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This paper extends the eigensurface of p-bilaplacian operator to examine existence and simplicity of the first eigensurface for the
third-order spectrum of ðp, qÞ-biharmonic systems subject to boundary conditions.

1. Introduction and Preliminary Results

We wish to investigate existence and simplicity of the first
eigensurface for the following system:

Σð Þ:

Find u, vð Þ, β, λð Þ ∈ Ypq Ωð Þ \ 0, 0ð Þf g ×ℝN ×ℝ such that

Δ2
pu +H1 β, uð Þ − λm1 xð Þ uj jp−2u =m xð Þ vj jα2+1 uj jα1−1u inΩ,

Δ2
qv +H2 β, vð Þ − λm2 xð Þ vj jq−2v =m xð Þ uj jα1+1 vj jα2−1v inΩ,

u = Δu = v = Δv = 0 on∂Ω,

8>>>>><
>>>>>:

ð1Þ

where

(i) Ω ⊂ℝN (with N ≥ 1) is a bounded domain with
smooth boundary ∂Ω

(ii) α1, α2, p, and q are constants such that α1 ≥ 0, α2
≥ 0, p > 1, q > 1, and ððα1 + 1Þ/pÞ + ððα2 + 1Þ/qÞ =
1

(iii) H1ðβ, uÞ = 2β · ∇ðjΔujp−2ΔuÞ + jβj2jΔujp−2Δu
(iv) H2ðβ, vÞ = 2β · ∇ðjΔvjq−2ΔvÞ + jβj2jΔvjq−2Δv
(v) YpqðΩÞ = ½W2,pðΩÞ ∩W1,p

0 ðΩÞ� × ½W2,qðΩÞ ∩W1,q
0 ð

ΩÞ�
(vi) the weights m, m1, m2 ∈ L∞ðΩÞ are assumed to be

nonnegatives in Ω

(vii) Δ2
rw = ΔðjΔwjr−2ΔwÞ with ðr,wÞ ∈ fðp, uÞ, ðq, vÞg

denoting the r-biharmonic operator

Note that this operator describes a huge class of physical
phenomena and its linear part Δ2 ≔ Δ ∘ Δ is often seen as a
prototypical example of biharmonic operator well known
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in the theory of elasticity. The spectrum of p-biharmonic
operator has drawn much attention in recent works, and
problems like ðΣÞ type appear in several branches of pure
and applied mathematics, such as surface diffusion on solids,
interface dynamics, thin plate theory, electrorheological

fluids, thermorheological fluids, image restoration, and other
phenomena related to electrical resistivity and polycrystal
plasticity (see, for example, [1–10]).

In [11], Ben Haddouch et al. have investigated the scalar
version of problem ðΣÞ with m ≡ 0, which reads

where a ∈ L∞ðΩÞ and Xp =W2,pðΩÞ ∩W1,p
0 ðΩÞ. They

proved that ðPa,pÞ possesses at least one sequence of positive
eigensurfaces ðΓp

nð:,aÞÞn defined by

∀β ∈ℝN , Γp
n β, að Þ = inf

K⊂Bn

sup
u∈K

ð
Ω

eβ:x Δuj jpdx, ð3Þ

where

Bn = K ⊂N β : K is compact, Symmetric and γ Kð Þ ≥ n
� �

,

N β = u ∈ Xp :

ð
Ω

aeβ:x uj jpdx = 1
� �

,

ð4Þ

and Γp
nðβ, aÞ⟶∞as n⟶∞:

The authors in [12] gave the first eigensurface Γp
1ð:,aÞ

and showed that if a ≥ 0 a.e. in Ω, then Γp
1ð:,aÞ is simple (i.

e., the associated eigenfunctions are a constant multiple of
one another) and principal, i.e., the associated eigenfunction,
denoted by φp,a is positive or negative on Ω with

∀β ∈ℝN , Γp
1 β, að Þ = inf

u∈N β

ð
Ω

eβ·x Δuj jpdx: ð5Þ

It is of interest to know that ðu, β, λÞ is a solution of
problem ðPm1,pÞ if and only if ½ðu, 0Þ ; β, λ� is a solution of
ðΣÞ. This kind of solution is called “semitrivial solution” of
ðΣÞ. Furthermore, if ½ðu, 0Þ ; β, λðβÞ� is a solution of ðΣÞ with
u of one sign on Ω, then λð:Þ is called “semitrivial principal
eigensurface” of ðΣÞ. Consequently, there are two forms of
semitrivial solutions for problem ðΣÞ: one of the type ½ðu, 0
Þ ; β, λðβÞ� with u≡0 and ðu, β, λðβÞÞ solution of the problem
ðPm1,pÞ and the second of the type ½ð0, vÞ ; β, λðβÞ� with v≡0
and ðv, β, λðβÞÞ solution of the problem ðPm2,qÞ. In particu-

lar, Γp
1ð:,m1Þ and Γq

1ð:,m2Þ are semitrivial principal eigensur-
faces of ðΣÞ.

Motivated by the recent work in [13] where ðΣÞ was con-
sidered in the case β = 0, our main goal in this paper is to
show, in the presence of β, the simplicity and the existence
of the first strictly principal eigensurface or semitrivial prin-
cipal eigensurface of the system ðΣÞ.

Throughout this work, the Lebesgue norm in LrðΩÞ will
be denoted by k:kr , ∀r ∈ ð1,∞� and the norm in a normed
space X by k:kX . We denote by YpqðΩÞ = ½W2,pðΩÞ ∩W1,p

0 ð
ΩÞ� × ½W2,qðΩÞ ∩W1,q

0 ðΩÞ� which is a reflexive Banach space
endowed with the norm [7, 14]

u, vð Þk k = Δuk kp + Δvk kq: ð6Þ

The weak convergence in YpqðΩÞ is denoted by ⇀ . The
positive and negative parts of a function w are denoted by
w+ = max fw, 0g and w− =max f−w, 0g. Equalities (and
inequalities) between two functions must be understood a.
e., and for all f ∈ LrðΩÞ, the Poisson equation associated with
the Dirichlet problem

−Δu = f xð Þ, inΩ,
u = 0, on ∂Ω,

(
ð7Þ

is uniquely solvable in Xr =W2,rðΩÞ ∩W1,r
0 ðΩÞ (see [15]).

The following lemma gives us some properties of the inverse
operator of −Δ : Xr ↦ LrðΩÞ denoted by Λ.

Lemma 1 [16, 17].

