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The present work shows an analytical and a numerical method for heat transfer nonlinear problems in porous fins using the Darcy
model. Numerical simulations are carried out with the aid of a sequence of linear problems, each of them possessing an equivalent
minimum principle, that has as its limit the solution of the original problem. The nonlinear convection-radiation heat transfer
process is considered and simulated by means of a finite difference scheme. Results showed the relevance of the radiation for
realistic thermal mapping in porous media with percentage errors of up to 40% for the last nodes.

1. Introduction

In general, the first choice for the enhancement of rate of
heat transfer from/to a body consists of using fins in order
to provide an increase of the effective heat transfer surface.
Since the need of optimizing heat transfer processes is
encountered in several practical situations, the study of the
thermal behavior of fins becomes a fundamental issue in
the heat transfer area.

Nowadays, high-performance heat transfer components
are related to the need to achieve high heat transfer rates
with low cost and, above all, limited space and weight. Heat
transfer on extended surfaces is, currently, one of the main
focuses of high-performance heat transfer studies, account-
ing for the most varied parameters and respective behavior
in the thermal mapping [1–3].

The extended surface is widely used in several engineer-
ing systems that incorporate from well-known heat
exchangers to heat pipes as shown in recent studies [4–6].
Effective sizing of fins and heat sinks requires accurate
knowledge of heat transfer on extended surfaces. Usually,
convection and conduction heat transfers are the main con-
sidered mechanisms, but radiation heat transfer has signifi-
cant effect in specific applications mainly involving high
temperatures and/or rarefied atmospheres [7, 8].

Due the larger effective surface area, porous fins have
better thermal performance when compared to conventional
solid ones with equivalent size. In the literature, porous con-
stituents of high thermal conductivity have been used to
improve the thermal performance of different thermal sys-
tems. Bioengineering, electronic technologies, and especially
the most recent nanotechnology have been concerned with
knowing the effects of heat transfer in porous media.

Some studies leveraged the application the porous fins.
Pop et al. [9] conducted analyses of steady-state conjugate
free convection about a vertical fin embedded in a porous
medium.

Huang and Vafai [10] presented an investigation of
forced convection enhancement in a channel using multiple
emplaced porous blocks.

Kim et al. [11] experimentally investigated the impact of
porous fins on the pressure drop and heat transfer character-
istics in plate-fin heat exchangers.

Kiwan [12] introduced a simple method of analysis to
study the performance of porous fins in a natural convection
environment.

El-Hakiem and Rashad (2007) [13] examined the effects
of both radiation and the nonlinear Forchheimer terms on
free convection from a vertical cylinder embedded in a
fluid-saturated porous medium with the fluid viscosity
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varying as an inverse linear function of temperature. Rashad
[14] employed magnetohydrodynamics and thermal radia-
tion effects in heat and mass transfer of a vertical flat plate
embedded in a fluid saturated porous media.

Kundu and Bhanja [15] developed an analytical model
for determination of the performance and optimum dimen-
sions of porous fins accounting for different models of pre-
dictions. Gorla and Bakier [16] considered radiation and
convection effects in porous media on rectangular profile fin.

Rashad et al. [17] investigated theoretically the effects of
thermal radiation and the nonlinear Forchheimer terms on
boundary-layer flow and heat transfer by non-Darcy natural
convection from a vertical cylinder embedded in a porous
medium saturated with nanofluids. Rashad et al. [18] studied
the combined effects of thermal radiation and thermophor-
esis on heat and mass transfer by mixed convection over a
vertical rotating cone in a fluid saturated porous medium.

Darvishi et al. [19] conducted a numerical study of
steady-state heat transfer in porous rectangular fin under
the influence of natural convection and radiation using
homotopy analysis method. Darvishi et al. [20] numerically
investigated the transient thermal effect on porous fin per-
formance and the comparative study between the fin with
or without radiation. Darvishi et al. [21] solved energy equa-
tion with spectral collocation method on wet longitudinal fin
under natural convection and radiation.

