Research Article

Theoretical Analysis of Two Collinear Cracks in an Orthotropic Solid under Linear Thermal Flux and Linear Mechanical Load

Bing Wu,1 Bao-Yin Zhu,2 Hao-Meng Song,1 and Qiong-Ao Huang3

1Technology Innovation Center for Testing and Evaluation in Civil Engineering of Hebei Province, Hebei University, Baoding, Hebei 071002, China
2Suzhou Nuclear Power Research Institute, Xihua Road 1688, Suzhou 215004, China
3South China Research Center for Applied Mathematics and Interdisciplinary Studies, South China Normal University, Guangzhou 510631, China

Correspondence should be addressed to Qiong-Ao Huang; huangqiongao@m.scnu.edu.cn

Received 27 August 2021; Revised 7 November 2021; Accepted 2 December 2021; Published 9 February 2022

Academic Editor: David Carf

Copyright © 2022 Bing Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies the problem of a cracked orthotropic solid subject to linear thermal flux and linear mechanical load. The proposed extended partially insulated crack model is employed to simulate two collinear cracks. Taking advantage of Fourier transform technique and superposition theory, the closed form of some physical quantities and fracture parameters is obtained. Some simple examples are employed to demonstrate dimensionless thermal conductivity (R_c) between the upper and below crack regions, and the proposed coefficient (ε) has great effects on some physical quantities and fracture parameters.

1. Introduction

Multicomponent composite materials are widely used in the material industry. However, considering the complex factors involving working environment, internal and external loads, and production process, it is inevitable to contain a series of various cracks in these solids. The appearances of different kinds of cracks will reduce the capacity of cracked structures and even bring about severe accidents. Therefore, it is vital to do some research on fracture analysis of a cracked solid by utilizing the theory of thermal elasticity for the purpose of safety [1–3]. With the rapid growth of thermoelasticity theory, a great deal of treatises and papers was published to investigate fracture characters of cracked solids [4–6]. The fracture parameters of an orthotropic material containing a central crack under heat flow were obtained by Tsai [7]. The closed form of fracture parameters of cracked orthotropic solids was calculated by Ju and Rowlands [8]. The closed form of some physical quantities of two collinear cracks was studied by Chen and Zhang [9]. The transient thermal problem of a cracked orthotropic plate was taken into account by Noda [10]. Some physical quantities of a cracked orthotropic semi-infinite medium were given by Rizk [11]. On the other hand, the thermoelastic problems of orthotropic functionally graded solids brought about the widespread attention. For example, the fracture parameters of orthotropic functionally graded solids under mechanical load were given explicitly by Kim and Paulino [12]. The problem of a cracked solid subject to plane temperature-step waves was investigated by Brock [13]. The equivalent domain integral was formulated to study the fracture problems subject to thermal stresses by Dag [14]. The problems of cracked orthotropic solids subject to symmetrical thermomechanical loads with application of Fourier transform technique (FTT) and superposition principle were studied by Wu et al. [15].

Subject to thermal load, the analysis of fracture behavior for cracked solids which were often regarded as orthotropic or isotropic has generated enormous publicity [16–20]. To
simulate two collinear cracks, a partially insulated crack model prevailed [21–23].

\[Q_{1c} = -h_c \Delta T, \]

where the definitions of \(Q_{1c}, h_c \), and \(\Delta T \) have been given in detail [3]. The case of \(h_c \rightarrow 0 \) or \(h_c \rightarrow \infty \) denotes a fully thermally impermeable or permeable state.

The following extended partially insulated crack model is also put forward by virtue of mathematical intuition.

\[Q_{1c} = -h_c \Delta T + \epsilon Q_1, \]

where \(Q_1 \) presents initial heat flux. The coefficient \(\epsilon \) is considered a constant. Whether it is negative or positive is mainly relies on the portion of thermal flux and mechanical load. Clearly, the crack model proposed in (2) returns to (1) when \(\epsilon = 0 \).

The reasons of introducing constant \(\epsilon Q_1 \) in (2) are as follows. First, the value of \(h_c \) does not precisely address the cracks with thermal resistance. Second, the constant \(\epsilon Q_1 \), which is introduced as an adjustment factor, conforms to the complex situation and meets the abnormal state of crack surface.