(1) Continuity: there exists a constant cr > 0 such that

Λfk kW2,r ≤ cr fk kr ð8Þ

holds for all r ∈ ð1,∞Þ and f ∈ LrðΩÞ.

(2) Continuity: given k ∈ℕ∗, there exists a constant cr,k
> 0 such that

Λfk kWk+2,r ≤ cr,k fk kWk,r ð9Þ

holds for all r ∈ ð1,∞Þ and f ∈Wk,rðΩÞ.

(3) Symmetry: the identity

Pa,p
� �

:
Find u, β, Γð Þ ∈ Xp \ 0f g ×ℝN ×ℝ such that

Δ Δuj jp−2Δu� �
+ 2β · ∇ Δuj jp−2Δu� �

+ βj j2 Δuj jp−2Δu = Γa xð Þ uj jp−2u inΩ,
u = Δu = 0 on ∂Ω,

8>><
>>: ð2Þ
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ð
Ω

Λu · vdx =
ð
Ω

u:Λvdx ð10Þ

holds for u ∈ LrðΩÞ and v ∈ Lr ′ðΩÞ with r′ = r/ðr − 1Þ and r
∈ ð1,∞Þ.

(4) Regularity: given f ∈ L∞ðΩÞ, we have Λf ∈ C1,νð�ΩÞ
for all ν ∈ ð0, 1Þ. Moreover, there exists cν > 0 such
that

Λfk kC1,ν Ωð Þ ≤ cν fk k∞: ð11Þ

(5) Regularity and Hopf-type maximum principle: let f
∈ Cð�ΩÞ and f ≥ 0 then

w =Λf ∈ C1,νð�ΩÞ, for all ν ∈ ð0, 1Þ and w satisfies: w > 0
in Ω, ∂w/∂n < 0 on ∂Ω.

(6) Order-preserving property: given f , g ∈ LrðΩÞ if f ≤ g
in Ω, then Λf <Λg in Ω.

The rest of the paper is organized as follows. We con-
struct an eigensurface curve associated to system ðΣÞ in Sec-
tion 2, and Section 3 is devoted to the study of strictly
principal eigensurface or semitrivial principal eigensurface
of ðΣÞ followed by simplicity results.

2. An Eigensurface Curve Associated to
System ðΣÞ

To address the question of existence of solutions of ðΣÞ, our
analysis is partly based upon the “λ-dependent approach”
used in several recent works, for instance, [18–22] and refer-
ences therein. To this end, let us fix λ ∈ℝ and embed the
system ðΣÞ into a λ-dependent system ðΣλÞ by introducing
a new real parameter μ as follows:

We now give equivalent versions of both systems ðΣÞ
and ðΣλÞ in the following lemma which is straightforward
from [11].

Lemma 2. For β ∈ℝN , the system ðΣλÞ) (resp. ðΣÞ) is equiv-
alent to the system

where Δ2,β
p u = Δðeβ·xjΔujp−2ΔuÞ and Δ2,β

q v = Δðeβ·xjΔvjq−2ΔvÞ
.

For the sake of clarity, we give a series of definitions that
is used throughout this work.

Definition 1.

(1) The set of couples ðβ, λÞ ∈ℝN ×ℝðresp:ðβ, μÞ ∈ℝN

×ℝÞ such that there exists a solution ððu, vÞ, β, λÞ
∈ YpqðΩÞ \ fð0, 0Þg ×ℝN ×ℝ (resp. ððu, vÞ, β, μÞ ∈

Σλð Þ:

Find u, vð Þ, β, μð Þ ∈ Ypq Ωð Þ \ 0, 0ð Þf g ×ℝN ×ℝ such that

Δ2
pu +H1 β, uð Þ −m xð Þ vj jα2+1 uj jα1−1u − λm1 xð Þ uj jp−2u = μ uj jp−2u inΩ,

Δ2
qv +H2 β, vð Þ −m xð Þ uj jα1+1 vj jα2−1v − λm2 xð Þ vj jq−2v = μ vj jq−2v inΩ,

u = Δu = v = Δv = 0 on ∂Ω:

8>>>>><
>>>>>:

ð12Þ

Sλð Þ:

Find u, vð Þ, μð Þ ∈ Ypq Ωð Þ \ 0, 0ð Þf g ×ℝ such that

Δ
2,β
p u − eβ·xm xð Þ vj jα2+1 uj jα1−1u − λeβ·xm1 xð Þ uj jp−2u = μeβ·x uj jp−2u inΩ,

Δ2,β
q v − eβ·xm xð Þ uj jα1+1 vj jα2−1v − λeβ·xm2 xð Þ vj jq−2v = μeβ·xu vj jq−2v inΩ,

u = Δu = 0 on ∂Ω,

8>>>>><
>>>>>:

ð13Þ

resp: Sð Þ:

Find u, vð Þ, λð Þ ∈ Ypq Ωð Þ \ 0, 0ð Þf g ×ℝ such that

Δ
2,β
p u − eβ·xm xð Þ vj jα2+1 uj jα1−1u = λeβ·xm1 xð Þ uj jp−2u inΩ

Δ2,β
q v − eβ·xm xð Þ uj jα1+1 vj jα2−1v = λeβ·xm2 xð Þ vj jq−2v = inΩ

u = Δu = 0 on∂Ω

8>>>>><
>>>>>:

0
BBBBB@

1
CCCCCA, ð14Þ
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YpqðΩÞ \ fð0, 0Þg ×ℝN ×ℝ) of ðΣÞ (resp. ðΣλÞ) is
called the third-order spectrum of the ðp, qÞ-bihar-
monic operator plus potential. The couple ðβ, λÞ
(resp. ðβ, μÞ) is then called a third-order eigenvalue
and ðu, vÞ is said to be an associated eigenfunction
of ðΣÞ (resp. ðΣλÞ). Moreover, a set of third-order
eigenvalues of the form ðβ, f ðβÞÞ, for β ∈ℝN and
some function f : ℝN ⟶ℝ, is called an
eigensurface.

(2) For β ∈ℝN , ½ðu, vÞ ; μ� ∈ Yp,qðΩÞ ×ℝ is a (weak)
solution to problem ðSλÞ if

ð
Ω

eβ·x Δuj jp−2ΔuΔφ1dx

−
ð
Ω

meβ·x vj jβ+1 uj jα−1uφ1dx − λ
ð
Ω

m1e
β·x uj jp−2uφ1dx

= μ
ð
Ω

eβ·x uj jp−2uφ1dx,

ð15Þ
ð
Ω

eβ·x Δvj jq−2ΔvΔφ2dx

−
ð
Ω

meβ·x uj jα+1 vj jβ−1vφ2dx − λ
ð
Ω

m2e
β·x vj jq−2vφ2dx

= μ
ð
Ω

eβ·x vj jq−2vφ1dx,

ð16Þ
for all ðφ1, φ2Þ ∈ YpqðΩÞ.