Sobamowo [22] analyzed the heat transfer in porous fin
with temperature-dependent thermal conductivity. Results
show that increases in convective and porosity parameter
improved the efficiency of the fin. Jooma and Harley [23]
numerically verified heat transfer in a porous radial fin with
the differential transformation method.

Sowmya et al. [24] numerically studied the thermal
behavior of a porous longitudinal fin under convection-
radiation effect. The nonlinear partial differential equation
was nondimensionalized and solved numerically with the
help of Maple software by the finite difference method.

This work presents an analytical and numerical method
for heat transfer nonlinear problems in porous fins. The
Darcy model is utilized to simulate the flow through the
porous media. Conduction-radiation-convection heat trans-
fer process is an inherently nonlinear phenomenon in which
the coupling on the boundary of the body is mathematically
represented by a nonlinear relationship between the absolute
temperature and its normal derivative, in which the
unknown is the temperature distribution. The solution to
the problem is given by the limit of a sequence whose ele-
ments are obtained, each one, from the minimization of a
quadratic functional.

2. Mathematical Model

The modeling of heat transfer that occurs in a porous radial
fin requires several feasibility considerations in its analysis.
This study comprises such an analysis considering the mate-
rial that constitutes the fin as being isotropic and homoge-
neous, in addition to the fin being analyzed as a strict heat
sink. Regarding the fin geometry, this work considers a

radial fin, being analyzed in cylindrical coordinates, which
is connected to a tubular body, as exemplified in Figure 1.

Analyzing the fin as a porous medium leads to infiltra-
tion of the fluid in which the fin is inserted, thus allowing
a greater exchange of heat between them. The general heat
exchange equation used in this work arises from

q xð Þ − q x + Δxð Þ = _mcp T xð Þ − T∞½ � + hPΔx T xð Þ − T∞½ �

+ PΔxσε T4 xð Þ − αf

ε
T4
∞

� �
,

ð1Þ

where the fluid mass flow rate is

_m = ρvwΔxW, ð2Þ

in which the interactions between the porous medium and
the fluid are described by the Darcy law and Boussinesq
approximation, which provides the model

vw xð Þ = gKβf

ν
T xð Þ − T∞½ �: ð3Þ

The Fourier law of thermal conduction states that

q = −keffAc
dT
dx

: ð4Þ

Combining the equations, evaluating at Δx⟶ 0, and
assuming that αf = ε, we can rewrite Equation (1), adapting
it to cylindrical coordinates, such as

t dr
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g
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R

Figure 1: Radial porous fin.
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1
r
d
dr

r
dT
dr

� �
−
ρf gβf K

νf keff t
T − Tað Þ−− 2εσFf−a

keff t
Tj j3T� �

= 0:

ð5Þ

The term jTj3T is used to ensure coerciveness, since the
function for the temperature T is strictly increasing, in all
applied temperature values, ensuring the correct physical
description of the phenomenon. [25]

By rearranging the equation so that its algebraic manip-
ulation is convenient, you can rewrite Equation (6) as

d2T
dr2

+ 1
r
dT
dr

− A T − T∞j j T − T∞ð Þ½ � − B Tj j3T� �
− T4

∞
� 	

= 0,

ð6Þ

where the constant A gathers all flow and geometric param-
eters that affect the solution of the problem and B character-
izes the radiation parameter, which carries the effects of the
porous body’s emissivity.