This paper employs an extended partially insulated crack model to discuss two collinear cracks under linear thermal flux and linear mechanical load. The thermoelastic field is given in explicit form based on the proposed extended partially insulated crack model, Fourier transform, and superposition theory. The results show the effects of dimensionless thermal conductivity \((R_i) \) between the upper and below crack regions and the proposed coefficient \((\epsilon) \) on \(Q_{1c} \) and \(K_{11} \) and \(S \). It is revealed the boundary conditions of crack surface, thermal properties of crack, and the raised coefficient should be paid attention to the analysis of crack growth under thermal load in numerical results.

2. Problem Statement

Two collinear cracks in an orthotropic solid are taken into account as shown in Figure 1. They are located at \(a < |x| < b \).

Making use of the state of plane stress [3], we obtain

\[
\begin{align*}
\sigma_x &= c_{11} \frac{\partial u}{\partial x} + c_{12} \frac{\partial v}{\partial y} - \beta_1 T, \\
\sigma_y &= c_{12} \frac{\partial u}{\partial x} + c_{22} \frac{\partial v}{\partial y} - \beta_2 T, \\
\tau_{xy} &= c_{66} \left[\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right],
\end{align*}
\]

where the definitions of \(x, v, \sigma_x, \sigma_y, \tau_{xy}, T, v_{xx}, v_{yy}, E_{xx}, E_{yy}, c_{66} = G_{xy}, \alpha_{xx}, \) and \(\sigma_{yy} \) have been given in [3].

One obtains

\[
\begin{align*}
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} &= 0, \\
\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} &= 0.
\end{align*}
\]

Making use of the Fourier heat conduction leads to

\[
\begin{align*}
Q_x &= -\lambda_x \frac{\partial T}{\partial x}, \\
Q_y &= -\lambda_y \frac{\partial T}{\partial y},
\end{align*}
\]

where the definitions of \(Q_x, Q_y, \lambda_x, \) and \(\lambda_y \) have been given in [3]. Furthermore, based on the equilibrium equation,
one has
\[\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} = 0. \] (11)

Taking advantage of the thermal equilibrium equations brings out
\[\lambda \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0, \] (12)
where
\[\lambda = \sqrt{\frac{\lambda_y}{\lambda_x}}. \] (13)

The crack face boundary conditions are depicted as
\[Q_{II}^f(x, 0) - Q_{II}^c(x, 0) = -\frac{Q_{II}x}{2(b - a)^2}, \quad |a| < x < |b|, \] (14)
\[\sigma_{II}^f(x, 0) = \sigma_{II}^c(x, 0) = \frac{\sigma_1 |x|}{b - a} + \sigma_0, \quad |a| < x < |b|. \] (15)

Hereafter, the subscript ‘I’ or ‘II’ denotes the physical quantity of the upper (y > 0) or below (y < 0) part. \(Q_0, Q_1, \sigma_0, \) and \(\sigma_1 \) stand for the prescribed constants. Based on (14) and (15), thermal flux is composed of only one part \(-Q_0 x/(2(b - a)^2) \) and mechanical loading is divided into two parts \((\sigma_1 |x|/(b - a) \) and \(\sigma_0). \) As linear thermal flux and linear mechanical load are antisymmetrical and symmetrical, respectively, the thermoelastic field of the region \(x > 0 \) is only dealt with. The crack-surface boundary conditions are expressed with the application of the improved partially insulated crack model.

\[\tau_{xy}^{II}(x, 0) = \tau_{xy}^{I}(x, 0) = 0, \quad a < x < b, \] (16)
\[Q_{II}^f(x, 0) - Q_{II}^c(x, 0) = -\frac{Q_{II}}{2(b - a)^2} x, \quad a < x < b, \] (17)
\[\sigma_{II}^f(x, 0) = \sigma_{II}^c(x, 0) = \frac{\sigma_1 x}{b - a} + \sigma_0, \quad a < x < b. \] (18)

According to Equations (17) and (18), the solutions under thermal flux \(-Q_0 x/(2(b - a)^2) \) and mechanical loading \((\sigma_0) \) have been given explicitly in \([24, 25]\). Next, we depict the boundary conditions of crack-surface subject to linear mechanical load \((\sigma_1 x/(b - a)). \)

\[\tau_{xy}^{II}(x, 0) = \tau_{xy}^{I}(x, 0) = 0, \quad a < x < b, \] (19)
\[\sigma_{II}^{II}(x, 0) = \sigma_{II}^{I}(x, 0) = \frac{\sigma_1 x}{b - a}, \quad a < x < b, \] (20)

where
\[Q_{Ic} = -h_1 (T_{II}(x, 0) - T^{II}(x, 0)) + \epsilon Q_1. \] (21)

