the nature of
the solutions that we have obtained; finally, the conclusion and
future recommendations in Section 9.

2. Employing of the Modified ðG′/G2Þ-
Expansion Method to the SRLW Equation

Next, we will use the recently established modified ðG′/G2Þ
-expansion method [37, 38] to provide new and more gen-
eral traveling wave solutions for the above equation (6).

Step 1. Inserting the traveling wave transform T : uðx, tÞ
= uðξÞ, ξ = ðkxα/Γð1 + αÞÞ + ðctα/Γð1 + αÞÞ into equation
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(7), changing it to the following integer order ordinary differ-
ential equation (IOODE):

K u, u′, u″, u′′′,⋯
� �

= 0, ð9Þ

in the above equation (9), K is a polynomial composed of uðξÞ
and its integer order derivatives.

Step 2. Regarding that the solution of equation (9) can be
expressed by a polynomial in ðG′/G2Þ as follows:

u ξð Þ = α0 + 〠
m

n=1
αm

G′
G2

 !m

+ βm
G′
G2

 !−m !
, ð10Þ

in equation (10), G =GðξÞ satisfies the following differential
equation as follows:

G′
G2

 !
′ = σ + μ

G′
G2

 !
+ ρ

G′
G2

 !2

, ð11Þ

where μ, σ, and ρ are free constants. The positive integer m
can be determined by considering the uniform equilibrium
between the highest order derivatives and the nonlinear term
appearing in the ODE (8).

Step 3. Taking equation (10) into equation (9), and using
equation (11), the left side (8) of the formula was converted
to another polynomial in the ðG′/G2Þ. Computing all the
coefficients of the polynomial to zero yields the algebraic
equations for αm, ⋯, λ, and μ.

Step 4. The undetermined constantsαm,⋯,α0,β1,⋯,βm
can be obtained by solving the system of algebraic equations
obtained in Step 3, since the general form solutions of (10)
have five possible solutions as following. Hence, the exact
solutions of the given Eq. (7) can be obtained as follows.

Here:

Case1 : If σρ > 0, μ = 0, then

G′
G2

 !
ξð Þ =

ffiffiffiffiffiffi
σρ

p
σ

C1 cos
ffiffiffiffiffiffi
σρ

p
ξ + C2 sin

ffiffiffiffiffiffi
σρ

p
ξ

C2 cos
ffiffiffiffiffiffi
σρ

p
ξ − C1 sin

ffiffiffiffiffiffi
σρ

p
ξ

� �
;

Case2 : If σρ < 0, μ = 0, then

G′
G2

 !
ξð Þ = −

ffiffiffiffiffiffiffiffi
σρj jp
σ

C1 sinh 2
ffiffiffiffiffiffiffiffi
σρj jp

ξ + C2 cosh 2
ffiffiffiffiffiffiffiffi
σρj jp

ξ + C2
C1 cosh 2

ffiffiffiffiffiffiffiffi
σρj jp

ξ + C1 sinh 2
ffiffiffiffiffiffiffiffi
σρj jp

ξ − C2

" #
;

Case3 : If σ = 0, ρ ≠ 0, μ = 0, then

G′
G2

 !
ξð Þ = −

C1
ρ C1ξ + C2ð Þ ;

Case4 : If μ ≠ 0, Δ ≥ 0, then

G′
G2

 !
ξð Þ = −

μ

2ρ −

ffiffiffiffi
Δ

p
C1 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C2 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2ρ C2 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C1 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2
4

3
5 ;

Case5 : If μ ≠ 0, Δ < 0, then

G′
G2

 !
ξð Þ = −

μ

2ρ −

ffiffiffiffiffiffi
−Δ

p
C1 cos

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ − C2 sin

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ

� �
2ρ C2 cos

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ + C1 sin

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ

� �
2
4

3
5 ;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

where C1, C2 are arbitrary constants and Δ = μ2 − 4ρσ.

Step 5. Putting the inverse transform T−1 into the solu-
tions uðξÞðξ = ðkxα/Γð1 + αÞÞ + ðctα/Γð1 + αÞÞÞ, we can get
all exact solutions uðx, tÞ of the original FNPDE.

u11 ξð Þ = −
c2 + k2 + r

ck
± 8σρk − 12 ρ

3ck
σ

� C1 cos
ffiffiffiffiffiffi
σρ

p
ξ + C2 sin

ffiffiffiffiffiffi
σρ

p
ξ

C1 sin
ffiffiffiffiffiffi
σρ

p
ξ − C2 cos

ffiffiffiffiffiffi
σρ

p
ξ

� �2

− 12 σ
3ck
ρ

C1 cos
ffiffiffiffiffiffi
σρ

p
ξ + C2 sin

ffiffiffiffiffiffi
σρ

p
ξ

C1 sin
ffiffiffiffiffiffi
σρ

p
ξ − C2 cos

ffiffiffiffiffiffi
σρ

p
ξ

� �−2
,

ð13Þ

Remark 1. From the above five cases, (11) contains trigono-
metric (Cases 1 and 5), rational (Case 3), and hyperbolic
(Cases 2 and 4) three forms solutions.