For a more comprehensive mathematical analysis, it is
convenient that the temperature values and the geometric
position values will be dimensionless through the following
relationships:

θ = T rð Þ
Tb

,

ξ = r
R
:

ð7Þ

This equation is considered by being subject to the fol-
lowing boundary conditions:

ξ = 1⟶ θ = Tb = 1 baseð Þ,

ξ = R⟶
dθ
dξ

= 0 tipð Þ:
ð8Þ

In order to seek possible approaches to the problem, it is
assumed that the solution θ of the original problem is given
by

θ = lim
i⟶∞

φ ið Þ
h i

: ð9Þ

That is, the solution of the problem analyzed by this
work is given by the limit of the sequence ½φð1Þ, φð2Þ, φ3,⋯�
, whose elements are obtained from

1
ξ

d
dξ

ξ
dφ i+1ð Þ

dξ

� �
− αφ i+1ð Þ + β ið Þ = 0,

β ið Þ = αφ ið Þ − A φ ið Þ − T∞




 


 φ ið Þ − T∞

� �
− B φ ið Þ




 


3φ ið Þ − T4
∞

� �
:

ð10Þ

If we consider that φðiÞ is known, the problem described
by Equation (11) is a classical linear boundary value prob-

lem, which can be easily solved. Therefore, to ensure that
the solution is applicable to the problem, evidence of some
aspects of the problem must be presented. The constant α
will be discussed in more depth later.

2.1. Nondecreasing Proof. In order to prove that the sequence
of φðiÞ is nondescending, the difference between two consec-
utive terms of the sequence is considered.

1
ξ

d
dξ

ξ
d
dξ

φ i+1ð Þ − φ ið Þ
� �� �

− α φ i+1ð Þ − φ ið Þ
� �

+ α φ ið Þ − φ i−1ð Þ
� �

− A φ ið Þ − T∞




 


 φ ið Þ − T∞

� �
− B φ ið Þ




 


3φ ið Þ − T4
∞

� �
++A φ i−1ð Þ − T∞




 


 φ i−1ð Þ − T∞

� �

+ B φ i−1ð Þ



 


3φ i−1ð Þ
� �

− T4
∞

� �
= 0:

ð11Þ

Since

φ∧ i+1ð Þ 1ð Þ − φ∧ ið Þ 1ð Þ = 0,
d
dξ

φ∧ i+1ð Þ − φ∧ ið Þ
� �





ξ=R
= 0,

ð12Þ

defining the function φð1Þas the solution of

1
ξ

d
dξ

ξ
d
dξ

φ 1ð Þ − φ 0ð Þ
� �� �

− α φ 1ð Þ − φ 0ð Þ
� �

= A φ 0ð Þ − T∞




 


 φ 0ð Þ − T∞

� �
− B φ 0ð Þ




 


3φ 0ð Þ − T4
∞

� �
≥ 0

ð13Þ

with

φ∧ 1ð Þ 1ð Þ = 1,
dφ∧ 1ð Þ

dξ

� �




ξ=Rext

= 0,
ð14Þ

we have, since φ0 ≡ 0, that

φ 1ð Þ − φ 0ð Þ ≥ 0⇒ φ 1ð Þ ≥ φ 0ð Þ ≡ 0: ð15Þ

So, we can write ði = 1Þ

1
ξ

d
dξ

ξ
d
dξ

φ 2ð Þ − φ 1ð Þ
� �� �

− α φ 2ð Þ − φ 1ð Þ
� �

+ α φ 1ð Þ − φ 0ð Þ
� �

− A φ 1ð Þ − T∞




 


 φ 1ð Þ − T∞

� �
− B φ 1ð Þ




 


3φ 1ð Þ − T4
∞

� �

+ A φ 0ð Þ − T∞




 


 φ 0ð Þ − T∞

� �
+ B φ 0ð Þ




 


3φ 0ð Þ − T4
∞

� �
= 0

ð16Þ
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with

φ∧ 2ð Þ 1ð Þ − φ∧ 1ð Þ 1ð Þ = 0,
d
dξ

φ∧ 2ð Þ − φ∧ 1ð Þ
� �





ξ=Rext

= 0:
ð17Þ

So, choosing α large enough for ensuring that

α φ 1ð Þ − φ 0ð Þ
� �

≥ A φ 1ð Þ − T∞




 


 φ 1ð Þ − T∞

� �
+ B φ 1ð Þ




 


3φ 1ð Þ − T4
∞

� �
− A φ 0ð Þ − T∞




 