Besides, some physical quantities conform to the following conditions:
\[\tau_{xy}^{I}(x, 0) = \tau_{xy}^{II}(x, 0), \quad \sigma_{II}^{I}(x, 0) = \sigma_{II}^{II}(x, 0), \quad x > b \text{ or } 0 < x < a, \]
\[u^{I}(x, 0) = -u^{II}(x, 0), \quad v^{I}(x, 0) = -v^{II}(x, 0), \quad x > b \text{ or } 0 < x < a, \]
\[T^{I}(x, 0) = T^{II}(x, 0), \quad Q_{II}^{I}(x, 0) = Q_{II}^{II}(x, 0), \quad x > b \text{ or } 0 < x < a. \] (22)

3. Solution Procedure

3.1. Temperature Field

According to \([25]\), one obtains the explicit form of temperature difference on crack faces as
\[T_{I}^{I}(x, 0) - T_{II}^{II}(x, 0) = -\frac{Q_{II} - Q_{Ic}}{2(b - a)^2} \sqrt{(b^2 - x^2)}, \quad a < x < b. \] (23)

3.2. Elastic Field

To achieve the goal of explicit form in Equations (8) and (9), \(u^{II}(x, y) \) and \(v^{II}(x, y) \) are expressed according to \([26]\).

\[u^{II}(x, y) = \sum_{j=1}^{2} u_j^{II}(x, y), \quad v^{II}(x, y) = \sum_{j=1}^{2} v_j^{II}(x, y), \] (24)

where the definitions of \(u_j^{II}(x, y) \) and \(v_j^{II}(x, y) \) \((j = 1, 2) \) have been given in \([26]\).

\[u_1^{II}(x, y) = \sum_{j=1}^{2} \int_{0}^{\infty} g_j^{II}(\xi) e^{-\delta^j y \gamma} \sin(\xi x) d\xi, \] (25)
\[v_1^{II}(x, y) = \sum_{j=1}^{2} \int_{0}^{\infty} \eta_j \delta^j g_j^{II}(\xi) e^{-\delta^j y \gamma} \cos(\xi x) d\xi. \] (26)

Hereafter, \(\delta^+ = 1 \) or \(\delta^- = -1 \) denotes \(y > 0 \) or \(y < 0. \) \(g_j^{II}(\xi) \) need to solve. The definitions of \(\gamma_j (j = 1, 2) \) have been given in \([26]\).

\[c_{22} c_{66} y^4 + (c_{12} + 2c_{12} c_{66} - c_{12} c_{22}) y^2 + c_{11} c_{66} = 0, \] (27)

where
\[\eta_j = \frac{c_{11} - c_{66} y^2}{(c_{12} + c_{66}) y_j}. \] (28)

Furthermore, \(u_2^{II}(x, y) \) and \(v_2^{II}(x, y) \) are chosen as
\[u_2^{II}(x, y) = \sum_{j=1}^{2} \int_{0}^{\infty} g_j^{II}(\xi) e^{-\delta^j y \gamma} \sin(\xi x) d\xi, \] (29)
\[v_2^{II}(x, y) = \sum_{j=1}^{2} \int_{0}^{\infty} \delta^j L^{II}(\xi) e^{-\delta^j y \gamma} \cos(\xi x) d\xi. \] (30)

Taking advantage of Equations (29), (30), (8), and (9),
we have
\[
\begin{bmatrix}
g^{IJI}(\xi)
\end{bmatrix} =
\begin{bmatrix}
M_1 \\
M_2
\end{bmatrix}
\begin{bmatrix}
g^{IJI}(\xi)
\end{bmatrix} / \xi,
\]
(31)
where
\[
\begin{bmatrix}
M_1 \\
M_2
\end{bmatrix} =
\begin{bmatrix}
c_{11} - c_{66} \lambda^2 & -(c_{12} + c_{66}) \lambda \\
(c_{12} + c_{66}) \lambda & c_{66} - c_{22} \lambda^2
\end{bmatrix}^{-1}
\begin{bmatrix}
\beta_1 \\
\beta_2 \lambda
\end{bmatrix}.
\]
(32)