Theorem 2. By ðG′/G2Þ-expansion method, we have found
the following five cases solutions of Eq. (6):

Case 1. If σρ > 0, μ = 0, then

and ðc2 + k2 + rÞ2 − 2cks = 256σ2ρ2c2k4.

u12 ξð Þ = −
c2 + k2 + r

ck
± 8σρk + 12 ρ

3ck
σ

� C1 sinh 2 ffiffiffiffiffiffiffiffiffi−σρp
ξ + C2 cosh 2 ffiffiffiffiffiffiffiffiffi−σρp

ξ + C2
C1 cosh 2 ffiffiffiffiffiffiffiffiffi−σρp

ξ + C1 sinh 2 ffiffiffiffiffiffiffiffiffi−σρp
ξ − C2

� �2

+ 12σ
3ck
ρ

C1 sinh 2 ffiffiffiffiffiffiffiffiffi−σρp
ξ + C2 cosh 2 ffiffiffiffiffiffiffiffiffi−σρp

ξ + C2
C1 cosh 2 ffiffiffiffiffiffiffiffiffi−σρp

ξ + C1 sinh 2 ffiffiffiffiffiffiffiffiffi−σρp
ξ − C2

� �−2
,

ð14Þ

Case 2. If σρ < 0, μ = 0, then

and ðc2 + k2 + rÞ2 − 2cks = 256σ2ρ2c2k4.

u13 ξð Þ = −
c2 + k2 + r

ck
−

12ckC2
1

C1ξ + C2ð Þ2
ð15Þ

Case 3. If σ = 0 and ρ ≠ 0, μ = 0, then

and ðc2 + k2 + rÞ2 = 2cks.

u14 ξð Þ = 2μ2ck − c2 + k2 + r
ck

− 3μ2ck C1 cosh ±μ/2ð Þξ + C2 sinh ±μ/2ð Þξ
C2 cosh ±μ/2ð Þξ + C1 sinh ±μ/2ð Þξ
	 
2

ð16Þ

Case 4. If μ ≠ 0 and Δ = μ2 − 4σρ ≥ 0, then
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and ðc2 + k2 + rÞ2 − 2cks = u4c2k2, σ = 0 and ρ ≠ 0.

u15 ξð Þ = 2μ2ck − c2 + k2 + r
ck

+ 3μ2ck C1 cos ±iμ/2ð Þξ − C2 sin ±iμ/2ð Þξ
C2 cos ±iμ/2ð Þξ + C1 sin ±iμ/2ð Þξ
	 
2

ð17Þ

Case 5. If μ ≠ 0 and Δ = μ2 − 4σρ < 0, then

and ðc2 + k2 + rÞ2 − 2cks = u4c2k2, σ = 0 and ρ ≠ 0.
Here ξ = ðkxα/Γð1 + αÞÞ + ðctα/Γð1 + αÞÞ. C1 and C2 are

arbitrary constants.

3. Introduction of the Extended Complex
Method and Main Result

The extended complex number method involves the knowl-
edge related to the Weierstrass elliptic function. First, we
give the brief introduction of Weierstrass elliptic function:
℘ðξÞ≔ ℘ðξ, g2, g3Þ is a meromorphic function in the com-
plex plane ℂ with double periods ω1, ω2 [39–41] and defined
as

℘ ξ ;w1,w2ð Þ≔ 1
ξ2

+ 〠
μ,ν∈Z,μ2+ν2≠0

1
ξ + μw1 + νw2ð Þ2

−
1

μw1 + νw2ð Þ2
( )

,

ð18Þ

which satisfies the following equation

℘′ ξð Þ
� �2

= 4℘ ξð Þ3 − g2℘ ξð Þ − g3, ð19Þ

in equation (19), g2 = 60s4, g3 = 140s6, and Δðg2, g3Þ ≠ 0,
and has the another formula

℘ ξ − ξ0ð Þ = −℘ ξð Þ−℘ ξ0ð Þ + 1
4

℘′ ξð Þ + ℘′ ξ0ð Þ
℘ ξð Þ−℘ ξ0ð Þ

" #2
: ð20Þ

Next, we will employ the recently established extended
complex method [42–45] to provide new and more general
traveling wave solutions to the equations mentioned above.

Step 1. Inserting the traveling wave transform T : uðx, tÞ
= uðξÞ, ξ = ðkxα/Γð1 + αÞÞ + ðctα/Γð1 + αÞÞ into equation
(7), alternating it to the following (IOODE):

K u, u′, u″, u′′′,⋯
� �

= 0, ð21Þ

here K is a polynomial of uðξÞ and its derivatives.
Step 2. Next, we will find out weak hp, qi condition. To

find out the weak hp, qi condition of equation (21), the Laur-
ent series,

u ξð Þ = 〠
∞

k=−q
ckξ

k, q > 0, c−q ≠ 0, ð22Þ

are replaced into equation (21), then the p distinct Laur-
ent singular parts are obtained as below:

〠
−1

k=−q
ckξ

k: ð23Þ

Here p indicates that there are p distinct meromorphic
solutions in the equation, and q means that their poles at
ξ = 0 have q multiple roots in the equation.

Step 3. Take the following pending forms

u ξð Þ = 〠
l−1

i=1
〠
qi

j=2

−1ð Þjc−ij
j − 1ð Þ!

dj−2

dzj−2
1
4

℘′ ξð Þ + Bi

℘ ξð Þ − Ai

" #2
−℘ ξð Þ

 !

+ 〠
l−1

i=1

c−i1
2

℘′ ξð Þ + Bi

℘ ξð Þ − Ai
+ 〠

ql

j=2

−1ð Þjc−l j
j − 1ð Þ!

dj−2

dzj−2
℘ ξð Þ + c0,

ð24Þ

u ξð Þ = 〠
l

i=1
〠
q

j=1

cij
ξ − ξið Þj

+ c0, ð25Þ

u ζð Þ = 〠
l

i=1
〠
q

j=1

cij
ζ − ζið Þj

+ c0, here ζ = eϑξ ϑ ∈ℂð Þ: ð26Þ

In equation (24), c−ij are given as shown in equation

(21), and B2
i = 4A3

i − g2Ai − g3, Σ
l
i=1c−i1 = 0, and equations

(23), (24), and (25) have lð≤pÞ distinct poles of multiplic-
ity q.

Step 4. We can get meromorphic solutions and the above
addition formulas. Putting the inverse transform T−1 into
the solutions uðξÞ, we can obtain all exact solutions uðx, tÞ
of the original FNPDE.