� φ 0ð Þ − T∞

� �
− B φ 0ð Þ




 


3φ 0ð Þ − T4
∞

� �
,

ð18Þ

the following inequality holds:

φ 2ð Þ ≥ φ 1ð Þ ≥ φ 1ð Þ ≡ 0: ð19Þ

Repeating the above procedure, we have

⋯≥φ i+1ð Þ ≥ φ ið Þ ≥ φ i−1ð Þ ≥⋯≥ φ 1ð Þ ≥ φ 0ð Þ ≡ 0 ð20Þ

provided the constant α is large enough to ensure that

α ≥
A φ i+1ð Þ − T∞


 

 φ i+1ð Þ − T∞

� �
φ i+1ð Þ − φ ið Þ +

B φ i+1ð Þ

 

3φ i+1ð Þ − T4
∞

h i
φ i+1ð Þ − φ ið Þ

−
A φ ið Þ − T∞


 

 φ ið Þ − T∞

� �
− B φ ið Þ

 

3φ ið Þ − T4

∞

h i
φ i+1ð Þ − φ ið Þ :

ð21Þ

It is sufficient to choose α in such a way that

α ≥
d
dθ

A θ − T∞j j θ − T∞ð Þ + B θj j3θ − T4
∞

� �� �
θ=1

= 2A θ − T∞j j + 4Bθ3
� 	

θ=1 = 2A T∞j j + 4B:
ð22Þ

2.2. Upper Bound. Combining the above problems, we have

1
ξ

d
dξ

ξ
d
dξ

θ − φ i+1ð Þ
� �� �

+ α φ i+1ð Þ − φ ið Þ
� �

− −A θ − T∞j j θ − T∞ð Þ + B θj j3θ − T4
∞

� 	
−

�
A φ ið Þ − T∞




 



� φ ið Þ − T∞

� �
− B φ ið Þ




 


3φ ið Þ − T4
∞

� ��
= 0,

ð23Þ

with the boundary conditions

θ − φ i+1ð Þ = 0atξ = 1,
d
dξ

θ − φ i+1ð Þ
� �

= 0atξ = R:
ð24Þ

Now, let us assume that ðθ − φði+1ÞÞ is negative at some
point. Since

1
ξ

d
dξ

ξ
d
dξ

θ − φ i+1ð Þ
� �� �

− α θ − φ i+1ð Þ
� �

− −A θ − T∞j j θ − T∞ð Þ + B θj j3θ − T4
∞

� 	�
− A φ ið Þ − T∞




 


 φ ið Þ − T∞

� �
− B φ ið Þ




 


3φ ið Þ − θ4∞

� ��
= 0,

ð25Þ

we must have

α θ − φ i+1ð Þ
� �

− A θ − T∞j j θ − T∞ð Þ + B ∣θ ∣ θ3 − T4
∞

� 	
− A φ ið Þ − T∞




 


 φ ið Þ − T∞

� �
− B φ ið Þ




 


3φ ið Þ − θ4∞

� �
≤ 0:

ð26Þ

Since θ ≥ 0, φ0 ≡ 0, and α is large enough, we conclude
that the above inequality never holds and, so, ðθ − φð1ÞÞ is
nonnegative everywhere. Repeating this procedure, we can
conclude that θ ≥ φðiÞ, for any i. In other words, θ is an upper
bound for the elements φðiÞ. This ensures the existence of the
limit θ = lim

i⟶∞
φðiÞ.
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Figure 2: Alpha vs. required iterations.
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2.3. Exact Solution. The maximum of θ − φði+1Þ occurs when
its second derivative is not positive. So, this maximum
occurs when

α φ i+1ð Þ − φ ið Þ
� �

≥ A θ − T∞j j θ − T∞ð Þ + B θj j3θ − T4
∞

� 	�
− A φ ið Þ − T∞




 


 φ ið Þ − T∞

� �
− B φ ið Þ




 


3φ ið Þ − T4
∞

� ��
:

ð27Þ

Since the sequence ½φð0Þ, φð1Þ, φð2Þ, φ3� has an upper
bound and Ajθ − T∞jðθ − T∞Þ + B½θ4 − T4

∞� is a strictly
increasing function, we can conclude that the limit of the
sequence is the solution of the original problem.