By the aid of Equations (3)–(5), (25), (26), (29), and (30), the components of stress are in the form of the following expressions:
\[
\sigma^{IJI}(x, 0, 0) = \sum_{j=1}^{\infty} \int_{0}^{\infty} \left(c_{11} - c_{12} \gamma \eta_I \right) \xi g^{IJI}(\xi) \cos(\xi x) d\xi + (c_{11} M_1 - c_{12} \lambda M_2 - \beta_1) \int_{0}^{\infty} g^{IJI}(\xi) \cos(\xi x) d\xi,
\]
(33)
\[
\sigma^{IJI}(x, 0, 0) = \sum_{j=1}^{\infty} \int_{0}^{\infty} \left(c_{12} - c_{22} \gamma \eta_I \right) \xi g^{IJI}(\xi) \cos(\xi x) d\xi + (c_{12} M_1 - c_{22} \lambda M_2 - \beta_2) \int_{0}^{\infty} g^{IJI}(\xi) \cos(\xi x) d\xi,
\]
(34)
\[
\tau^{IJI}(x, 0, 0) = -c_{66} \sum_{j=1}^{\infty} \int_{0}^{\infty} \delta^+(\gamma \eta_I \xi g^{IJI}(\xi) \sin(\xi x) d\xi + \int_{0}^{\infty} \delta^+(M_1 \lambda + M_2) g^{IJI}(\xi) \sin(\xi x) d\xi.
\]
(35)

In order to get the explicit solution of this considered problem, we depict the dual integral solution of this considered problem as
\[
\tau^{I}(x, 0, 0) = \tau^{IJI}(x, 0, 0) = 0, \quad x > 0,
\]
(36)
\[
v^{I}(x, 0, 0) = -v^{IJI}(x, 0, 0) = 0, \quad 0 < x < a \text{ or } x > b.
\]
(37)

Using Equations (36) and (37), one gets
\[
g^{I}(\xi) = g^{IJI}(\xi),
\]
\[
g^{I}(\xi) = \frac{\gamma_1 + \eta_1}{\gamma_2 + \eta_2} g^{IJI}(\xi).
\]
(38)

Applying Equations (20) and (37), one obtains
\[
\int_{0}^{\infty} \xi g^{I}(\xi) \cos(\xi x) d\xi = 0, \quad 0 < x < a \text{ or } x > b,
\]
(39)
\[
\int_{0}^{\infty} \xi g^{I}(\xi) \cos(\xi x) d\xi = \frac{\sigma_1 x}{\tau_1 (b-a)}, \quad a < x < b,
\]
(40)
elastic displacement is obtained

\[v'(x_0) = \frac{1}{a} \int_0^a \tilde{\Phi}(t) \, dt. \]

Inserting Equation (48) into (34), the stress field is obtained as

\[\sigma_{xy}^{II}(x, 0) = -\frac{\sigma_1}{\pi(b-a)\sqrt{(a^2-x^2)(b^2-x^2)}} \times \left[\frac{2x^2(x^2-a^2-b^2)}{b} F(\lambda) + 2bx^2E(\lambda) \right] + O(1), \quad 0 < x < a, \]

\[\sigma_{xy}^{II}(x, 0) = -\frac{\sigma_1}{\pi(b-a)\sqrt{(a^2-x^2)(b^2-x^2)}} \times \left[\frac{2x^2(x^2-a^2-b^2)}{b} F(\lambda) + 2bx^2E(\lambda) \right] + O(1), \quad x > b. \]

(50)

\(F(\lambda) \) and \(E(\lambda) \) denote the first and second kinds of complete elliptical integrals, respectively, where

\[\lambda = \frac{\sqrt{b^2-a^2}}{b}. \]

(51)

For simplicity, the detailed procedure of reduction under thermal flux is omitted. The shear stresses are obtained according to [25].