(a) The rational function solutions

u21 ξð Þ = −
12ck
ξ − ξ0ð Þ2

−
c2 + k2 + r

ck
, ð27Þ

where 2cks = ðc2 + k2 + rÞ2, ξ0 ∈ℂ.
(b) The simply periodic solutions are obtained by

u22 ξð Þ = −12ckϑ2 coth2 ϑ2 ξ − ξ0ð Þ − ckϑ2 −
c2 + k2 + r

ck
,

ð28Þ

where 2cks = −c4k4ϑ4 + ðc2 + k2 + rÞ2, ξ0 ∈ℂ, ϑ ∈ℂ.
(c) The Weierstrass elliptic solutions are as follows:

u23 ξð Þ = −12ck −℘ ξð Þ + 1
4

℘′ ξð Þ + F
℘ ξð Þ − E

" #2( )
+ 12ckE −

c2 + k2 + r2

ck
,

ð29Þ
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here 2cks = −12c4k4g2 + ðc2 + k2 + rÞ2, F2 = 4E3 − g2
E − g3, g3 and E are arbitrary constants.

Theorem 3. Suppose ck ≠ 0, by the extended complex method,
we have found the following three cases solutions of Eq. (6):

All in above, ξ = ðkxα/Γð1 + αÞÞ + ðctα/Γð1 + αÞÞ.

4. Proof of Theorem 2

Considering the homogeneous equilibrium term between u′′
and u2 in (5), we deduce m = 2. So we can infer the solution
of (5) as follows:

u ξð Þ = α2
G′
G2

 !2

+ α1
G′
G2

 !
+ α0 + β2

G′
G2

 !−2

+ β1
G′
G2

 !−1

,

ð30Þ

here α0, α1, α2 are the upcoming constants that will be deter-
mined later.

Next, we will use (29) and (10) to collect and sort out all
terms with the same power of ðG′/G2Þ together.

First, from (29), we get

u′ ξð Þ = α1σ − ρβ1ð Þ + α1μ + 2σα2ð Þ G′
G2

 !

+ ρα1 + 2μα2ð Þ G′
G2

 !2

+ 2ρα2
G′
G2

 !3

− β1σ + 2β2μð Þ G′
G2

 !−2

− μβ1 + 2β2μð Þ G′
G2

 !−1

− 2β2σ
G′
G2

 !−3

:

ð31Þ

Substituting (10) into (30), we obtain

u″ ξð Þ = α1σμ + 2σ2α2 + ρμβ1 + 2β2ρ
2� �

+ α1μ
2 + 2μσα2 + 2ρα1σ + 2μα2σ

� � G′
G2

 !

+ α1μρ + 2σα2ρ + 2ρα1μ + 4μ2α2 + 6ρσα2
� � G′

G2

 !2

+ 2ρ2α1 + 4μρα2 + 6ρα2μ
� � G′

G2

 !3

+ 6ρ2α2
G′
G2

 !4

+ 2β1σ
2 + 4β2μσ + 6β2σμ

� � G′
G2

 !−3

+ 2β1σμ + 4β2μ
2 + μβ1σ + 2β2ρσ + 6ρβ2σ

� � G′
G2

 !−2

+ 2ρβ1σ + 4β2ρμ + μ2β1 + 2β2μρ
� � G′

G2

 !−1

+ 6β2σ
2 G′

G2

 !−4

:

ð32Þ

Now, we put (29), (30), and (31) into (5), and sort out all
terms with the same power of ðG′ðξÞ/G2ðξÞÞ together,

Table 1: AAEF (C1 ≠ 0, C2 = 0) for the solution u11ðξÞ in eq. (13).

α c k ρ σ x t REF

0:25 0:001 0:001 π

4
π

4 196249 196249 −6:39625984 ∗ 10−11

0:5 0:001 0:001 π

4
π

4 196249 196249 −3:660149852 ∗ 10−11

0:75 0:001 0:001 π

4
π

4 196249 196249 −3:720239068 ∗ 10−11

0:25 0:001 0:001 π

4
π

4 150000 150000 −6:79117167 ∗ 10−11

0:5 0:001 0:001 π

4
π

4 150000 150000 −3:728142221 ∗ 10−11

0:75 0:001 0:001 π/4 π/4 150000 150000 −3:668526651 ∗ 10−11

0:25 0:001 0:001 π/4 π/4 250000 250000 −6:083233454 ∗ 10−11

0:5 0:001 0:001 π/4 π/4 250000 250000 −3:660763965 ∗ 10−11

0:75 0:001 0:001 π/4 π/4 250000 250000 −3:704605275 ∗ 10−11

Table 2: AAEF (C1 = 0, C2 ≠ 0) for the solution u12ðξÞ in eq. (14).

α c k ρ σ x t REF

0:25 0:001 0:001 2 −2 196249 196249 −1:541853209 ∗ 10−9

0:5 0:001 0:001 2 −2 196249 196249 −2:024770373 ∗ 10−9

0:25 0:001 0:001 2 −2 150000 150000 −1:541838967 ∗ 10−9

0:5 0:001 0:001 2 −2 150000 150000 −1:898189859 ∗ 10−9

0:25 0:001 0:001 2 −2 250000 250000 −1:541867807 ∗ 10−9

0:5 0:001 0:001 2 −2 250000 250000 5:931281180 ∗ 10−9
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6ρ2α2c2k2 +
1
2 α

2
2ck

	 