3. Numerical Analysis

The problem is modeled as

1
ξ

d
dξ

ξ
dφ i+1ð Þ

dξ

� �
− αφ i+1ð Þ + β ið Þ = 0: ð28Þ
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Figure 3: Alpha vs. iterations, for small alpha.
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with

β ið Þ = αφ ið Þ − A φ ið Þ − T∞




 


 φ ið Þ − T∞

� �
− B φ ið Þ




 


3φ ið Þ − T4
∞

� �
ð29Þ

that has, as its solution the limit of the sequence ½φ0, φ1, φ2

, φ3 ⋯ �, where we chose to use the finite difference method
to solve the ODE.

Thus, the numerical model adopted becomes

φ i+1ð Þ
n = l

2 + αl2
φ

i+1ð Þ
n+1 + φ

i+1ð Þ
n−1

l
+ φ

i+1ð Þ
n+1 − φ

i+1ð Þ
n−1

2ξn
+ β ið Þ

n l

#"
,

ð30Þ

where

β ið Þ
n = αφ ið Þ

n − A ∣ φ ið Þ
n − T∞ ∣ φ ið Þ

n − T∞

� �h i
− B φ ið Þ

n




 


3 φ ið Þ
n

� �
− T4

∞

� �� �
:

ð31Þ

Therefore, it can be understood that i is the index that
represents the numerical iteration comprising each element
of the sequence whose limit is the solution to the problem.

Meanwhile, n is the index that represents the numerical
iterations of each point in space (geometric) along the radial
fin.

A more in-depth study of α demonstrates that the larger
its value, the larger the number of iterations required to
ensure sequence convergence, as can be seen in Figure 2.
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Figure 2 also shows that such increase in the number of
iterations is linear to the increase in the value of α; however
this linearity is valid in the region where α is large.

For values of α close to zero, it can be noticed that the num-
ber of iterations varies, seeking to approach linearity as it moves
away from values close to zero, as can be seen in Figure 3.

Disregarding the variation in computational effort for each
α due to the increase in the number of iterations, the thermal
profile of the fin is identical for any α and is given by Figure 4.

The convergence of the numerical sequence can be
noticed, according to the adopted parameters, through the
visualization of a well-behaved curve, where after a certain

point, there is no longer a considerable difference between
previous values.

It is interesting to analyze the behavior of the numerical
convergence of specific points on the fin, since, for compar-
ative purposes, the variation in the convergence speed is
noted. For this, the points were analyzed: 0.25, 0.5, 0.75,
and 1.0, as illustrated in Figures 5–8.

It is possible to better visualize how the parameters of
temperature, sequence elements, and fin nodal points vary
in a combined way through Figure 9.

Thus, as expected, it is noted that convergence occurs
more quickly at points closer to the base.
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In order to further analyze the influence of radiation on
the thermal profile that was modeled in this work, it was
studied how the variation of the parameter B affects the tem-
perature distribution along a porous radial fin. For this, the
parameter B was taken with different values, where such
values were compared with the situation where B = 0. The
consideration of B = 0 implies a situation where thermal
radiation is not considered; that is, the nonlinear tempera-
ture term due to radiation is removed from the modeling.
It is noteworthy that disregarding the effects of thermal radi-
ation greatly alters the problem analyzed, since the radiation

emitted by the fin through its pores considerably affects how
the temperature is dissipated in the body.

Figure 10 shows six superimposed temperature profiles,
in which the value of the parameter B varies from B = 0 (a
situation that disregards the effects of thermal radiation),
increasing the value of B, passing by B = 20, B = 40, B = 60,
B = 80, up to B = 100.

