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Nonlinear evolution equations are crucial for understanding the phenomena in science and technology. One such equation with
periodic solutions that has applications in various fields of physics is the Korteweg-de Vries (KdV) equation. In the present work,
we are concerned with the implementation of a newly defined quintic B-spline basis function in the differential quadrature
method for solving the Korteweg-de Vries (KdV) equation. The results are presented using four experiments involving a single
soliton and the interaction of solitons. The accuracy and efficiency of the method are presented by computing the L2 and L∞
norms along with the conservational quantities in the forms of tables. The results show that the proposed scheme not only
gives acceptable results but also consumes less time, as shown by the CPU for the elapsed time in two examples. The graphical
representations of the obtained numerical solutions are compared with the exact solution to discuss the nature of solitons and
their interactions for more than one soliton.

1. Introduction

While performing studies to identify the most effective
design for canal boats on the Edinburgh-Glasgow canal in
1844, John Scott Russell noticed a phenomenon. He noticed
that after one or two miles, the height of water in the canal
steadily decreases as it travels along the watercourse. He
invented the term “wave of translation” to describe this
unique and wonderful phenomenon [1]. This gives rise to
the soliton defined as a wave with a defined shape traveling
at a constant speed through a given medium. The first wave
to exhibit characteristics similar to a soliton was observed by
Yuliawati et al. [2]. This was the beginning of an absolutely
specific field of research to which scientists and mathemati-
cians have contributed a lot over time. Nowadays, it is
known that many equations have soliton solutions. Some

of the equations having soliton solution are the KdV equa-
tion, Fisher equation, NLS equation, etc.

The Korteweg-de Vries (KdV) equation is a nonlinear
partial differential equation developed by Gardner and Mor-
ikawa in 1895 with respect to plasma waves [3] and then
again by Washimi and Taniuti [4] to study acoustic waves
in a cold plasma. The KdV equation is used to examine the
propagation of low-amplitude water waves in shallow water
bodies. The solution to this equation produces solitary
waves [5].

The KdV equation is given by

∂U
∂t

x, tð Þ + εU x, tð Þ ∂U∂x x, tð Þ + μ
∂3U
∂x3

x, tð Þ = 0, a ≤ x ≤ b, t > 0,

ð1Þ
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where ε and μ are positive parameters and a, b represents the
range under consideration. The KdV equation is a third-
order nonlinear evolution equation that characterizes long
waves and is widely used in physical and engineering disci-
plines. For example, it is used in modeling ionic-acoustic sol-
itons in plasma physics [6], in the study of a long wave in
subsurface oceans, and shallow sols in geophysical fluid
dynamics [7, 8]. It also describes the phenomenon in cluster
physics and superdeformed nuclei [9, 10], quantum field
theory, and classical general relativity [11]. The solution of
the KdV equation has opened enormous possibilities for
mathematical concepts.

The solutions of nonlinear equations are always of
interest to researchers as they are studied using various
approaches [12, 13]. In most cases, an analytical solution
is not accessible, so numerical aspects are always necessary
[14]. Gardner et al. [15] proved both the existence and
uniqueness of solutions to the KdV equation. Liu [16] pro-
vided an elliptic Jacobi function solution for the KdV
equation. In the same research paper, Hufford and Xing
[17] reported a numerical solution for the linearized ver-
sion of the problem as well as superconvergence for the
approach used. Trogdon and Deconinck [18] presented a
finite-genus solution to the equation. Grava and Klein
[19] solved the KdV equation numerically and asymptoti-
cally for a small dispersion limit. Leach [20] gives the
large-time evolution of the generalized Korteweg-de Vries
equation. The wavelet Galerkin approach is used by
Kumar and Mehra [21] to find a time-accurate solution
of this equation. To solve this equation, Bahadir [22] uses
an exponential finite difference technique. Aksan and
Özdeş [23] use the Galerkin finite element approach with
B-spline functions. This equation was solved numerically
and analytically by Özer and Kutluay [24]. Ascher and
McLachlan [25] provided a multisymplectic box technique
for the KdV equation. Small time solutions of the equation
were given by Kutluay et al. [26]. Idrees et al. [27] use the
optimal homotopic asymptotic technique to solve this
equation. To solve the KdV equation numerically, Gücüye-
nen and Tanoğlu [28] used the iterative splitting approach.
Sarma [29] provided a solitary wave solution for this equa-
tion. Van de Fliert and Groesen [30] used a variational
methodology, which was further investigated by Yuliawati
et al. using the steepest descent approach, to study the
solution of the KDV equation in the Hamiltonian condi-
tion. In addition, there have been several other successful
numerical approaches to the KdV equation, including the
spectral method [31], the pseudospectral method, and the
collocation method [32].

