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As the space-time model of the theory of relativity, four-dimensional Minkowski space is the basis of the theoretical framework for
the development of the theory of relativity. In this paper, we introduce Darboux vector fields in four-dimensional Minkowski
space. Using these vector fields, we define some new planes and curves. We find that the new planes are the instantaneous
rotation planes of rigid body moving in four-dimensional space-time. In addition, according to some characteristics of
Darboux vectors in geometry, we define some new space curves in four-dimensional space-time and describe them with
curvature functions. Finally, we give some examples.

1. Introduction

On the basis of the principle of relativity and Lorentz trans-
formation, in 1907, Minkowski proposed to add a time
dimension on the basis of three space dimensions, thus
forming a four-dimensional space-time, and this space-
time is also called Minkowski 4-space. The metric tensor g
in E4

1 is given by

g = dx21 + dx22 + dx23 − dx24, ð1Þ

where ðx1, x2, x3, x4Þ is a standard rectangular coordinate
system in E4

1. Minkowski space is not only closely related
to physics but also provides theoretical and methodological
support for the study of astrophysics and cosmology [1–4].
The study of submanifolds in Minkowski space is of interest
in relativity theory; therefore, more and more geometers and
physicists are committed to the study of submanifolds in
Minkowski space. For example, in [5], the authors studied
some local properties of slant geometry on spacelike subma-
nifolds of codimension two in Lorentz-Minkowski space and
investigate spacelike curves in Lorentz-Minkowski 3-space
from different viewpoints as another special case. In [6],
the authors studied null helices of 1-dimensional lightlike
submanifolds and gave some characterizations of null helices

in ℝ3
1. We refer the reader to [7–17] and the references

therein for more related works.
The Darboux vector is the local speed vector of the Fre-

net frame of space curves, which was discovered and named
after Gaston Darboux [18]. If an object moves along a regu-
lar curve, we can use the Frenet frame of space curves to
describe the motion of the object in terms of two vectors:
the translation vector and the rotation vector, where the
rotation vector is the Darboux vector. Because the Darboux
vector is directly related to the angular momentum, it is also
called the angular momentum vector.

In the past few decades, many researchers have mainly
studied Darboux vectors in 3-dimensional space [19–26]
and have obtained some interesting conclusions. For exam-
ple, in 2012, Ziplar introduced and studied Darboux helices
in Euclidean 3-space and proved that Darboux helices coin-
cide with slant helices [19]. In [20], Öztürk and Nešovic′
defined the pseudo null and null Cartan Darboux helices
in Minkowski 3-space and obtained the relationship between
pseudo null, null Cartan Darboux helices, and slant helices.
In [21], the quasi Darboux vector field of null curve in Min-
kowski 3-space was defined, and some interesting conclu-
sions about osculating developable of null curve which is
defined by quasi Darboux vector field of null curve were
obtained. Wang and Pei defined the Darboux vector of the
null curve in [23] and described the direction of the rotation
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axis of the Cartan frame in Minkowski 3-space. Later, in
2017, Düldül [27] extended the Darboux frame field to
four-dimensional Euclidean space and gave the relationship
between the curvature of Frenet frame and Darboux frame.
In [28], Düldül defined some new vector fields in four-
dimensional Euclidean space and showed that the deter-
mined new planes play the role of the Darboux vector. _I
larslan and Yildirim [29] defined the Darboux helices in
four-dimensional Euclidean space as a curve whose Darboux
vector makes a constant angle with some fixed direction and
obtained relation between the curves Darboux helix, general
helix, and V4-slant helix in a special case.

Motivated by those ideas, in this paper, we construct four
new vector fields along the space curve whose curvatures do
not disappear in four-dimensional space-time. Based on these
vector fields, we define some new planes and helices in four-
dimensional space-time. The corresponding curvature func-
tions are given when the position vectors of the curves lie on
different planes. Moreover, we define Darboux helices inMin-
kowski 4-space and give some descriptions of their curvature
functions.