For a better analysis, Table 1 shows the dimensionless
values of the temperature in some selected nodes, com-
paring such values for the situations where B = 0 with B
= 20.
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Increasing the value of B means increasing the influence
of the effects of thermal radiation. It is interesting to take this
increment gradually, so that it is possible to analyze the ther-
mal behavior of the fin as the radiation becomes consider-
able. Thus, analyzing the thermal profile for the value of
B = 40, we have Table 2.

It can be noticed, analyzing Tables 1 and 2, that the
greatest discrepancy between temperature values occurs
between nodes 10 and 20. As the analysis progresses, the
temperature values for B = 60 are taken, as seen in Table 3.

Going forward in the analysis of the influence of thermal
radiation, it can already be noted that, from here on, large
increments in the value of B change the profile little, as can
be seen in Table 4.

The analysis ends with the temperature values for B =
100 as shown in Table 5, where it is noticed that the thermal
profile varies little in relation to values of B a little smaller.
The greatest discrepancy between temperature values for B
= 100 and B = 80 is less than 6%, bringing the hypothesis
of negligible variation in values much larger in B.

Table 1: Comparison of radiation values B = 20:

Node B = 0 B = 20 B20 − B0 %

1 1.0000 1.0000 0.0000 0.00%

2 0.9228 0.7862 0.1366 14.80%

5 0.7381 0.4996 0.2385 32.31%

10 0.5334 0.3219 0.2115 39.65%

20 0.3157 0.1889 0.1268 40.16%

30 0.2087 0.1308 0.0779 37.33%

40 0.1486 0.0979 0.0507 34.12%

50 0.1121 0.0773 0.0348 31.07%

60 0.0888 0.0637 0.0252 28.32%

70 0.0738 0.0546 0.0191 25.94%

80 0.0644 0.0489 0.0155 24.07%

90 0.0593 0.0457 0.0136 22.88%

100 0.0578 0.0448 0.0130 22.49%

Table 2: Comparison of radiation values B = 40.

Node B = 0 B = 40 B40 − B0 %

1 1.0000 1.0000 0.0000 0.00%

2 0.9228 0.7343 0.1885 20.43%

5 0.7381 0.4348 0.3033 41.09%

10 0.5334 0.2731 0.2603 48.80%

20 0.3157 0.1603 0.1555 49.24%

30 0.2087 0.1122 0.0965 46.24%

40 0.1486 0.0851 0.0636 42.76%

50 0.1121 0.0680 0.0441 39.38%

60 0.0888 0.0566 0.0322 36.27%

70 0.0738 0.0490 0.0247 33.54%

80 0.0644 0.0442 0.0202 31.38%

90 0.0593 0.0415 0.0178 29.99%

100 0.0578 0.0407 0.0171 29.54%

Table 3: Comparison of radiation values B = 60.

Node B = 0 B = 60 B60 − B0 %

1 1.0000 1.0000 0.0000 0.00%

2 0.9228 0.7006 0.2222 24.08%

5 0.7381 0.3975 0.3406 46.15%

10 0.5334 0.2462 0.2873 53.85%

20 0.3157 0.1445 0.1713 54.24%

30 0.2087 0.1018 0.1069 51.22%

40 0.1486 0.0778 0.0709 47.69%

50 0.1121 0.0625 0.0496 44.21%

60 0.0888 0.0524 0.0364 40.97%

70 0.0738 0.0457 0.0281 38.11%

80 0.0644 0.0413 0.0231 35.84%

90 0.0593 0.0389 0.0204 34.36%

100 0.0578 0.0382 0.0196 33.89%

Table 4: Comparison of radiation values B = 80.