\[\tau_{xy}^{II}(x, 0) = \frac{c_{66}H_2P}{c_{22}(Y_2\eta_2-Y_1\eta_1)\sqrt{(x^2-a^2)(b^2-x^2)}} \times \left[\frac{4a^2b^2}{3} + \frac{(a^2-b^2)^2}{2} + \frac{2b^2(a^2+b^2)}{3F(\lambda)} \right. \left. - \frac{2x^2-a^2-b^2}{2} \right] + O(1), \quad 0 < x < a, \]

\[\tau_{xy}^{II}(x, 0) = \frac{c_{66}H_2P}{c_{22}(Y_2\eta_2-Y_1\eta_1)\sqrt{(x^2-a^2)(b^2-x^2)}} \times \left[\frac{4a^2b^2}{3} + \frac{(a^2-b^2)^2}{2} + \frac{2b^2(a^2+b^2)}{3F(\lambda)} \right. \left. - \frac{2x^2-a^2-b^2}{2} \right] + O(1), \quad x > b, \]

(52)

where

\[P = \frac{(Q_1 - Q_{1c})\varepsilon_1}{(b-a)\varepsilon_2}, \quad \varepsilon_2 = \frac{H_1}{H_2}, \quad H_1 = (\gamma_1 + \eta_1)(c_{22}Y_2\eta_2M_2 - c_{22}M_2 - \beta_2) + (\gamma_2 + \eta_2)(c_{22}M_2 + \beta_2 - c_{22}Y_1\eta_1M_1) \]

\[H_2 = (\gamma_1 + \eta_1)(c_{22}Y_2\eta_2 - c_{12}) + (\gamma_2 + \eta_2)(c_{12} - c_{22}Y_1\eta_1). \]

(53)

By superposition theory, the exact solutions of the physical quantities are obtained subject to linear thermal flux \((-Q_1 x/2(b-a)^2)\) and linear mechanical load \((\sigma_1|x|/(b-a) + \sigma_0)\).

3.3. Crack-Tip Field. Using Equations (2) and (23), one obtains the closed form of heat flux to the crack surface.

\[Q_{1c} = \frac{2\varepsilon Q_1(b-a)^2\lambda + Q_1R_c\sqrt{(x^2-a^2)(b^2-x^2)}}{2(b-a)^2\lambda + R_c\sqrt{(x^2-a^2)(b^2-x^2)}}. \]

(54)

We define the value of \(R_c = \lambda_c/\lambda_c \) to stand for the dimensionless thermal resistance between crack faces. It is easily found Equation (54) is different from that in [25]. When \(R_c = 0 \) and \(\lambda_c \to \infty \), one obtains \(Q_{1c} = \varepsilon Q_1 \) or \(Q_{1c} \to Q_1 \), meaning partially thermally insulated or fully conductive cracks. When \(R_c = 0 \) and \(\varepsilon = 0 \), one has \(Q_{1c} = 0 \), meaning fully thermally insulated cracks.

4. Fracture Parameters

It is important that the stress intensity factors including the mode-I and mode-II should be defined as the analysis of cracked growth.

\[K_{I,\text{Inn}} = \lim_{x \to -a} \sqrt{2\pi(a-x)}\sigma_{1,\text{Inn}}^{II}(x, 0), \quad K_{I,\text{Out}} = \lim_{x \to +b} \sqrt{2\pi(x-b)}\sigma_{1,\text{Out}}^{II}(x, 0), \]

\[K_{II,\text{Inn}} = \lim_{x \to -a} \sqrt{2\pi(a-x)}\tau_{xy}^{II}(x, 0), \quad K_{II,\text{Out}} = \lim_{x \to +b} \sqrt{2\pi(x-b)}\tau_{xy}^{II}(x, 0). \]

(55)

(56)

Based on Equation (55), one can obtain

\[K_{I,\text{Inn}} = \sqrt{\frac{\pi}{a(b^2-a^2)}}\left\{ 2a^2b[F(\lambda) - E(\lambda)] \right\} \frac{\sigma_1}{\pi(b-a)}, \]

\[K_{I,\text{Out}} = \sqrt{\frac{\pi}{b(b^2-a^2)}}\left\{ 2b[a^2F(\lambda) - a^2E(\lambda)] \right\} \frac{\sigma_1}{\pi(b-a)}. \]

(57)

When \(a = 0 \), it means the mode-I stress intensity factor...
of a single crack with 2b. It is easily found that

\[K_{i, \text{Out}} = \frac{2\sqrt{\pi b a_1}}{\pi}. \]

(58)