G′ ξð Þ
G2 ξð Þ

 !4

+ 2ρ2α1c2k2 + 10μρα2c2k2 + α1α2ck
� � G′ ξð Þ

G2 ξð Þ

 !3

+ 3ρμα1c2k2 + 8σα2ρc2k2 + 4μ2α2c2k2 + c2α2
�

+ k2α2 + rα2 +
1
2 ckα

2
1 + α0α2ckÞ

G′ ξð Þ
G2 ξð Þ

 !2

+ α1μ
2c2k2 + 4μσα2c2k2 + 2ρα1σc2k2 + c2α1 + k2α1 + rα1 + α0α1ck + α2β1ck

� �
� G′ ξð Þ

G2 ξð Þ

 !
+ c2k2α1σμ + 2σ2α2c2k2 + ρμβ1c

2k2 + 2β2ρ
2c2k2

�

+ 1
2 ckα

2
0 + α1β1ck + α2β2ck + c2α0 + k2α0 + rα0 + sÞ + 6c2k2β2σ

2 + 1
2 ckβ

2
2

	 


� G′ ξð Þ
G2 ξð Þ

 !−4

+ 2β1σ
2c2k2 + 10β2μσc

2k2 + β1β2ck
� � G′ ξð Þ

G2 ξð Þ

 !−3

+ 3β1σμc
2k2 + 4β2μ

2c2k2 + 8β2ρσc
2k2 + c2β2 + k2β2 + rβ2 +

1
2 ckβ

2
1 + α0β2ck

	 


� G′ ξð Þ
G2 ξð Þ

 !−2

+ 2ρβ1σc
2k2 + 6β2ρμc

2k2 + μ2β1c
2k2 + c2β1

�

+ k2β1 + rβ1 + α0β1ck + α1β2ckÞ
G′ ξð Þ
G2 ξð Þ

 !−1

= 0:

ð33Þ

For the ðG′ðξÞÞ/ðG2ðξÞÞ functions of the same terms
power, extracting its undetermined coefficients and set to
zero, and the following equations can be obtained:

c2k2α1σμ + 2σ2α2c
2k2 + ρμβ1c

2k2 + 2β2ρ
2c2k2 + 1

2 ckα
2
0 + α1β1ck + α2β2ck + c2α0 + k2α0 + rα0 + s = 0, 1:1ð Þ

α1μ
2c2k2 + 4μσα2c2k2 + 2ρα1σc2k2 + c2α1 + k2α1 + rα1 + α0α1ck + α2β1ck = 0, 1:2ð Þ

3ρμα1c2k2 + 8σα2ρc2k2 + 4μ2α2c2k2 + c2α2 + k2α2 + rα2 +
1
2 ckα

2
1 + α0α2ck = 0, 1:3ð Þ

2ρ2α1c2k2 + 10μρα2c2k2 + α1α2ck = 0, 1:4ð Þ

6ρ2α2c2k2 +
1
2 α

2
2ck = 0, 1:5ð Þ

6c2k2β2σ
2 + 1

2 ckβ
2
2 = 0, 1:6ð Þ

2β1σ
2c2k2 + 10β2μσc

2k2 + β1β2ck = 0, 1:7ð Þ

3β1σμc
2k2 + 4β2μ

2c2k2 + 8β2ρσc
2k2 + c2β2 + k2β2 + rβ2 +

1
2 ckβ

2
1 + α0β2ck = 0, 1:8ð Þ

2ρβ1σc
2k2 + 6β2ρμc

2k2 + μ2β1c
2k2 + c2β1 + k2β1 + rβ1 + α0β1ck + α1β2ck = 0: 1:9ð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð34Þ

Case 1. If σρ > 0, μ = 0, under this assumption, solving the
above system equation (33), we get

α0 = −
c2 + k2 + r

ck
± 8σρk,

α1 = 0,
α2 = −12ρ2ck,
β1 = 0,
β2 = −12σ2ck,

8>>>>>>>>>><
>>>>>>>>>>:

ð35Þ

here

c2 + k2 + r
� �2 − 2cks = 256σ2ρ2c2k4

G′
G2

 !
ξð Þ =

ffiffiffiffiffiffi
σρ

p
σ

C1 cos
ffiffiffiffiffiffi
σρ

p
ξ + C2 sin

ffiffiffiffiffiffi
σρ

p
ξ

C1 sin
ffiffiffiffiffiffi
σρ

p
ξ − C2 cos

ffiffiffiffiffiffi
σρ

p
ξ

� �
:

ð36Þ

Now, we give the forms of uðξÞ:

u11 ξð Þ = α0 + α2
G′
G2

 !2

+ β2
G′
G2

 !−2

= −
c2 + k2 + r

ck

± 8σρk − 12 ρ
3ck
σ

C1 cos
ffiffiffiffiffiffi
σρ

p
ξ + C2 sin

ffiffiffiffiffiffi
σρ

p
ξ

C1 sin
ffiffiffiffiffiffi
σρ

p
ξ − C2 cos

ffiffiffiffiffiffi
σρ

p
ξ

� �2

− 12σ
3ck
ρ

C1 cos
ffiffiffiffiffiffi
σρ

p
ξ + C2 sin

ffiffiffiffiffiffi
σρ

p
ξ

C1 sin
ffiffiffiffiffiffi
σρ

p
ξ − C2 cos

ffiffiffiffiffiffi
σρ

p
ξ

� �−2
,

ð37Þ

and ðc2 + k2 + rÞ2 − 2cks = 256σ2ρ2c2k4.

Case 2. If σρ < 0, μ = 0, under this assumption, solving the
above system equation (33), we get

α0 = −
c2 + k2 + r

ck
± 8σρk,

α1 = 0,
α2 = −12ρ2ck,
β1 = 0,
β2 = −12σ2ck,

8>>>>>>>>>><
>>>>>>>>>>:

ð38Þ

here

c2 + k2 + r
� �2 − 2cks = 256σ2ρ2c2k4 ð39Þ

and then the result is similar with Case 1.