This paper is divided into the following sections. In Sec-
tion 2, the numerical scheme with the weight coefficient cal-
culation procedure is discussed. Section 3 discusses
numerical experiments and results, and Section 4 presents
the final conclusion.

2. Numerical Scheme

Bellman et al. [33] first introduced the differential quadra-
ture method (DQM) for the numerical solution of partial

differential equations in 1972. Due to its simplicity, the
approach has recently attracted much attention. The concept
of the method is to use basis functions whose derivatives at
the nodes are known [34]. Numerous researchers have used
various test functions to construct different types of DQMs
[35–38].

The differential quadrature method involves estimat-
ing a derivative of a given function using linear summa-
tion of its components at different nodes of the problem
domain. The domain ½a, b� can be simply partitioned
into uniformly distributed finite nodes xi with distance
h, such that

a = x0 < x1 < x2 <⋯ < xn−1 < xn = b: ð2Þ

Let BiðxÞ be the quintic B-splines with knots at points
xn, n = 0, 1, 2,⋯,N . The arrangement of splines fB−1, B0,
B1,⋯, BN , BN+1g forms the basis for any function on ½a,
b�. For i = 1, 2,⋯,N , the solution at each time point of
the node xi is Uðxi, tÞ. The estimated derivative parame-
ters are calculated as follows:

Ux = 〠
N

j=1
piju xj, t
� �

,

Uxx = 〠
N

j=1
qiju xj, t
� �

,

Uxxx = 〠
N

j=1
riju xj, t
� �

,

ð3Þ

for i = 1, 2,⋯,N . The derivatives are approximated by pij
, qij, and rij. Once the values of pij are fixed as described
in the next section, the weighting coefficients qij and rij
can be easily calculated. The method for calculating the
other coefficients is as follows:

∂2ui
∂x2

= ∂
∂x

∂u
∂x

� �
= 〠

N

k=1
pik

∂u
∂x

� �
x=xk

= 〠
N

k=1
pik 〠

N

j=1
pkju xj, t

� � !
= 〠

N

k=1
〠
N

j=1
pikpkju xj, t

� �

= 〠
N

j=1
qiju xj, t
� �

, i = 1, 2, 3,⋯,N:

ð4Þ

Since qij is calculated using pij,rij can be calculated in a
similar manner.

For i = −2, −1, 0,⋯,N + 2, BiðxÞ, the quintic B-spline
basis function, describes a piecewise-defined function with
the properties of continuity and division of unity.
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Table 2: Experimental evaluation of single soliton: Δt = 0:0005:

Method N T L2 L∞ I1 I2 I3

Present scheme 151

0.25 2:3524 × 10−6 6:4229 × 10−6 0.1446 0.0868 0.0469

0.50 4:0430 × 10−6 1:2235 × 10−5 0.1446 0.0868 0.0469

0.75 6:0076 × 10−6 1:9232 × 10−5 0.1446 0.0868 0.0469

1.00 8:1958 × 10−6 2:5869 × 10−5 0.1446 0.0868 0.0469

2.00 4:3005 × 10−5 9:0073 × 10−5 0.1446 0.0868 0.0469

3.00 8:3086 × 10−4 0:0022 × 10−6 0.1444 0.0868 0.0469

MQ_DQM [41] 201

0.25 1:01 × 10−5 2:66 × 10−5 0.1445 0.0867 0.0468

0.50 1:11 × 10−5 2:59 × 10−5 0.1445 0.0867 0.0468

0.75 1:33 × 10−5 3.94 × 10−5 0.1445 0.0867 0.0468

1.00 1:43 × 10−5 4:08 × 10−5 0.1445 0.0867 0.0468

2.00 2:14 × 10−5 6:74 × 10−5 0.1445 0.0867 0.0468

3.00 2:86 × 10−5 8:15 × 10−5 0.1446 0.0867 0.0468

Table 3: Experimental evaluation of single soliton: Δt = 0:001:

Method N T L2 L∞ I1 I2 I3

Present scheme 91

0.25 6:2478 × 10−5 2:1816 × 10−4 0.1446 0.0868 0.0469

0.50 9:6636 × 10−5 2:0265 × 10−4 0.1446 0.0868 0.0469

0.75 1:9160 × 10−4 3:0993 × 10−4 0.1446 0.0868 0.0469

1.00 4:4543 × 10−4 7:0164 × 10−4 0.1446 0.0868 0.0469

MQ_DQM [41] 201

0.25 0.000010 0.000027 0.1445 0.0867 0.0468

0.50 0.000010 0.000021 0.1445 0.0867 0.0468

0.75 0.000012 0.000034 0.1445 0.0867 0.0468

1.00 0.000012 0.000032 0.1445 0.0867 0.0468

[42] 200

0.25 0.00522 —

0.50 0.01200 — 0.144590 0.086759 0.046871

0.75 0.01220 —

1.00 0.02220 — 0.144590 0.086759 0.046873

Table 1: Values of BiðxÞ and its derivatives at the nodes [34].

x xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3
Bi xð Þ 0 1 26 66 26 1 0

Bi′ xð Þ 0 5/h 50/h 0 −50/h 5/h 0

Bi″ xð Þ 0 20/h2 40/h2 −120/h2 40/h2 20/h2 0

B‴
i xð Þ 0 60/h3 −120/h3 0 120/h3 −60/h3 0

Biv
i xð Þ 0 120/h4 −480/h4 720/h4 −480/h4 120/h4 0
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Figure 1: Simulations of single solitons: Δt = 0:0005.
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Figure 2: Simulations of single solitons: Δt = 0:001:
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The following equations can be used to calculate the
basis functions.

Bi xð Þ = 1
h5

x − xi−3ð Þ5, x ∈ xi−3, xi−2½ Þ,
x − xi−3ð Þ5 − 6 x − xi−2ð Þ5, x ∈ xi−2, xi−1½ Þ,
x − xi−3ð Þ5 − 6 x − xi−2ð Þ5 + 15 x − xi−1ð Þ5, x ∈ xi−1, xi½ Þ,
xi+3 − xð Þ5 − 6 xi+2 − xð Þ5 + 15 xi+1 − xð Þ5, x ∈ xi, xi+1½ Þ,
xi+3 − xð Þ5 − 6 xi+2 − xð Þ5, x ∈ xi+1, xi+2½ Þ,
xi+3 − xð Þ5, x ∈ xi+2, xi+3½ Þ,
0, otherwise,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

where B−2, B−1, B0, B1,⋯, 0i+1, Bi+2 are the bases formed over
the region a ≤ x ≤ b. Each quintic B-spline covers six ele-
ments, so that a total of six quintic B-splines cover one ele-
ment. Table 1 summarizes the values of BiðxÞ and the first
four derivatives.

The first-order approximation of the derivative can be
estimated using the following relation:

Bi′ xið Þ = 〠
N

j=1
pijBi xj

� �
, for i = 1, 2,⋯,N: ð6Þ

Table 4: Experimental evaluation of interaction of two solitons: Δt = 0:005:

Method N T I1 I2 I3 CPU time (sec)

Present scheme 91

0.75 0.2281 0.1071 0.0533 0.208

1.50 0.2279 0.1071 0.0533 0.244

2.25 0.2278 0.1071 0.0533 0.283

3.00 0.2238 0.1074 0.0533 0.316

MQ_DQM [41] 91

0.75 0.2281 0.1070 0.0533

1.50 0.2280 0.1070 0.0533

2.25 0.2279 0.1070 0.0533

3.00 0.2277 0.1070 0.0533

200

0.75 0.2280 0.1070 0.0535

1.50 0.2280 0.1070 0.0534

3.00 0.2279 0.1070 0.0532
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Figure 3: Simulations of two solitons: Δt = 0:005:
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Table 5: Experimental evaluation of interaction of three solitons: Δt = 0:1:

Method N T I1 I2 I3

Present scheme 251

56 18.0004 9.8274 5.2615

112 17.9991 9.8275 5.2633

168 18.0029 9.8275 5.2627

224 18.0098 9.8276 5.2624

280 18.1445 9.8989 5.2627

MQ_DQM [41] 481

56 18.0002 9.8273 5.2622

112 17.9994 9.8273 5.2621

168 17.9989 9.8274 5.2623

224 17.9988 9.8274 5.2623

280 18.0006 9.8274 5.2623

MQ 2000

56 18.0018 9.5936 5.0328

112 17.9974 9.5138 4.9651

168 17.9971 9.3228 4.7808

224 17.9985 9.0697 4.5362

280 17.9995 8.8327 4.3141

–100 –80 –60 –40 –20 0 20 40 60 80 100

x

0

0.2

0.4

0.6

0.8

1

u 
(x

, t
)

u 
(x

, t
)

u 
(x

, t
)

u 
(x

, t
)