According to Equation (56) and Reference [25], one has

\[K_{II, \text{Out}} = \frac{c_{66} H_2 P}{2c_{22}(\gamma_2 \eta_2 - \gamma_1 \eta_1)} \left(\frac{4a^2 b^2}{3} - \frac{(a^2 - b^2)^2}{2} - \frac{2b^2 (a^2 + b^2) E(\lambda)}{3F(\lambda)} \right) \sqrt{\pi a(a^2 - a^2)} \]

(59)

The importance of strain energy in a unit volume of the solid is illustrated for nonisothermal [29, 30].

\[\frac{dW}{dV} = \frac{S}{r}. \]

(60)

where the definitions of S and r have been given in [24]. For the orthotropic solid, Equation (60) can also be given based on the above concepts of energy density function

\[S = \frac{c_{22} (\sigma_2^2)}{2c_{11} c_{22} - c_{12}^2} + \frac{c_{11} (\sigma_1^2)}{2c_{11} c_{22} - c_{12}^2} + \frac{c_{12} (\sigma_1 \sigma_2)}{2c_{11} c_{22} - c_{12}^2}. \]

(61)

The following strain energy density factor on the crack line is defined to study crack growth in fracture mechanics [24].

\[S_{\text{Inn,Out}} = \frac{1}{4\pi} \left[\frac{c_{22} \ell^2 + c_{11} - 2c_{12} \ell}{c_{11} c_{22} - c_{12}^2} \right] (K_{I, \text{Out}}')^2 + \frac{1}{\epsilon_{66}} (K_{II, \text{Out}}')^2, \]

(62)

where

\[\ell = \frac{1}{c_{12}} \sum_{j=1}^{2} (-1)^j \gamma_j + \frac{\eta_j}{c_{11} - c_{12} \gamma_j}. \]

(63)

5. Numerical Results

For the sake of simplicity, some numerical examples are employed to demonstrate \(R_c \) and \(\epsilon \) have great effects on \(Q_{1c}, K_{II}, \) and \(S \) subject to linear thermal flux (\(-Q \sigma_2 x/2(b - a)^2 \)) and linear mechanical load (\(\sigma_0 x/(b - a) \)). The orthotropic material like Tyrannohex is selected as in [31] (Table 1).

Figure 2 shows \(Q_{1c}/Q_1 \) versus \(x/b \) with \(R_c = 1, 2, 3, 4 \) for \(\epsilon = 0.01 \) and \(a/b = 3/4 \).

Figure 4 displays \(K_{II, \text{Out}}/K_{II, \text{Inn}} \) versus \(x/b \) with \(a/b = 0.25, 0.5, 0.75 \) where \(K_{II, \text{Inn}} \) and \(K_{II, \text{Out}} \) denote \(K_{II, \text{Inn}} \) and \(K_{II, \text{Out}} \) for \(Q_{1c} = 0 \), respectively. \(K_{II, \text{Inn}}/K_{II, \text{Out}} \) decreases when \(R_c \) increases for a fixed \(x/b \). Figure 5 displays \(K_{II, \text{Out}}/K_{II, \text{Inn}} \) or \(K_{II, \text{Out}}/K_{II, \text{Inn}} \) versus \(x/b \) with \(R_c = 1, 2, 3, 4 \) for \(\epsilon = 0.01 \) and \(a/b = 3/4 \). As the

<table>
<thead>
<tr>
<th>(E_{xx}) (MPa)</th>
<th>(E_{yy}) (MPa)</th>
<th>(G_{xy}) (MPa)</th>
<th>(v_{xy})</th>
<th>(v_{yx})</th>
<th>(\sigma_{xx}) ((10^{-7}) MPa)</th>
<th>(\sigma_{yy}) ((10^{-7}) MPa)</th>
<th>(\lambda_x) (w/m°C)</th>
<th>(\lambda_y) (w/m°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>135000</td>
<td>87000</td>
<td>50000</td>
<td>0.15</td>
<td>0.09667</td>
<td>32</td>
<td>32</td>
<td>3.08</td>
<td>2.81</td>
</tr>
</tbody>
</table>

Table 1: Tyrannohex.