G′
G2

 !
ξð Þ = −

ffiffiffiffiffiffiffiffi
σρj jp
σ

C1 sinh 2
ffiffiffiffiffiffiffiffi
σρj jp

ξ + C2 cosh 2
ffiffiffiffiffiffiffiffi
σρj jp

ξ + C2
C1 cosh 2

ffiffiffiffiffiffiffiffi
σρj jp

ξ + C1 sinh 2
ffiffiffiffiffiffiffiffi
σρj jp

ξ − C2

" #
: ð40Þ

Now, we give the forms of uðξÞ:

u12 ξð Þ = α0 + α2
G′
G2

 !2

+ β2
G′
G2

 !−2

= −
c2 + k2 + r

ck
± 8σρk

+ 12 ρ
3ck
σ

C1 sinh 2 ffiffiffiffiffiffiffiffiffi−σρp
ξ + C2 cosh 2 ffiffiffiffiffiffiffiffiffi−σρp

ξ + C2
C1 cosh 2 ffiffiffiffiffiffiffiffiffi−σρp

ξ + C1 sinh 2 ffiffiffiffiffiffiffiffiffi−σρp
ξ − C2

� �2

+ 12σ
3ck
ρ

C1 sinh 2 ffiffiffiffiffiffiffiffiffi−σρp
ξ + C2 cosh 2 ffiffiffiffiffiffiffiffiffi−σρp

ξ + C2
C1 cosh 2 ffiffiffiffiffiffiffiffiffi−σρp

ξ + C1 sinh 2 ffiffiffiffiffiffiffiffiffi−σρp
ξ − C2

� �−2
,

ð41Þ

and ðc2 + k2 + rÞ2 − 2cks = 256σ2ρ2c2k4.
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Table 3: AAEF for the solution u22ðξÞ in eq. (63).

α c k ξ0 ϑ x t REF

0:25 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
196249 196249 1:714265321 ∗ 10−18

0:5 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
196249 196249 1:714265334 ∗ 10−18

0:75 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
196249 196249 1:714265297 ∗ 10−18

0:25 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
150000 150000 1:714265321 ∗ 10−18

0:5 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
150000 150000 1:714265334 ∗ 10−18

0:75 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
150000 150000 1:714265297 ∗ 10−18

0:25 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
250000 250000 1:714265321 ∗ 10−18

0:5 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
250000 250000 1:714265334 ∗ 10−18

0:75 0:001 0:001 ξ0 = 1 − 20
ffiffiffi
7

p
1/

ffiffiffi
7

p
250000 250000 1:714265297 ∗ 10−18

(a) (b)

(c)

Figure 1: The three-dimensional images of u11ðξÞ by considering the values c = 0:001, k = 0:001, ρ = π/4, σ = π/4, s = 0, C2 = 0; from (a)
to (c), α take the following three different values: α = 0:25, α = 0:5, α = 0:75. Three graphs demonstrate the multisoliton profiles of u11ðξÞ
on the domain.
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Case 3. If σ = 0 and ρ ≠ 0, μ = 0, under this assumption, solv-
ing the above system equation (33), we obtain

α0 = −
c2 + k2 + r

ck
,

α1 = 0,
α2 = −12ρ2ck,
β1 = 0,
β2 = 0,

8>>>>>>>>>><
>>>>>>>>>>:

ð42Þ

here

c2 + k2 + r
� �2 = 2cks,

G′
G2

 !
ξð Þ = −

C1
ρ C1ξ + C2ð Þ :

ð43Þ

Now, we give the forms of uðξÞ:

u13 ξð Þ = α0 + α2
G′
G2

 !2

= −
c2 + k2 + r

ck
−

12ckC2
1

C1ξ + C2ð Þ2
:

ð44Þ

Case 4. If μ ≠ 0 and Δ = μ2 − 4σρ ≥ 0, now we will divide into
two subcases.

Subcase 4.1. If σ = 0 and ρ = 0, and

G′
G2

 !
ξð Þ = −

μ

2ρ −

ffiffiffiffi
Δ

p
C1 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C2 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2ρ C2 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C1 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2
4

3
5:

ð45Þ

This contradicts the truth that the denominator cannot
be zero. So this case cannot happen.

(a) (b)

(c)

Figure 2: The two-dimensional images of u11ðξÞ by considering the values c = 0:001, k = 0:001, ρ = π/4, σ = π/4, s = 0, C2 = 0; from (a) to (c),
α take the following three different values: α = 0:25, α = 0:5, α = 0:75. The above three graphs show corresponding wave propagation.
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If σ = 0 and ρ ≠ 0, under this assumption, solving the
above system equation (33), we get

α0 = −u2ck −
c2 + k2 + r

ck
,

α1 = −12ρμck,
α2 = −12ρ2ck,
β1 = 0,
β2 = 0,

8>>>>>>>>>><
>>>>>>>>>>:

ð46Þ

here

c2 + k2 + r
� �2 − 2cks = u4c2k2,

G′
G2

 !
ξð Þ = −

μ

2ρ −

ffiffiffiffi
Δ

p
C1 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C2 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2ρ C2 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C1 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2
4

3
5: ð47Þ

Now, we give the forms of uðξÞ:

u14 ξð Þ = α0 + α1
G′
G2

 !
+ α2

G′
G2

 !2

= −u2ck −
c2 + k2 + r

ck

− 12ρμck −
μ

2ρ −

ffiffiffiffi
Δ

p
C1 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C2 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2ρ C2 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C1 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
0
@

1
A

2
4

3
5

− 12ρ2ck −
μ

2ρ −

ffiffiffiffi
Δ

p
C1 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C2 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2ρ C2 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C1 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
0
@

1
A

2
4

3
5
2

= 2μ2ck − c2 + k2 + r
ck

− 3μ2ck C1 cosh ±μ/2ð Þξ + C2 sinh ±μ/2ð Þξ
C2 cosh ±μ/2ð Þξ + C1 sinh ±μ/2ð Þξ
	 
2

:

ð48Þ

Subcase 4.2. If σ ≠ 0, during the system equations, by (1.5),
we deduce α2 = −12ρ2ck; by (1.6), we deduce β2 = −12σ2ck;
and then from (1.4) and (1.7), we get α1 = −12ρμck, β1 = −

(a) (b)

(c)

Figure 3: The corresponding contour images of u11ðξÞ by considering the values c = 0:001, k = 0:001, ρ = π/4, σ = π/4, s = 0, C2 = 0; from (a)
to (c), α take the following three different values: α = 0:25, α = 0:5, α = 0:75.
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12μσck, and then from (1.8), we deduce

α0 = −μ2ck + 8ρσck − c2 + k2 + r
ck

, ð49Þ

and then from (1.9), we deduce

α0 = −μ2ck + 4ρσck − c2 + k2 + r
ck

, ð50Þ

so ρ must be equal to 0. Finally

α0 = −u2ck −
c2 + k2 + r

ck
α1 = 0
α2 = 0
β1 = −12μσck
β2 = −12σ2ck,

8>>>>>>>>>><
>>>>>>>>>>:

ð51Þ

here

(a) (b)

(c)

Figure 4: The three-dimensional images of u12ðξÞ by considering the values c = 0:001, k = 0:001, ρ = 2, σ = −2, s = 0, C1 = 0 take the following
three different values: α = 0:25, α = 0:5, α = 0:75. The images show annihilation of solitary wave profiles for u12ðξÞ accompanied with different α.

c2 + k2 + r
� �2 − 2cks = u4c4k4:

G′
G2

 !
ξð Þ = −

μ

2ρ −

ffiffiffiffi
Δ

p
C1 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C2 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2ρ C2 cosh

ffiffiffiffi
Δ

p
/2

� �
ξ + C1 sinh

ffiffiffiffi
Δ

p
/2

� �
ξ

� �
2
4

3
5: ð52Þ
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This contradicts the truth that the denominator cannot
be zero. So this case cannot happen.

Case 5. If μ ≠ 0 and Δ = μ2 − 4σρ < 0, and then the result is
the same as Case 4.

Only the case that σ = 0 and ρ ≠ 0, under this assump-
tion, solving the above system equation (33), we get

α0 = −u2ck −
c2 + k2 + r

ck

α1 = −12ρμck
α2 = −12ρ2ck
β1 = 0
β2 = 0,

8>>>>>>>>>><
>>>>>>>>>>:

ð53Þ

here

(a) (b)

(c)

Figure 5: The two-dimensional images of u12ðξÞ by considering the values c = 0:001, k = 0:001, ρ = 2, σ = −2, s = 0, C1 = 0 take the following
three different values: α = 0:25, α = 0:5, α = 0:75. The three images reveal the wave propagation along x-axis accompanied with different α.

c2 + k2 + r
� �2 − 2cks = u4c2k2,

G′
G2

 !
ξð Þ = −

μ

2ρ −

ffiffiffiffiffiffi
−Δ

p
C1 cos

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ − C2 sin

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ

� �
2ρ C2 cos

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ + C1 sin

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ

� �
2
4

3
5: ð54Þ
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Now, we give the forms of uðξÞ:

(a) (b)

(c)

Figure 6: The three-dimensional images of u14ðξÞ by considering the values c = 0:001, k = 0:001, ρ = 2, σ = 0, s = 0, μ = 5, C1 = 3, C2 = 4;
from (a) to (c), α take the following three different values: α = 0:25, α = 0:5, α = 0:75.

u15 ξð Þ = α0 + α1
G′
G2

 !
+ α2

G′
G2

 !2

= −u2ck −
c2 + k2 + r

ck
− 12ρμck −

μ

2ρ −

ffiffiffiffiffiffi
−Δ

p
C1 cos

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ − C2 sin

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ

� �
2ρ C2 cos

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ + C1 sin

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ

� �
2
4

3
5

− 12ρ2ck −
μ

2ρ −

ffiffiffiffiffiffi
−Δ

p
C1 cos

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ − C2 sin

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ

� �
2ρ C2 cos

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ + C1 sin

ffiffiffiffiffiffi
−Δ

p
/2

� �
ξ

� �
0
@

1
A

2
4

3
5
2

= 2μ2ck − c2 + k2 + r
ck

+ 3μ2ck C1 cos ±iμ/2ð Þξ + C2 sin ±iμ/2ð Þξ
C2 cos ±iμ/2ð Þξ + C1 sin ±iμ/2ð Þξ
	 
2

:

ð55Þ
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All in the above cases, ξ = ðkxα/Γð1 + αÞÞ + ðctα/Γð1 + αÞÞ
and C1 and C2 are arbitrary constants.

The proof is complete.

5. Proof of Theorem 3

Noting that putting (21) into (5), we have q = 2, p = 1, c−2
= −12ck, c−1 = 0, c0 = −c2 + k2 + r/ck, c1 = 0, c2 = sck − 2c2k2

− ðc2 + k2 + rÞ2/20c3k3, c3 = 0, where c4 is arbitrary.
Hence, (5) satisfies week h1, 2i condition and we will

then give the form of all the meromorphic solutions for (5).
By (14), it is easy to deduce the rational solutions of

equation (6) with pole at ξ = 0 that

ua ξð Þ = c11
ξ2

+ c12
ξ

+ c: ð56Þ

Substituting uaðξÞ into (5), we obtain the following

ua1 ξð Þ = −
12ck
ξ2

−
c2 + k2 + r

ck
, ð57Þ

where ðc2 + k2 + rÞ2 = 2cks. The rational solutions of (5) are
as follows:

u21 ξð Þ = −
12ck
ξ − ξ0ð Þ2

−
c2 + k2 + r

ck
, ð58Þ

where ðc2 + k2 + rÞ2 = 2cks, ξ0 ∈ℂ.