(3) For β ∈ℝN , ½ðu, vÞ ; λ� ∈ Yp,qðΩÞ ×ℝ is a (weak)
solution to problem ðΣÞ if

ð
Ω

eβ·x Δuj jp−2ΔuΔφ1dx −
ð
Ω

meβ·x vj jβ+1 uj jα−1uφ1dx = λ
ð
Ω

m1e
β·x uj jp−2uφ1dx,ð

Ω

eβ·x Δvj jq−2ΔvΔφ2dx −
ð
Ω

meβ·x uj jα+1 vj jβ−1vφ2dx = λ
ð
Ω

m2e
β·x vj jq−2vφ2dx,

ð17Þ

for all ðφ1, φ2Þ ∈ YpqðΩÞ.

(4) If ½ðu, vÞ ; λ� ∈ Yp,qðΩÞ ×ℝ (resp. ½ðu, vÞ ; μ� ∈ Yp,qðΩ
Þ ×ℝ) is a (weak) solution to problem ðSÞ (resp. ð
SλÞ), ðu, vÞ shall be called an eigenfunction of the
problem ðSÞ (resp. ðSλÞ) associated to the eigenvalue
λ (resp. μðλÞ). Let us agree to say that an eigenvalue
of ðSÞ or ðSλÞ is strictly principal (resp., semitrivial
principal) if it is associated to an eigenfunction ðu,
vÞ such that u > 0 or u < 0 and v > 0 or v < 0 (resp.
[u > 0 and v ≡ 0 or u < 0 and v ≡ 0] or [u ≡ 0 and v
> 0 or u ≡ 0 and v < 0]).

(5) If ððu, vÞ, μðβ, λÞÞ ∈ YpqðΩÞ ×ℝðresp:ððu, vÞ, λðm, β
,m1,m2ÞÞ ∈ YpqðΩÞ ×ℝÞ is a weak solution to prob-

lem ðSλÞ (resp. ðSÞ), ðu, vÞ shall be called an eigen-
function of the problem ðSλÞ (resp. ðSÞ) associated
to the eigenvalue μðβ, λÞ (resp. λðm, β,m1,m2Þ). So
ðu, vÞ shall be called an eigenfunction of the problem
ðΣÞ (resp. ðΣλÞ) associated to the eigensurface λðm,
:,m1,m2Þ (resp., μð:,λÞ). We can say that an eigen-
surface of ðΣÞ or ðΣλÞ is strictly principal (resp.,
semitrivial principal) if it is associated to an eigen-
function ðu, vÞ such that u > 0 or u < 0 and v > 0 or
v < 0 (resp. [u > 0 and v ≡ 0 or u < 0 and v ≡ 0] or
[u ≡ 0 and v > 0 or u ≡ 0 and v < 0]).

In a context of fixing λ and finding μ in terms of λ, we
focus on the smallest eigenvalue μð:Þ of system ðΣλÞ. For
this, we define the energy functional

Jλ,β : Yp,q Ωð Þ⟶ℝ,
u, vð Þ↦ Jλ,β u, vð Þ = Eβ u, vð Þ − Vβ u, vð Þ − λMβ u, vð Þ,

ð18Þ

where

Eβ u, vð Þ = α1 + 1
p

ð
Ω

eβ·x Δuj jpdx + α2 + 1
q

ð
Ω

eβ·x Δvj jqdx,

Vβ u, vð Þ =
ð
Ω

meβ·x uj jα1+1 vj jα2+1dx,

Mβ u, vð Þ = α1 + 1
p

M1,β uð Þ + α2 + 1
q

M2,β vð Þ,

ð19Þ

with

M1,β uð Þ =
ð
Ω

m1e
β·x uj jpdx,

M2,β vð Þ =
ð
Ω

m2e
β·x vj jqdx,∀ u, vð Þ ∈ Ypq Ωð Þ:

ð20Þ

Equalities (13) and (15) are equivalent to

∇Jλ,β u, vð Þ = μ∇Iβ u, vð Þ, ð21Þ

where

Iβ u, vð Þ = α1 + 1
p

ð
Ω

eβ·x uj jpdx

+ α2 + 1
q

ð
Ω

eβ·x vj jqdx,∀ u, vð Þ ∈ Ypq Ωð Þ:
ð22Þ
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Lemma 3. Let ðω1, ω2Þ ∈ L∞ðΩÞ × L∞ðΩÞ. If ω1, ω2 > 0 on Ω
, then there exist three positive constants c1,β, c2,β, and c3,β
such that

Δuk kpp + Δvk kqq ≤ c1,β Jλ,β u, vð Þ + c2,β

ð
Ω

ω1e
β·x uj jpdx

+ c3,β

ð
Ω

ω2e
β·x vj jqdx,

ð23Þ

for every ðu, vÞ ∈ YpqðΩÞ and β ∈ℝN .

Proof. We know, following ideas of [13], that there exist
three positive constants c1, c2, and c3 such that

Δuk kpp + Δvk kqq ≤ c1 Jλ,0 u, vð Þ + c2

ð
Ω

ω1 uj jpdx + c3

ð
Ω

ω2 vj jqdx:

ð24Þ

Considering the following function:

f β : �Ω⟶ℝ,

x↦ f β xð Þ = eβ·x:
ð25Þ

We can deduce the existence of two positive constants k1,β

=min
x∈ �Ω

f βðxÞ and k2,β =max
x∈ �Ω

f βðxÞ satisfying

k1,β

ð
Ω

w1 uj jpdx ≤
ð
Ω

w1e
β·x uj jpdx ≤ k2,β

ð
Ω

w1 uj jpdx,

k1,β

ð
Ω

w2 vj jqdx ≤
ð
Ω

w2e
β·x vj jqdx ≤ k2,β

ð
Ω

w2 vj jqdx,

k1,β Jλ,0 u, vð Þ ≤ Jλ,β u, vð Þ ≤ k2,β Jλ,0 u, vð Þ:
ð26Þ

This gives

k1,β Δuk kpp + Δvk kqq
h i

≤ c1 Jλ,β u, vð Þ + c2

ð
Ω

ω1e
β·x uj jpdx

+ c3

ð
Ω

ω2e
β·x vj jqdx,

ð27Þ

leading to c1,β = c1/k1,β, c2,β = c2/k1,β, and c3,β = c3/k1,β and
the result follows.