Node B = 0 B = 80 B80 − B0 %

1 1.0000 1.0000 0.0000 0.00%

2 0.9228 0.6756 0.2472 26.79%

5 0.7381 0.3717 0.3664 49.64%

10 0.5334 0.2281 0.3054 57.24%

20 0.3157 0.1339 0.1819 57.60%

30 0.2087 0.0947 0.1140 54.61%

40 0.1486 0.0727 0.0759 51.08%

50 0.1121 0.0588 0.0533 47.57%

60 0.0888 0.0495 0.0393 44.28%

70 0.0738 0.0433 0.0305 41.36%

80 0.0644 0.0393 0.0251 39.03%

90 0.0593 0.0371 0.0222 37.51%

100 0.0578 0.0364 0.0214 37.02%

Table 5: Comparison of radiation values B = 100.

Node B = 0 B = 100 B100 − B0 %

1 1.0000 1.0000 0.0000 0.00%

2 0.9228 0.6557 0.2671 28.95%

5 0.7381 0.3523 0.3858 52.27%

10 0.5334 0.2146 0.3188 59.76%

20 0.3157 0.1260 0.1897 60.09%

30 0.2087 0.0895 0.1192 57.14%

40 0.1486 0.0689 0.0797 53.63%

50 0.1121 0.0559 0.0562 50.12%

60 0.0888 0.0472 0.0416 46.81%

70 0.0738 0.0414 0.0324 43.87%

80 0.0644 0.0377 0.0267 41.50%

90 0.0593 0.0356 0.0237 39.97%

100 0.0578 0.0350 0.0228 39.47%
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It can be seen, through this analysis, that the parameter
that carries the effect of thermal radiation has a great influ-
ence on the thermal profile, since the discrepancy in temper-
ature values between profiles with higher values of B reaches
more than 60% (comparison between the cases B = 0 and B
= 100).

4. Conclusions

This work provides a comprehensive approach to heat dis-
sipation in extended surfaces, where several parameters
were considered, among which the application of thermal
radiation effects and the porosity of the fin material stand
out. The developed model seeks an adequate solution to
the problem, applying a cylindrical geometry, widely used
in engineering, mainly in heat dissipation in industrial
pipes.

The mathematical description of the solution proves that
the model used in this work has an exact solution, which was
presented, provided that a specific criterion of nondecrease
of the thermal profile is met, which was also mathematically
proven.

The simple methodology employed considers realistic
modeling of heat transfer with specific boundary conditions
in different porous media. Applications of this procedure
seeks to extrapolate finned array analysis of heat sinks and
the relevance of your parameters on final heat flux.

Appendix

The convexity and coercivity of the functional

I ω½ � = 1
2

ðξE
1

dω
dξ

� �2
ξdξ + A

3

ðξE
1
ω − θ∞j j3ξdξ

+ B
5

ðξE
1

ωj j5 − 5ωθ4∞
 �

ξdξ

ðA:1Þ

guarantee the existence and uniqueness of the solution in
minimization. [26]

A.1. Convexity

The convexity demonstration will be divided into 3 func-
tional terms:

(i) ð1/2ÞÐ ξE1 ðdω/dξÞ2ξdξ
(ii) ðA/3ÞÐ ξE1 jω − θ∞j3ξdξ

(iii)
Ð ξE
1 fjωj

5 − 5ωθ4∞gξdξ

(a) In this term ð1/2ÞÐ ξE1 ðdω/dξÞ2ξdξ, we take

I1 ω½ � =
ðξE
1

dω
dξ

� �2
ξdξ ðA:2Þ

We need to demonstrate that I1½tω1 + ð1 − tÞω2� ≤ tI1½
ω1� + ð1 − tÞI1½ω2� with t ∈ ð0 ; 1Þ and ω1 ≠ ω2 in the space
of admissible functions.