(a) (b)

(c)

Figure 7: The two-dimensional images of u14ðξÞ by considering the values c = 0:001, k = 0:001, ρ = 2, σ = 0, s = 0, μ = 5,C1 = 3,C2 = 4; from (a) to
(c), α take the following three different values: α = 0:25, α = 0:5, α = 0:75. The three graphs show the curved shape solitary profiles with different α of
u14ðξÞ.
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To search for simple periodic solutions, setting ζ = exp
ðϑξÞ, ϑ ∈ℂ, putting u = RðζÞ into (5), then

c2k2ϑ2 ζR′ + ζ2R″
h i

+ c2 + k2 + r
� �

R + 1
2 ckR

2 + s = 0, ð59Þ

and putting

ub ζð Þ = c2
ζ − 1ð Þ2

+ c1
ζ − ζ1

+ c10 ð60Þ

into (55), we get that

ub1 ζð Þ = −12ckϑ2

ζ − 1ð Þ2
+ −12ckϑ2

ζ − 1 − ckϑ2 −
c2 + k2 + r

ck
, ð61Þ

here ðc2 + k2 + rÞ2 = 2cks + c4k4ϑ4. Substituting ζ = eϑξ, ϑ ∈ℂ
into the above form, we get all simply periodic solutions of
(5) in pole at ξ = 0 as follows:

(a) (b)

(c)

Figure 8: The three-dimensional images of u15ðξÞ by considering the values c = 0:001, k = 0:001, ρ = 2, σ = 0, s = 0, μ = i, C1 = 3, C2 = 4; from (a)
to (c), α take the following three different values: α = 0:25, α = 0:5, α = 0:75. Three graphs demonstrate the multisoliton profiles of u15ðξÞ on the
domain.
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ub2 ξð Þ = −12ckϑ2

eϑξ − 1
� �2 −

12ckϑ2
eϑξ − 1 − ckϑ2 −

c2 + k2 + r
ck

= −12ckϑ2 eϑξ
� �

eϑξ − 1
� �2 − ckϑ2 −

c2 + k2 + r
ck

= −12ckϑ2 coth2 ϑ2 ξ − ckϑ2 −
c2 + k2 + r

ck
,

ð62Þ

So all simply periodic solutions of (5) are obtained by

u22 ξð Þ = −12ckα2 coth2 ϑ2 ξ − ξ0ð Þ − ckϑ2 −
c2 + k2 + r

ck
, ð63Þ

where ðc2 + k2 + rÞ2 = 2cks + c4k4ϑ4, ξ0 ∈ℂ.
From the above part, we are about to obtain the form of

the elliptic solution to be determined of (5) with pole at ξ = 0
as follows:

uc ξð Þ = c−2℘ ξð Þ + c0: ð64Þ

Substituting ucðξÞ into the (5), then we obtain that

uc1 ξð Þ = −12ck℘ ξð Þ − c2 + k2 + r
ck

, ð65Þ

here 2cks = −12c4k4g2 + ðc2 + k2 + rÞ2.
Therefore, all elliptic solutions of (5) are as follows:

uc2 ξð Þ = −12ck℘ ξ − ξ0ð Þ − c2 + k2 + r
ck

, ð66Þ

here ξ0 ∈ℂ. We rewrite it to the form

u23 ξð Þ = −12ck −℘ ξð Þ + 1
4

℘′ ξð Þ + F
℘ ξð Þ − E

" #2( )
+ 12ckE −

c2 + k2 + r
ck

,

ð67Þ

(a) (b)

(c)

Figure 9: The two-dimensional images of u15ðξÞ by considering the values c = 0:001, k = 0:001, ρ = 2, σ = 0, s = 0, μ = i, C1 = 3, C2 = 4; from
(a) to (c), α take the following three different values: α = 0:25, α = 0:5, α = 0:75. Three graphs show corresponding wave propagation profiles
of u15ðξÞ on the domain.
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here 2cks = −12c4k4g2 + ðc2 + k2 + rÞ2, F2 = 4E3 − g2E − g3,
g3 and E are arbitrary.

The proof is finished.

6. Accuracy Analysis of Error Function (AAEF)

From eq. (8), it is easy to see the smallness of the AAEF indi-
cating that the approximate solution and exact solution are
very close. Thus, AAEF can be used to make an estimate of
the accuracy of the approximate solution.

Now, we take some specific parameters in some solu-
tions of eq. (6) and use the Maple software to reckon the
AAEF as follows:

For the part solutions in eq. (6), some values of the AAEF
are given in Tables 1, 2, and 3, respectively. It is obvious to find
that the maximum values of the AAEF are 10−9. It means that
the obtained solutions are very near the exact solution.

Obviously, selecting the parameters is important in the
calculation of AAEF. From the three tables, AAEF for the
solutionu22ðξÞis the closest to the exact solution, because
the value of the AAEF is10−18.

If we take another parameter, it is possible to obtain
exact solutions close to the other parameters.

7. Comparison

In this work, with the aid of Maple software, using the
extended complex method, we found double periods and
single period function solutions of SRLW equation. We also
can find more solutions by the ðG′/G2Þ-expansion method.
In 2021, M. A. Khan et al. [32] applied the new auxiliary
method to solve for the SRLW. M. A. Khan et al. [32] found
the trigonometric and hyperbolic function solutions for the
SRLW. However, we can obtain double periods Weierstrass
elliptic function solutions just by complex method. Within
our cognitive range, the double periods Weierstrass elliptic
function solutions got for SRLW in this article mostly have
not been reported in the literature. From the level of compu-
tational complexity, the extended complex method is more
concise and clear. Although ðG′/G2Þ-expansion method is
relatively complex in computation, more formal solutions
are obtained.