T = 56

–100 –80 –60 –40 –20 0 20 40 60 80 100

x

–0.2

0
0.2

0.4

0.6

0.8

1

T = 112

–100 –80 –60 –40 –20 0 20 40 60 80 100

x

–0.5

0

0.5

1

1.5

T = 168

–100 –80 –60 –40 –20 0 20 40 60 80 100

x

–0.5

0

0.5

1

1.5

T = 224

Figure 4: Simulations of three solitons: Δt = 0:1:
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As a result, a matrix system emerges as follows:

Ap
!
i½ � = s! i½ �: ð7Þ

Here, A is the coefficient matrix given by

66 26 1 0 0 0 · 0
26 66 26 1 0 0 · 0
1 26 66 26 1 0 · 0
· · · · · · · ·
0 · 0 1 26 66 26 1
0 · 0 0 1 26 66 26
0 · 0 0 0 1 26 66

2
666666666666664

3
777777777777775

, ð8Þ

representing the vector, corresponding to node point xi. The

unknown coefficients are p
!bic = ½pi1, pi2,⋯, piN�T , i = 1, 2,

⋯,N , with the right-hand side given as follows:

s! 1½ � = 0, f , g, 0,⋯, 0½ �T ,
s! 2½ � = −f , 0, f , g, 0,⋯, 0½ �T ,
s! 3½ � = −g,−f , 0, f , g,⋯, 0½ �T ,

·
·

s! N − 2½ � = 0,⋯,−g,−f , 0, f , g½ �T ,
s! N − 1½ � = 0,⋯, 0,−g,−f , 0, f½ �T ,

s! N½ � = 0,⋯, 0,−g,−f , 0½ �T :

ð9Þ

Here, f = 50/h and g = 5/h.

The coefficients pi1, pi2,⋯, piN for i = 1, 2,⋯,N were cal-
culated using MATLAB 2014 to solve the given five-band
matrix system. Substituting approximate values for the
derived first- and third-order spatial derivatives in equation
(1) yields the following system:

ut = −ϵu〠
N

j=1
pijuj − μ〠

N

j=1
rijuj: ð10Þ

The SSP-RK43 scheme [39] is then used to solve this sys-
tem of ordinary differential equations, which offers numeri-
cal solutions at various time levels.

3. Numerical Experiments

In this section, the accuracy of the proposed method is
shown by calculating the L2 and L∞ errors defined as fol-
lows:

L2 = Uex −UNk k2 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h〠

N

j=1
Uex:

j − UNð Þj
��� ���2

vuut ,

L∞ = Uex −UNk k∞ ≈max
j

Uex:
j − UNð ij

��� ���, j = 1, 2,⋯,N − 1:

ð11Þ

The lowest three invariants related to mass, momentum,
and energy conservation are also calculated by the following
equations:

I1 =
ðb
a
Udx, I2 =

ðb
c
U2dx, I3 =

ðb
a

U3 −
3μ
ε

U ′
� 	2
 �

dx:

ð12Þ

3.1. Experimental of Evaluation of a Single Soliton. Consider

Table 6: Experimental evaluation of the interaction of four solitons: Δt = 0:1:

Method N T I1 I2 I3 CPU time (sec)

Present scheme 401

80 21.6000 10.3887 5.2687 2.225

160 21.5999 10.3887 5.2683 3.819

240 21.6002 10.3887 5.2702 5.316

320 21.5992 10.3887 5.2691 7.263

400 21.5360 10.3973 5.2707 9.173

MQ_DQM [41] 451

80 21.6000 10.3887 5.2688

160 21.6000 10.3886 5.2687

240 21.6000 10.3886 5.2688

320 21.5998 10.3887 5.2688

400 21.6000 10.3887 5.2688

1500

80 2.16028 9.9723 4.8594

160 21.6049 9.7448 4.6426

240 21.6011 9.7023 4.6035

320 21.6007 9.4774 4.3943

400 21.6074 9.1922 4.1368
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the KdV equation with the exact solution given as [40] fol-
lows:

U x, tð Þ = 3C sec h2 Ax − Bt +Dð Þ, ð13Þ

Here,

A = 1
2

εC
μ

� �1/2
,

B = 1
2 εC

εC
μ

� �1/2
,

ð14Þ

so that (13) offers a single soliton with amplitude 3C and
velocity εC moving towards the right.