Applying the condition to the functional, we have

ðξE
1

d tω1 + 1 − tð Þω2ð Þ
dξ

� �2
ξdξ

≤ t
ðξE
1

dω1
dξ

� �2
ξdξ++ 1 − tð Þ

ðξE
1

dω2
dξ

� �2
ξdξ

⇒ t + 1 − tð Þ
ðξE
1

dω2
dξ

� �2
ξdξ

− t2
ðξE
1

dω1
dξ

� �2
ξdξ−−2t t − 1ð Þ

ðξE
1

dω1
dξ

· dω2
dξ

ξdξ−− 1 − tð Þ2
ðξE
1

dω2
dξ

� �2
ξdξ

≥ 0⇒ t − t2
� �ðξE

1

dω1
dξ

� �2
ξdξ

+ 1 − tð Þ − 1 − tð Þ2� 	
⋯⋯

ðξE
1

dω2
dξ

� �2
ξdξ

+ 2 t − t2
� �ðξE

1

dω1
dξ

· dω2
dξ

ξdξ ≥ 0:

ðA:3Þ

For t ∈ ð0 ; 1Þ, we have t − t2 > 0. Thus, the function I1½ω�
is nonnegative.

(b) The term ðA/3ÞÐ ξE1 jω − θ∞j3ξdξ has the 2 variation

ðA/3ÞÐ ξE1 6jω − θ∞jξdξ which is strictly positive with
ω different from constant

(c) The term ðB/5ÞÐ ξE1 fjωj5 − 5ωθ4∞gξdξ has the 2 varia-
tions of the 1 parcel equal to ðB/5ÞÐ ξE1 j20ωj3ξdξ
which is strictly positive with ω different from con-
stant. The 2 portions are a linear term that does
not influence the convexity of the functional

Thus, the functional I½ω� is convex.

A.2. Coerciveness

The functional 27 is coercive if

lim
γ⟶+∞

I γω½ �
γ

� �
= +∞: ðA:4Þ

For the purpose of coerciveness, we will take ∥ω∥ = 1,
with ω ∈H.
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We have

I γω½ � = 1
2

ðξE
1

dγω
dξ

� �2
ξdξ + A

3

ðξE
1
γω − θ∞j j3ξdξ

+ B
5

ðξE
1

γωj j5 − 5γωθ4∞
� �

ξdξ⇒ I γω½ �

= γ2

2

ðξE
1

dω
dξ

� �2
ξdξ + A

3 γj j3
ðξE
1

ω −
θ∞
γ











3
ξdξ

+ B
5 γj j5

ðξE
1

ωj j5 − ωθ4∞
γj j4

 !
ξdξ:

ðA:5Þ

So,

I γω½ �
γ

= γ

2

ðξE
1

dω
dξ

� �2
ξdξ + A

3 γj j2
ðξE
1

ω −
θ∞
γ











3
ξdξ

+ B
5 γj j4

ðξE
1

ωj j5 − ωθ4∞
γj j4

 !
ξdξ,

ðA:6Þ

in which

lim
γ⟶+∞

A
3 γj j2

ðξE
1

ω −
θ∞
γ











3
ξdξ

 !
=

+∞, if ω ≠ constant,
+∞, if ω = constant,

(

lim
γ⟶+∞

γ

2

ðξE
1

dω
dξ

� �2
ξdξ

 !
=

+∞, if ω ≠ constant,
0, if ω = constant,

(

lim
γ⟶+∞

B
5 γj j4

ðξE
1

ωj j5 − ωθ4∞
γj j4

 !
ξdξ

 !
=

+∞, if ω ≠ constant,
0, if ω = constant:

(

ðA:7Þ

Hence, the equality 30 is true.

Symbols

A: Porous parameter
Ac: Cross-sectional area
B: Radiation parameter
cp: Specif heat

g!: Gravitational acceleration
h: Convective coefficient
k: Thermal conductivity
keff : Effective thermal conductivity of porous media
K : Permeability of the porous fin
_m: Mass flow rate
P: Fin perimeter
q: Heat transfer rate
r: Radial coodinate
R: Fin radius
t: Fin thickness
T : Temperature
vw: Fluid velocity

W: Width of the fin
x: Axial coordinate

Greek Symbols

αf : Thermal diffusivity
βf : Thermal expansion coefficient
Δ: Temperature difference
ε: Emissivity
φ: Solution sequence elements
σ: StephenBoltzmann constant
ν: Kinematic viscosity
ρ: Fluid density.
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