![Figure 2: \(Q_{1c}/Q_1 \) versus \(x/b \) with \(R_c = 1, 2, 3, 4 \) for \(\epsilon = 0.01 \) and \(a/b = 3/4 \).](image-url)

![Figure 3: \(K_{II, \text{Out}}/K_{II, \text{Inn}} \) versus \(x/b \) with \(a/b = 0.25, 0.5, 0.75 \) where \(K_{II, \text{Inn}} \) and \(K_{II, \text{Out}} \) denote \(K_{II, \text{Inn}} \) and \(K_{II, \text{Out}} \) for \(Q_{1c} = 0 \), respectively.](image-url)
dimensionless thermal resistance R_c increases, the mode-II stress intensity factors decrease. The bigger the value of constant ε, the smaller the mode-II stress intensity factors. It means making use of the extended partially insulated crack model involving the greater R_c and ε will underestimate the mode-II stress intensity factors. The obtained results reveal that the crack face boundary conditions, the thermal properties of crack, and the raised coefficients have great influences on the heat flux per thickness to the crack surface and the mode-II stress intensity factors.

In order to present the influence of the thermal properties of crack on $S_{\text{inn,Out}}$, the value of S_0 is easily defined.

$$S_0 = \frac{c_{22}v^2 + c_{11} - 2c_{11}v}{4(c_{11}c_{22} - c_{11})} \sigma_0^2$$

Figure 3: Q_{in}/Q_1 versus x/b with $\varepsilon = -0.02, 0, 0.02, 0.04$ for $R_c = 2$ and $a/b = 3/4$.

Figure 4: $K_{\text{II}}^\text{inn}/K_{\text{II}}^\text{inn}$ or $K_{\text{II}}^\text{out}/K_{\text{II}}^\text{out}$ versus x/b with $\varepsilon = 0.01$ and $a/b = 3/4$.

Figure 5: $K_{\text{II}}^\text{inn}/K_{\text{II}}^\text{inn}$ or $K_{\text{II}}^\text{out}/K_{\text{II}}^\text{out}$ versus x/b with $\varepsilon = -0.02, 0, 0.02, 0.04$ for $R_c = 2$ and $a/b = 3/4$.

Figure 6: S_{inn}/S_0 versus Q_1 with $\varepsilon = -0.03, 0, 0.03$ for $R_c = 0, \sigma_0 = 1$ MPa, and $a/b = 1/4$.

Figure 7: S_{out}/S_0 versus Q_1 with $\varepsilon = -0.03, 0, 0.03$ for $R_c = 0, \sigma_0 = 1$ MPa, and $a/b = 1/4$.

which denotes the strain energy density factor of a crack with $2b$ under mechanical load σ_0. Figures 6 and 7 show S_{inn}/S_0 and S_{out}/S_0 versus Q_1 with $\varepsilon = -0.03, 0, 0.03$ for $R_c = 2, \sigma_0 = 1$ MPa, and $a/b = 1/4$. Figures 6 and 7 respond to the two cases of strain energy density factor near outer and inn cracks for partially thermally insulated cracks. It is easily seen that S_{inn}/S_0 and S_{out}/S_0 are made up of the mode-II stress intensity factor under thermal flux $(-Q_1x/2(b-a)^2)$ and the mode-I stress intensity factor induced by mechanical load ($\sigma_0|x/(b-a)$). The corresponding S_{inn}/S_0 and S_{out}/S_0 increase with an increase of thermal flux and mechanical load. The strain energy density factor on the crack line is greatly influenced by the adjustment quantity ε. The bigger the value of constant ε, the smaller S_{inn}/S_0 and S_{out}/S_0. So,
applying the bigger value of constant ε will underestimate S_{int}/S_0 and S_{out}/S_0.

From the above figures, it is revealed R_c and ε have significant impacts on the analysis of a cracked solid. In other words, some physical quantities (i.e., R_c and ε) should be given enough attention to the analysis of the thermoelastic field.

6. Conclusions

This paper addresses two collinear cracks in an orthotropic solid under linear thermal flux and linear mechanical load in this paper. Some physical quantities and fracture parameters are obtained in explicit forms with application of the proposed extended partially insulated crack model, Fourier transform, and superposition theory. The results show that R_c and ε have vital effects on Q_{ic} and some fracture parameters. The obtained results reveal the boundary conditions of crack face, thermal properties of crack, and the raised coefficients should be concerned about the analysis of a cracked solid under the thermal load.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work was supported by the Hebei University Scientific Research Foundation for higher-level talent (No. 521100221019), the Project Funded by China Postdoctoral Science Foundation (No. 2019M662946), and the Ningxia Key Research and Development Program (Introduction of Talents Project) (No. 2020BEB04039).

References