Let us now consider the manifold

Mβ = u, vð Þ ∈ Ypq Ωð Þ: Iβ u, vð Þ = 1
� �

: ð28Þ

In the following, we construct for each λ : β ∈ℝN ↦ λð
βÞ ∈ℝ the smallest eigensurface β ∈ℝN ↦ μ1ðβ, λðβÞÞ from
which we get the eigensurface curve λðβÞ ∈ℝ↦ μ1ðβ, λðβÞÞ.
This is the main result of this section.

Proposition 1. μ1ð:,λð:ÞÞ is the smallest eigensurface of ðΣλÞ
with

μ1 β, λ βð Þð Þ≔ inf Jλ,β u, vð Þ: u, vð Þ ∈Mβ

� �
, ð29Þ

for β ∈ℝN .

Proof. In the first step, Lemma 3 ensures the existence of
μ1ðβ, λðβÞÞ for all β ∈ℝN . Furthermore, any sequence ðun,
vnÞ that minimizes Jλ,β on Mβ is bounded in YpqðΩÞ. Thus,
there exists ðu0, v0Þ ∈ YpqðΩÞ such that, up to a subsequence,
the sequence ðun, vnÞ converges weakly to ðu0, v0Þ in YpqðΩÞ
and strongly in LpðΩÞ × LqðΩÞ. Therefore,

Jλ,β u0, v0ð Þ ≤ lim
n⟶∞

Jλ,β un, vnð Þ = μ1 β, λ βð Þð Þ, u0, v0ð Þ ∈M,

ð30Þ

and consequently, Jλ,βðu0, v0Þ = μ1ðβ, λðβÞÞ. By the
Lagrange multipliers rule, μ1ðβ, λðβÞÞ is an eigenvalue for ð
SλÞ and ðu0, v0Þ is an associated eigenfunction. As a result,
the value μ1ð:,λð:ÞÞ is an eigensurface for ðΣλÞ and ðu0, v0Þ
is an associated eigenfunction.

In the second step, for any eigenvalue μðβ, λðβÞÞ associ-
ated to ðuλ, vλÞ ∈ YpqðΩÞ \ fð0, 0Þg, one has Jλ,βðuλ, vλÞ = μ

ðβ, λðβÞÞIβðuλ, vλÞ with Iβðuλ, vλÞ > 0. Then,

μ1 β, λ βð Þð Þ ≤ Jλ,β
uλ

Iβ uλ, vλð Þ1/p ,
vλ

Iβ uλ, vλð Þ1/q
 !

=
Jλ,β uλ, vλð Þ
Iβ uλ, vλð Þ = μ β, λ βð Þð Þ,

ð31Þ

and we can draw the conclusion that μ1ð:,λð:ÞÞ is the smal-
lest eigensurface of ðΣλÞ putting an end to the proof.

For m =m1 =m2 ≡ 0, we denote by

μ0 βð Þ = μ1 β, λ βð Þð Þ = inf α1 + 1
p

ð
Ω

eβ·x Δuj jpdx
�

+ α2 + 1
q

ð
Ω

eβ·x Δvj jqdx : u, vð Þ ∈Mβ

�
:

ð32Þ

Since the space W2,rðΩÞ ∩W1,r
0 ðΩÞ with r ∈ fp, qg does

not contain any constant nontrivial function, one has μ0ðβ
Þ > 0. The following properties are well known (see details
of their proof in [13]) and are useful in proving the main
result of the next section.

Proposition 2.

(1) μ1ðβ,:Þ: ℝ⟶ℝ is concave differentiable with

μ1′ β, λð Þ = ∂μ1 β, λð Þ
∂λ

= −Mβ u0, v0ð Þ, ð33Þ

5Advances in Mathematical Physics



where ðu0, v0Þ is some eigenfunction of ðSλÞ associated to μ1
ðβ, λÞ for all λ ∈ℝ.

lim
λ⟶∞

μ1 β, λð Þ = −∞: ð34Þ

(2) μ1ðβ, :Þ is strictly decreasing.

3. Strictly or Semitrivial Principal
Eigensurface for System ðΣÞ

In the following lemma, we build a sufficient condition for
μ1ð:,λð:ÞÞ to vanish as it is known that its zeros solve ðΣÞ.

Lemma 4. If kmk∞ < μ0ð:Þ, then μ1ð:,0Þ > 0 and μ1ð:,λð:ÞÞ
≡ 0 has a unique positive solution λð:Þ (eigensurface of ðΣÞ).

Proof. We have Vβðu, vÞ ≤ kmk∞Iβðu, vÞ, ∀ðu, vÞ ∈ YpqðΩÞ
so that

Eβ u, vð Þ − mk k∞Iβ u, vð Þ ≤ Eβ u, vð Þ −Vβ u, vð Þ,∀ u, vð Þ ∈ Ypq Ωð Þ:
ð35Þ

Then,

μ0 βð Þ ≤ Eβ u, vð Þ −Vβ u, vð Þ + mk k∞,∀ u, vð Þ ∈Mβ,

μ0 βð Þ − mk k∞ ≤ inf Eβ u, vð Þ − Vβ u, vð Þ, u, vð Þ ∈Mβ

� �
≤ μ1 β, 0ð Þ:
ð36Þ

Thus, μ1ð:,0Þ > 0, and from Proposition 1, μ1ðβ, :Þ is

strictly decreasing. Consequently μ1ð:,λð:ÞÞ ≡ 0 has a unique
positive solution λð:Þ which is an eigensurface of ðΣÞ.

We will denote by

L Ωð Þ≔ Lp Ωð Þ × Lq Ωð Þ½ � \ 0, 0ð Þf gð Þ ×ℝ,
L0 Ωð Þ≔ Lp Ωð Þ × Lq Ωð Þ½ � \ 0, 0ð Þf gð Þ × 0f g:

ð37Þ

We apply some results proved by Drábek and Ôtani [16]
and Talbi and Tsouli [17] and some ideas used by Leadi and
Toyou [13] to make the following remarks.

Remark 1.

(1) ∀u ∈ Xr , ∀v ∈ LrðΩÞ with r ∈ ð1,∞Þ: v = −Δu⇔ u =
Λv

(2) Let Nr be the Nemytskii operator with r ∈ ð1,∞Þ,
defined by

Nr uð Þ xð Þ = u xð Þj jr−2u xð Þ, if u xð Þ ≠ 0,
0, if u xð Þ = 0:

(
ð38Þ

We have

∀v ∈ Lr Ωð Þ,∀w ∈ Lr ′ Ωð Þ: Nr vð Þ =w⇔ v =Nr ′ wð Þ, ð39Þ

with r′ = r/ðr − 1Þ.