(a) (b)

(c)

Figure 10: The three-dimensional images of u22ðξÞ by considering the values c = 0:001, k = 0:001, ξ0 = 1 − 20
ffiffiffi
7

p
, ϑ = 1/

ffiffiffi
7

p
; from (a) to (c), α

take the following three different values: α = 0:25, α = 0:5, α = 0:75. Three graphs demonstrate the annihilation of soliton profiles of u22ðξÞ
on the domain.
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In 2021, S. C. Ünal et al. [34] got the exact solutions of
SRLW equation inspired by a direct method based on the
ideas of Jacobi elliptic functions; furthermore, they also get
some general form solutions which include rational, single
periodic trigonometric and hyperbolic, and double periodics
Jacobi elliptic functions. It is well known that the connection
between the Jacobian elliptic functions cnðξ,mÞ and Weier-
strass elliptic function solutions ℘ðξÞ is

℘ ξ, g2, g3ð Þ = e2 − e2 − e3ð Þcn2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 − e3

p ;mð Þ, ð68Þ

here m2 = ðe2 − e3Þ/ðe1 − e3Þ is the modulus number of Jaco-
bian elliptic functions, and eiði = 1, 2, 3, e1 ≥ e2 ≥ e3Þ are the
roots of equation 4ξ2 − g2ξ − g3 = 0. It is well known that if
m⟶ 1 and e2 ⟶ e1, then cnðξ ;mÞ⟶ sech ðξÞ, or if m
⟶ 0, then cnðξ ;mÞ⟶ cos ðξÞ. If 0 <m < 1, then Jacobian
elliptic function is the double periodic meromorphic func-
tion and cannot degenerate into single periodic trigonomet-

ric and hyperbolic meromorphic functions. Equation (68) is
the important bridge linking among the Weierstrass elliptic
function, hyperbolic function, trigonometric function, and
Jacobian elliptic functions.

Although the means, methods, and ideas of the
above methods for studying the exact solutions of SRLW
equation vary, the final results obtained still have impor-
tant relevance and also play important implications for
indicating the deep mechanisms of physical phenomena
and giving tedious solutions to FNPDE. The extended
method enriches the study of the described equations
for FNPDE.

8. Computer Simulations

In this section, we are trying to explain the results obtained
according to two different methods through computer simu-
lation images, and further analyze the nature of the simple
periodic solutions (Figures 1–3) u11ðξÞ, (Figures 4 and 5)

(a) (b)

(c)

Figure 11: The two-dimensional images of u22ðξÞ by considering the values c = 0:001, k = 0:001, ξ0 = 1 − 20
ffiffiffi
7

p
, ϑ = 1/

ffiffiffi
7

p
, y = 10000; from (a) to

(c), α take the following three different values: α = 0:25, α = 0:5, α = 0:75. Three graphs show corresponding wave propagation profiles of u22ðξÞ
on the domain.
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u12ðξÞ, (Figures 6 and 7) u14ðξÞ, (Figures 8 and 9) u15ðξÞ,
and (Figures 10 and 11) u22ðξÞ in the SRLW equation.

The three graphs show the cuspon’s shape with different
α of u14ðξÞ.

9. Conclusions and Future Outlook of the Study

The extended complex method and the ðG′/G2Þ-expansion
method are very effective tools for seeking the exact solu-
tions of FNPDE. By traveling wave transformation, many
of the FNPDE can be converted into IOODE similar to
equation (9). In this paper, we employed the extended com-
plex method and the ðG′/G2Þ-expansion method to seek the
exact solutions about SRLW equation. By traveling wave
transformation, we can reduce the dimensions of the
FNPDE to IOODE related to mathematical physics and
engineering. The results of the full text eloquently prove
the above methods are very efficient and powerful in solving
the exact solutions of SRLW equation now and in the future.
We can apply these ideas and methods of this research to
other FNPDE.

It is well known that [46] ℘ðzÞ≔ ℘ðz, g2, g3Þ have one
successive degeneracy to simple periodic functions accord-
ing to

℘ ξ, 3d2 − d3
� �

= 2d − 3dd
2 coth2

ffiffiffiffiffi
3d
2

r
ξ, ð69Þ

if one root ej is double (Δðg2, g3Þ = 0). Also ℘ðzÞ≔ ℘ðz, g2
, g3Þ have another one successive degeneracy to rational
function ξ according to

℘ ξ, 0, 0ð Þ = 1
z2
, ð70Þ

if one root ej is triple ðg2 = g3 = 0Þ. It shows that there exist
simple periodic solutions u22ðξÞ which is not degenerated
successively to the double periods elliptic function.

We are confident that the extended complex methods
and ðG′/G2Þ-extension methods still have broad and bright
applications in the future. Both of these methods are effec-
tive tools for obtaining FNPDE exact solutions.

In the future, we may consider the simplified improved
tan ððϕðξÞÞ/2Þ-expansion method (SITEM) [47] and gener-
alized direct algebraic method [48] to further investigate
the SRLW equation. In 2021, Md. Rezwan Ahamed Fahim
et al. [49] used the sine-Gordon-expansion approach for
finding the exact solutions of the traveling waves about (3
+1)-dimensional Kadomtsev-Petviashvili and the modified
KdV-Zakharov-Kuznetsov equations. In 2021, W. X. Ma
et al. analyzed soliton solutions and verified the Hirota N-
soliton condition for the B-type Kadomtsev-Petviashvili
equation, the (2+1)-dimensional KdV equation, the
Kadomtsev-Petviashvili equation, and the (2+1)-dimen-
sional Hirota-Satsuma-Ito equation [24, 26], within the Hir-
ota bilinear formulation. In 2021, M. Hafiz Uddin et al. [50]
employ the double (G′/G, 1/G)-expansion method to inves-
tigate the new exact solutions to some fractional nonlinear

evolution solutions. This is also another research direction
that we will focus on and have great interest in the future.
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