The equation is solved with the initial state taken from
analytic solution (13) as follows:

U x, 0ð Þ = 3C sec h2 Ax +Dð Þ, ð15Þ

and the boundary conditions Uð0, tÞ =Uð2, tÞ = 0 for t ≥ 0.
ε = 1, μ = 4:84 × 10−4, C = 0:3,D = −6 is employed in order
to create a comparison with other investigations. To dem-
onstrate the evolution of the current technique using a
modified quintic B-spline DQM, Tables 2 and 3 show
the error norm and invariant values, respectively. More-
over, at different values of Δt = 0:0005 and 0:001, numer-
ical and exact solutions are represented by Figures 1 and
2, respectively.

3.2. Experimental Evaluation of the Interaction of Two
Solitons. Consider this second experiment [43] with the ini-
tial condition stated as follows:

U = 〠
2

i=1
3Ci sec h2 Aix + xið Þ, Ai =

1
2

εCi

μ

� �1/2
, i = 1, 2,

ð16Þ

with boundary conditions

U 0, tð Þ =U 2, tð Þ = 0, ð17Þ

where ε = 1, μ = 4:84 × 10−4, C1 = 0:3, C2 = 0:1, x1 = x2 = −6
is considered in all simulations. The same parameters as in
the previous study [43] are used for numerical calculations
using MATLAB R2015b (32 bit) in Windows 10 version
21H2 for 64x, with N = 91 and Δt = 0:005: Table 4 displays
the error norm and invariant value. Moreover, Figure 3
demonstrates the numerical solution at different values of
T .

3.3. Experimental Evaluation of Interaction of Three Solitons.
The numerical solution is calculated for the interaction of
three solitons having the initial condition [44] given as fol-
lows:

U x, 0ð Þ = 〠
3

i=1
12C2

i sec h2 Ci x − xið Þð Þ, ð18Þ

with the zero boundary conditions for domain [−100,100]
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Figure 5: Simulations of four solitons at Δt = 0:1:
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with ε = 1:0, μ = 1:0, C1 = 0:3, C2 = 0:25, C3 = 0:2, x1 = −60,
x2 = −44, x3 = −26: The same parameters as in the previous
study [44] at Δt = 0:1 and a much smaller number of grid
points N = 251 than those in the previous study [44] N =
481 were used in the numerical computations. Table 5 dis-
plays the error norm and invariant value, and the numerical
solution at different values of T is presented in Figure 4.

3.4. Experimental Evaluation of Interaction of Four Solitons.
In this example, the interaction of four solitons is presented
with initial condition [44] given as follows:

U = 〠
4

i=1
12C2

i sec h2 Ci x − xið Þð Þ, ð19Þ

along with zero boundary conditions for domain [−150,150]
with ε = 1:0, μ = 1:0, C1 = 0:3, C2 = 0:25, C3 = 0:2, C4 = 0:15,
x1 = −85, x2 = −60, x3 = −35, x4 = −10.

The considered parameters are the same as those in the
previous study [44] at Δt = 0:1, and a much smaller number
of grid points N = 401 than that in the previous study [44]
N = 451 were used in the numerical computations. Table 6
displays the error norm and invariant value at different time
levels with the physical behavior being shown in Figure 5 for
different values of T .

4. Conclusion

Due to the numerous applications of the KDV equation in
the physical phenomena, in recent years, this equation has
become a point of attraction for the researchers who want
to find a numerical solution for this equation using various
methods. In this paper, the newly defined quintic B-spline
basis function is presented to solve the equation using the
differential quadrature method. The advantage of this
approach is involved in transforming the partial differential
equation to an ordinary differential equation which can be
solved by any numerical technique for the solution of the
ordinary differential equation. In the present work, the
SSP-RK43 is implemented to solve the obtained system of
the ordinary differential equation which is a combination
of the RK method of orders four and five that is a strong-
stability-preserving scheme. Numerical results in terms of
conservation variables and errors are calculated for the sin-
gle soliton and extended till interaction of four solitons.
The results are compared with numerical solutions from
the literature. The obtained results agree well with those
obtained earlier. The advantage of the proposed method is
its ease of implementation compared to the previous
methods. Thus, the present approach can be utilized to solve
a variety of nonlinear physical models with extension and
application to two-dimensional problems.
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