(3) If ðu, vÞ is an eigenfunction of ðΣλÞ associated with
μð:Þ, then for β ∈ℝN , ðu, vÞ is an eigenfunction of ð
SλÞ associated with μðβÞ and φ = −Δu, w = −Δv
satisfy

Hence,

(a) ½ðu0, v0Þ ; β, μðλÞ� is a solution of ðΣλÞ if and only if
½ðφ0,w0Þ ; μðλÞ� is a solution of problem

eβ·xNp φð Þ =Λ μ λð Þ + λm1½ �eβ·xNp Λφð Þ +meβ·x Λwj jα2+1 Λφj jα1−1Λφ
� 	

,

eβ·xNq wð Þ =Λ μ λð Þ + λm2½ �eβ·xNq Λwð Þ +meβ·x Λφj jα1+1 Λwj jα2−1Λw
� 	

:

8><
>: ð40Þ

Sλ′
� 	

:

Find φ,wð Þ ; μ λð Þ½ � ∈ L Ωð Þ such that
eβ·xNp φð Þ =Λ μ λð Þ + λm1½ �eβ·xNp Λφð Þ +meβ·x Λwj jα2+1 Λφj jα1−1Λφ

� 	
,

eβ·xNq wð Þ =Λ μ λð Þ + λm2½ �eβ·xNq Λwð Þ +meβ·x Λφj jα1+1 Λwj jα2−1Λw
� 	

,

8>>>><
>>>>:

ð41Þ
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with φ0 = −Δu0 and w0 = −Δv0. (b) ½ðu0, v0Þ ; β, μðλÞ� is a solution of ðΣÞ if and only if
½ðφ0,w0Þ ; λ� is a solution of problem

with φ0 = −Δu0 and w0 = −Δv0.

(c) ½ðφ0,w0Þ ; μðλÞ� ∈ L0ðΩÞ is a solution of ðSλ′Þ if and
only if ½ðφ0,w0Þ ; λ� ∈ LðΩÞ is a solution of problem
ðS′Þ

μ1 β, λ βð Þð Þ≔ inf Fβ,λ φ,wð Þ: φ,wð Þ ∈ Lp Ωð Þ�
× Lq Ωð Þ, Rβ φ,wð Þ = 1

�
,

ð43Þ

where

Fβ,λ φ,wð Þ = α1 + 1
p

ð
Ω

eβ·x φj jpdx − λ
ð
Ω

m1e
β·x Λφj jpdx


 �

+ α2 + 1
q

ð
Ω

eβ·x wj jqdx − λ
ð
Ω

m2e
β·x Λwj jqdx


 �

−
ð
Ω

meβ·x Λφj jα1+1 Λwj jα2+1dx,

Rβ φ,wð Þ = α1 + 1
p

ð
Ω

eβ·x Λφj jpdx + α2 + 1
q

ð
Ω

eβ·x Λwj jqdx:

ð44Þ

In a sequel, we name previous sufficient condition of
solvability of ðΣÞ

Hmð Þ: mk k∞ < μ0 :ð Þ: ð45Þ

Lemma 5. If ½ðu, vÞ ; β, μðλÞ� is a solution of ðΣλÞ, then −Δu,
−Δv ∈ Cð�ΩÞ, and u, v ∈ C1,νð�ΩÞ, for all ν ∈ ð0, 1Þ.

Proof. An easy adaptation of ideas of the proof of Lemma 4
in [13] and we just omit it.

Lemma 6. ½ðφ1,w1Þ ; μ1ðβ, λÞ� ∈ LðΩÞ is a solution of prob-
lem ðSλ′Þ, if and only if

Gβ,λ φ1,w1ð Þ = 0 = min
φ,wð Þ∈L∗ Ωð Þ

Gβ,λ φ,wð Þ, ð46Þ

where

Gβ,λ φ,wð Þ = Fβ,λ φ,wð Þ − μ1 β, λð ÞRβ φ,wð Þ,
L∗ Ωð Þ = Lp Ωð Þ × Lq Ωð Þ½ � \ 0, 0ð Þf g:

ð47Þ

Proof. Assuming Fβ,λðφ1,w1Þ = μ1ðβ, λÞRβðφ1,w1Þ, then

Gβ,λ φ1,w1ð Þ = Fβ,λ φ1,w1ð Þ − μ1 β, λð ÞRβ φ1,w1ð Þ = 0, ð48Þ

and one can set �φ = φ/ð½Rβðφ,wÞ�1/pÞ and �w =w/ð
½Rβðφ,wÞ�1/qÞ for every ðφ,wÞ ∈ L∗ðΩÞ. We readily check
that Rβð�φ, �wÞ = 1 and deduce

μ1 β, λð Þ ≤ Fβ,λ �φ, �wð Þ = Fβ,λ φ,wð Þ
Rβ φ,wð Þ ,

Gβ,λ φ,wð Þ = Fβ,λ φ,wð Þ − μ1 β, λð ÞRβ φ,wð Þ ≥ 0,
ð49Þ

for all ðφ,wÞ ∈ L∗ðΩÞ. This proves (45).
Conversely, let us suppose that (45) holds. We deduce

that ∇Gβ,λðφ1,w1Þ = ð0, 0Þ and then

∂Gβ,λ
∂φ

φ1,w1ð Þ,Ψ
� 

=
∂Gβ,λ
∂w

φ1,w1ð Þ, θ
� 

= 0, ð50Þ

for all ðΨ, θÞ ∈ ½LpðΩÞ × LqðΩÞ� which proves that ½ðφ1,w1Þ
; μ1ðβ, λÞ� ∈ LðΩÞ is a solution of ðSλ′Þ.

Lemma 7. If ðHmÞ is satisfied and ½ðφ1,w1Þ ; μ1ðβ, λÞ� ∈ L0ð
ΩÞ is a solution of problem ðSλ′Þ, then ½ðjφ1j, jw1jÞ ; μ1ðβ, λÞ�
∈ L0ðΩÞ is a solution of problem ðSλ′Þ.

Proof. From the assumptions Gβ,λðφ1,w1Þ = 0, μ1ðβ, λÞ = 0,
λ > 0, and ðjφ1j, jw1jÞ ∈ ½LpðΩÞ × LqðΩÞ� \ fð0, 0Þg; we have

S′
� 	

:

Find φ,wð Þ ; λ½ � ∈ L Ωð Þ such that
eβ·xNp φð Þ =Λ λm1e

β·xNp Λφð Þ +meβ·x Λwj jα2+1 Λφj jα1−1Λφ
� 	

,

eβ·xNq wð Þ =Λ λm2e
β·xNq Λwð Þ +meβ·x Λφj jα1+1 Λwj jα2−1Λw

� 	
,

8>>>><
>>>>:

ð42Þ
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Gβ,λðjφ1j, jw1jÞ ≥ 0. In addition, jΛðjφ1jÞjr ≥ jΛφ1jr and
jΛðjw1jÞjr ≥ jΛw1jr , for all r ∈ ð1;∞Þ and imply

−λ
ð
Ω

m1e
β·x Λ φ1j jð Þj jpdx ≤ −λ

ð
Ω

m1e
β·x Λφ1j jpdx,

−λ
ð
Ω

m2e
β·x Λ w1j jð Þj jqdx ≤ −λ

ð
Ω

m2e
β·x Λw1j jqdx,

−
ð
Ω

meβ·x Λ φ1j jð Þj jα+1 Λ w1j jð Þj jβ+1dx ≤ −
ð
Ω

meβ·x Λφ1j jα+1 Λw1j jβ+1dx:

ð51Þ

Therefore, Fβ,λðjφ1j, jw1jÞ ≤ Fβ,λðφ1,w1Þ and Gβ,λðjφ1j, j
w1jÞ ≤Gβ,λðφ1,w1Þ = 0. It then reads Gβ,λðjφ1j, jw1jÞ = 0
and ½ðjφ1j, jw1jÞ ; μ1ðβ, λÞ� is a solution of ðSλ′Þ.

Proposition 3. Assume that ðHmÞ holds and μ1ð:,λð:ÞÞ ≡ 0.
Then, λð:Þ is a semitrivial principal eigensurface or strictly
principal eigensurface of system ðΣÞ.

Proof. The value λð:Þ is an eigensurface of problem ðΣÞ asso-
ciated with ðu, vÞ ∈ YpqðΩÞ \ fð0, 0Þg. Let β ∈ℝN with μ1ðβ
, λðβÞÞ = 0.

First, if u≡0 and v≡0, then ½ðφ,wÞ ; μ1ðβ, λðβÞÞ� and ½ðj
φj, jwjÞ ; μ1ðβ, λðβÞÞ� belong to L0ðΩÞ and are solutions of
problem ðSλ′Þ with φ = −Δu≡0 and w = −Δv≡0. Since jφj ≥ 0
and jwj ≥ 0, and then, ΛðjφjÞ > 0 and ΛðjwjÞ > 0. Therefore,
NpðΛjφjÞ > 0, NqðΛjwjÞ > 0, jΛðjwjÞjα2+1jΛðjφjÞjα1 > 0,
jΛðjφjÞjα1+1jΛðjwjÞjα2 > 0, and

We then conclude that ½ðφ,wÞ ; μ1ðβ, λðβÞÞ� is a solution
of problem ðSλ′Þ with both φ and w positive in Ω or negative
in Ω. On the other hand, Lemma 5 expresses that φ, w ∈ C
ð�ΩÞ yielding to u =Λφ positive in Ω or negative in Ω and
v =Λw positive in Ω or negative in Ω (see Lemma 1). It fol-
lows immediately that λð:Þ is a strictly principal eigensurface
of ðΣÞ.

Second, if [u ≡ 0 and v≡0] or [u≡0 and v ≡ 0], then we
also prove that [u ≡ 0 and v > 0 in Ω or v < 0 in Ω] or
[u > 0 in Ω or u < 0 in Ω and v ≡ 0]. We conclude that λð:Þ
is a semitrivial principal eigensurface of ðΣÞ.

Lemma 8 [13]. Let A, B, C, and r be real numbers satisfying
A ≥ 0, B ≥ 0, C ≥max fB − A, 0g, and r ∈ ½1,+∞Þ. Then,

A + Cj jr + B − Cj jr ≥ Ar + Br: ð53Þ

Lemma 9. Suppose that ðHmÞ holds. If ðφ1,w1Þ and ðφ2,w2Þ
are positive eigenfunctions of problem ðSλ′Þ associated with
μ1ðβ, λÞ = 0, then ðφ12,w12Þ, ðφ12,w21Þ, ðφ21,w12Þ, and ðφ21
,w21Þ with

φ12 xð Þ≔max φ1 xð Þ, φ2 xð Þf g = φ1 xð Þ + φ2 − φ1ð Þ+ xð Þ,
w12 xð Þ≔max w1 xð Þ,w2 xð Þf g =w1 xð Þ + w2 −w1ð Þ+ xð Þ,
φ21 xð Þ≔min φ1 xð Þ, φ2 xð Þf g = φ2 xð Þ − φ2 − φ1ð Þ+ xð Þ,
w21 xð Þ≔min w1 xð Þ,w2 xð Þf g =w2 xð Þ − w2 −w1ð Þ+ xð Þ,

8>>>>><
>>>>>:

ð54Þ

for all x ∈Ω, are eigenfunctions of ðSλ′Þ associated with μ1ðβ
, λÞ = 0.

Proof. From Lemma 8, we have

Λφ12j jp + Λφ21j jp ≥ Λφ1j jp + Λφ2j jp,
Λw12j jq + Λw21j jq ≥ Λw1j jq + Λw2j jq,
Λφ12j jα1+1 + Λφ21j jα1+1 ≥ Λφ1j jα1+1 + Λφ2j jα1+1,
Λw12j jα2+1 + Λw21j jα2+1 ≥ Λw1j jα2+1 + Λw2j jα2+1:

8>>>>><
>>>>>:

ð55Þ

Then,

−λ
ð
Ω

m1e
β·x Λφ12jpdx − λ

ð
Ω

m1e
β·x

����
����Λφ21

pdx ≤j

−λ
ð
Ω

m1e
β·x Λφ1 ∣

pdx − λ
ð
Ω

m1e
β·x

����
����Λφ2

����
p

dx,
ð56Þ

−λ
ð
Ω

m2e
β·x Λw12j jqdx − λ

ð
Ω

m2e
β·x Λw21j jqdx ≤

−λ
ð
Ω

m2e
β·x Λw1j jqdx − λ

ð
Ω

m2e
β·x Λw2j jqdx:

ð57Þ

Similarly, we have

Z1 φ,wð Þ ≤ Z2 φ,wð Þ ≤ −
ð
Ω

meβ·x Λφ1jα1+1
�� ��Λw1

α2+1dx
��

−
ð
Ω

meβ·x Λφ2
α1+1

�� ��Λw2

����
α2+1

dx,

ð58Þ

φj j =Np′ eβ·xΛ λ βð Þm1e
β·xNp Λ φj jð Þ +meβ·x Λ wj jð Þj jα2+1 Λ φj jð Þj jα1−1Λ φj jð Þ

h i� 	
> 0,

wj j =Nq′ eβ·xΛ λ βð Þm2e
β·xNq Λ wj jð Þ +meβ·x Λ φj jð Þj jα1+1 Λ wj jð Þj jα2−1Λ wj jð Þ

h i� 	
> 0:

8><
>: ð52Þ

8 Advances in Mathematical Physics



with

Z1 φ,wð Þ = −
ð
Ω

meβ·x Λφ12jα1+1
�� ��Λw12

α2+1dx
��

−
ð
Ω

meβ·x Λφ12
α1+1

�� ��Λw21

����
α2+1

dx,
ð59Þ

−
ð
Ω

meβ·x Λφ21jα1+1
�� ��Λw12

α2+1dx
��

−
ð
Ω

meβ·x Λφ21
α1+1

�� ��Λw21

����
α2+1

dx,
ð60Þ

Z2 φ,wð Þ = −
ð
Ω

meβ·x Λφ1jα1+1
�� ��Λw1

α2+1dx
��

−
ð
Ω

meβ·x Λφ1
α1+1

�� ��Λw2

����
α2+1

dx,
ð61Þ

−
ð
Ω

meβ·x Λφ2j jα1+1 Λw1j jα2+1dx

−
ð
Ω

meβ·x Λφ2j jα1+1 Λw2j jα2+1dx:
ð62Þ

Moreover,

ð
Ω

eβ·x φ12jpdx +
ð
Ω

eβ·x
����

����φ21
pdx =

ð
Ω

eβ·x φ1 ∣
pdx +

ð
Ω

eβ·x
����

����φ2

����
����
p

dx,

ð63Þ
ð
Ω

eβ·x w12j jqdx +
ð
Ω

eβ·x w21j jqdx

=
ð
Ω

eβ·x w1j jqdx +
ð
Ω

eβ·x w2j jqdx:
ð64Þ

Combining (54), (56), (57), (59), and (63), we establish

Fβ,λ φ12,w12ð Þ + Fβ,λ φ12,w21ð Þ + Fβ,λ φ21,w12ð Þ + Fβ,λ φ21,w21ð Þ
≤Fβ,λ φ1,w1ð Þ + Fβ,λ φ2,w2ð Þ,

Gβ,λ φ12,w12ð Þ +Gβ,λ φ12,w21ð Þ + Gβ,λ φ21,w12ð Þ +Gβ,λ φ21,w21ð Þ
≤Gβ,λ φ1,w1ð Þ + Gβ,λ φ2,w2ð Þ = 0,

ð65Þ

which imply

Gβ,λ φ12,w12ð Þ =Gβ,λ φ12,w21ð Þ = Gβ,λ φ21,w12ð Þ =Gβ,λ φ21,w21ð Þ = 0,
ð66Þ

and ensure that ðφ12,w12Þ, ðφ12,w21Þ, ðφ21,w12Þ, and ðφ21,
w21Þ are eigenfunctions of ðSλ′Þ associated with μ1ðβ, λÞ = 0.

Proposition 4. Assume that ðHmÞ holds and μ1ð:,λð:ÞÞ ≡ 0.
Then λð:Þ is a semitrivial principal eigensurface or strictly
principal eigensurface of problem ðΣÞ and simple.

Proof. From Proposition 3, the value λð:Þ is a semitrivial
principal eigensurface or strictly principal eigensurface of
problem ðΣÞ. The rest of the proof falls naturally into two
cases as follows.

Case 1: λð:Þ is a strictly principal eigensurface of ðΣÞ.
Let ðu11, u12Þ and ðu21, u22Þ be two positive eigenfunc-

tions of ðΣÞ associated with λð:Þ. Then, ½ðv,wÞ ; 0�, ½ðφ, ψÞ ;
0�, ½ðjvj, jwjÞ ; 0�, ½ðjφj, jψjÞ ; 0� ∈ L0ðΩÞ, are solutions of ðSλ′Þ
with v = −Δu11 > 0, w = −Δu12 > 0, φ = −Δu21 > 0, and ψ =
−Δu22 > 0. Let us fix x0 ∈Ω and set

k = φ x0ð Þ
v x0ð Þ , ω1 xð Þ =max φ xð Þ, kv xð Þf g andω2 xð Þ

=max ψ xð Þ, kp/qw xð Þ
n o

,
ð67Þ

for all x ∈Ω.
Using Lemma 9, ½ðω1, ω2Þ ; 0� is a solution of problem ð

Sλ′Þ as ½ðkv, kp/qwÞ ; 0� and ½ðφ, ψÞ ; 0� are solutions of ðΣλÞ.
We infer that NpðvÞ, NqðwÞ, NpðφÞ, NqðψÞ, Npðω1Þ, Nqðω2
Þ ∈ C1,νð�ΩÞ, and NpðφÞ/NpðvÞ, NqðψÞ/NqðwÞ ∈ C1ðΩÞ, and
for any unit vector e = ð0,⋯, ei,⋯, 0Þ with i ∈ f1,⋯,Ng
and t ∈ℝ, we obtain

Np φð Þ x0 + teð Þ −Np φð Þ x0ð Þ ≤Np ω1ð Þ x0 + teð Þ −Np ω1ð Þ x0ð Þ,
Np kvð Þ x0 + teð Þ −Np kvð Þ x0ð Þ ≤Np ω1ð Þ x0 + teð Þ −Np ω1ð Þ x0ð Þ:

(

ð68Þ

Dividing these inequalities by t > 0 and t < 0 and letting t
tend to 0±, we get

∂
∂xi

Np φð Þ� �
x0ð Þ ≤ ∂

∂xi
Np ω1ð Þ� �

x0ð Þ,

∂
∂xi

Np kvð Þ� �
x0ð Þ ≤ ∂

∂xi
Np ω1ð Þ� �

x0ð Þ,

8>>><
>>>:

∂
∂xi

Np φð Þ� �
x0ð Þ ≥ ∂

∂xi
Np ω1ð Þ� �

x0ð Þ,

∂
∂xi

Np kvð Þ� �
x0ð Þ ≥ ∂

∂xi
Np ω1ð Þ� �

x0ð Þ,

8>>><
>>>:

ð69Þ

for all i ∈ f1,⋯,Ng. That is

∂
∂xi

Np φð Þ� �
x0ð Þ = ∂

∂xi
Np ω1ð Þ� �

x0ð Þ,

∂
∂xi

Np kvð Þ� �
x0ð Þ = ∂

∂xi
Np ω1ð Þ� �

x0ð Þ,

8>>><
>>>:

ð70Þ

for all i ∈ f1,⋯,Ng. In other words,

∇Np φð Þ x0ð Þ = ∇Np ω1ð Þ x0ð Þ = ∇Np kvð Þ x0ð Þ = kp−1∇Np vð Þ x0ð Þ:
ð71Þ
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Furthermore,

∇
Np φð Þ
Np vð Þ

 !
x0ð Þ = ∇ Np φð Þ� �

x0ð ÞNp vð Þ x0ð Þ −Np φð Þ x0ð Þ∇ Np vð Þ� �
x0ð Þ

Np vð Þ x0ð Þ� �2
=

Np vð Þ x0ð Þ − k1−pNp φð Þ x0ð Þ� �
∇ Np φð Þ� �

x0ð Þ
Np vð Þ x0ð Þ� �2 = 0,

ð72Þ

for all x0 ∈Ω. Then, Npðφ/vÞ =NpðφÞ/NpðvÞ = cst = kp−1 in
Ω, i.e., φ = kv in Ω. In the same manner, we can see that ψ
= hw if for x0 ∈ΩÞ. Setting

h = ψ x0ð Þ
w x0ð Þ , �ω1 xð Þ =max ψ xð Þ, hw xð Þf g and �ω2 xð Þ =max φ xð Þ, kq/pv xð Þ

n o
,

ð73Þ

for all x ∈Ω, we can write ðφ, ψÞ = ðkv, hwÞ with k = hq/p. We
deduce that ðu21, u22Þ = ðku11, hu12Þ with k = hq/p. Further,
let ðu11, u12Þ and ðu21, u22Þ be two eigenfunctions of ðΣÞ
associated with λð:Þ. If there exist i, j ∈ f1, 2g such that uij
< 0, then we can set �uij = −uij and the result follows.

Case 2: λð:Þ is a semitrivial principal eigensurface of ðΣÞ.
Let [ðu11, 0Þ and ðu21, 0Þ] or [ð0, u12Þ and ð0, u22Þ] be two

eigenfunctions of ðΣÞ associated with λð:Þ. It is obvious to
see that there exist [k ≠ 0 real number] or [h ≠ 0 real num-
ber] such that [u11 = ku21] or [u12 = hu22]. The proof is
complete.

We are now ready to state the main result of this section
concerning ðΣÞ.

Theorem 1. Assume that ðHmÞ holds. The lowest positive
eigensurface of problem ðΣÞ is λ1ðm,:,m1,m2Þ defined by

λ1 m, β,m1,m2ð Þ = min
u,vð Þ∈Sβ

Eβ,m u, vð Þ, ð74Þ

for all β ∈ℝN and

Sβ = u, vð Þ ∈ Ypq Ωð Þ:  Mβ u, vð Þ = 1
� �

: ð75Þ

Moreover,

(1) λ1ðm,:,m1,m2Þ ≤min fΓp
1ð:,m1Þ,Γq

1ð:,m2Þg
(2) λ1ðm,:; ;m1,m2Þ is semitrivial principal eigensurface

or strictly principal eigensurface

(3) λ1ðm,:,m1,m2Þ is simple

Proof. Combining Proposition 2 and Lemma 4, there exists a
unique λ1ðm,:,m1,m2Þ solution of equation μ1ð:,λÞ ≡ 0, that
is, λ1ðm,:,m1,m2Þ is an eigensurface of ðΣÞ and

μ1′ β, λ1 m, β,m1,m2ð Þð Þ = −Mβ u0, v0ð Þ < 0 = μ1 β, λ1 m, β,m1,m2ð Þð Þ
= Eβ,m u0, v0ð Þ − λ1 m, β,m1,m2ð ÞMβ u0, v0ð Þ,

ð76Þ

for all β ∈ℝN , with ðu0, v0Þ ∈Mβ. Then, Eβ,mðu0, v0Þ = λ1ð
m, β,m1,m2ÞMβðu0, v0Þ > 0 and we can set

�u0 =
u0

Mβ u0, v0ð Þ� �1/p ,
�v0 =

v0
Mβ u0, v0ð Þ� �1/q :

ð77Þ

We easily prove that ð�u0, �v0Þ ∈ Sβ and infer Eβ,mð�u0, �v0Þ
= λ1ðm, β,m1,m2Þ. On the other hand, for each ðu, vÞ ∈ Sβ

, we have

Eβ,m
u

Iβ u, vð Þ� �1/p , v

Iβ u, vð Þ� �1/q
 !

≥ λ1 m, β,m1,m2ð ÞMβ

� u

Iβ u, vð Þ� �1/p , v

Iβ u, vð Þ� �1/q
 !

,

ð78Þ

i.e., Eβ,mðu, vÞ ≥ λ1ðm, β,m1,m2Þ. Therefore, (73) holds,
and applying Proposition 4, we get that λ1ðm,:,m1,m2Þ is a
strictly principal eigenvalue or semitrivial principal eigen-
value and simple.

Finally, what is left is to show that λ1ðm,:,m1,m2Þ ≤
min fΓp

1ð:,m1Þ,Γq
1ð:,m2Þg. To do this, consider φp =

ðp/ðα1 + 1ÞÞ1/pφp,m1
and φq = ðq/ðα2 + 1ÞÞ1/qφq,m2

. Then, for

all β ∈ℝN , we have

α1 + 1
p

M1,β φp

� 	
+ α2 + 1

q
M2,β 0ð Þ = 1,

α1 + 1
p

M1,β 0ð Þ + α2 + 1
q

M2,β φq

� 	
= 1:

ð79Þ

Consequently,

λ1 m, β,m1,m2ð Þ ≤ Eβ,m φp, 0
� 	

= α1 + 1
p

Eβ φp, 0
� 	

= Γp
1 β,m1ð Þ,

λ1 m, β,m1,m2ð Þ ≤ Eβ,m 0, φq

� 	
= β + 1

q
Eβ 0, φq

� 	
= Γq

1 β,m2ð Þ,

8>>><
>>>:

ð80Þ

and the result follows.
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