2. Preliminaries

Four-dimensional space-time E4
1 is the real four-dimensional

vector space ℝ4 equipped with the standard flat metric given
by

x, yh i = x1y1 + x2y2 + x3y3 − x4y4: ð2Þ

For any three vectors x = ðx1, x2, x3, x4Þ, y = ðy1, y2, y3,
y4Þ, and z = ðz1, z2, z3, z4Þ in E4

1, their exterior product is
given by

x × y × z =

e1 e2 e3 −e4
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

�����������

�����������
, ð3Þ

where fe1, e2, e3, e4g is an orthogonal basis in E4
1, that is,

e1 = 1, 0, 0, 0ð Þ, e2 = 0, 1, 0, 0ð Þ, e3 = 0, 0, 1, 0ð Þ, e4 = 0, 0, 0, 1ð Þ:
ð4Þ

A vector v in E4
1 is called spacelike, timelike, or null

(lightlike), if hv, vi > 0 or hv, vi < 0, hv, vi = 0, respectively.
In particular, the vector v = 0 is said to be spacelike. A curve
γðsÞ: I ⟶ E4

1 is called spacelike, timelike, or null (lightlike)
if all of its velocity vectors γ′ðsÞ satisfy hγ′, γ′i > 0, hγ′, γ′i
< 0, or hγ′, γ′i = 0, respectively. The norm of a vector v in
E4
1 is given by ∥v∥ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣hv, vi ∣p

[15].

Definition 1 (see [30]). Let γðsÞ be a null curve parameterized
by null arc length s (i.e., ∥γ′′ðsÞ∥ = 1) in E4

1. Then, γðsÞ can be
framed by a Cartan Frenet frame fT ,N , B1, B2g such that

T ′

N ′

B1′

B2′

2
666664

3
777775 =

0 1 0 0
k2 0 −1 0
0 −k2 0 k3

−k3 0 0 0

2
666664

3
777775

T

N

B1

B2

2
666664

3
777775, ð5Þ

where

N , B2h i = T , B2h i = N , B1h i = T ,Nh i = T , Th i
= B1, B1h i = B1, B2h i = 0,

N ,Nh i = B2, B2h i = T , B1h i = 1,
T ×N × B1 = B2,N × B1 × B2 = B1, B1 × B2 × T

=N , B2 × T ×N = T:

ð6Þ

In sequence, T ,N , B1, B2 are called the tangent, principal
normal, first binormal, and second binormal vector field of
γðsÞ and k2 and k3 are first curvature and second curvature
of the curve γðsÞ, respectively.

Definition 2 (see [16]). LetγðsÞ be a pseudo null curve
parameterized by arc length s (i.e., ∥γ′′ðsÞ∥ = 0) in E4

1. Then,
the Frenet equation is defined by

T ′

N ′

B1′

B2′

2
666664

3
777775 =

0 1 0 0
0 0 k1 0
0 k2 0 −k1
−1 0 −k2 0

2
666664

3
777775

T

N

B1

B2

2
666664

3
777775, ð7Þ

where

B2, B2h i = B1, B2h i = N , B1h i = T , B1h i
= T ,Nh i = T , B2h i = N ,Nh i = 0,

N , B2h i = B1, B1h i = T , Th i = 1,
T ×N × B1 =N ,N × B1 × B2 = T , B1 × B2 × T

= B2, B2 × T ×N = B1,

ð8Þ

and k1 and k2 are first curvature and second curvature of the
curve γðsÞ, respectively.

3. Darboux Helix and Planes of Null Curve

When the Frenet frame fT ,N , B1, B2g of a nongeodesic null
curve makes an instantaneous helix motion in E4

1, there
exists an axis of the frame’s rotation. The direction of such
axis is given by the vector

D1 = k2T + B1,D2 = B2,D3 = T ,D4 = k3N + k2B2, ð9Þ

and we call them the Darboux vectors for the null curves in
E4
1. The Darboux vectors satisfy the Darboux equations
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T ′ =D1 ×D2 × T ,
N ′ =D2 ×D1 ×N ,
B1′ =D3 ×D4 × B1,
B2′ =D4 ×D3 × B2:

ð10Þ

From (10), we know that Frenet vectors T and N rotate
around the D1D2 plane, and Frenet vectors B1 and B2 rotate
around the D3D4 plane. We find that the D1D2 plane and
D3D4 plane play the role of Darboux vector in three-
dimensional space. We also note that D2 and D3 are Frenet
vectors of the null curve, fD1,D2,D3,D4g is linearly inde-
pendent, and D1 is orthogonal to D2 and D4. We are going
to use the subspace spanned by fD1,D2g and fD1,D4g to
represent D1D2 plane and D1D4 plane, respectively.

Inspired by [10, 28], we discuss the situation when the
curve γðsÞ lies in D1D2 and D1D4 planes.

Theorem 3. Let γðsÞ: I ⟶ E4
1 be a null curve parameterized

by null arc length s. k2, k3 are the curvature functions of the
null curve γðsÞ. If γðsÞ lies in D1D2 plane, then the curvature
functions k2, k3 satisfy

1/k3ð Þ′
k3 + k2′/k3ð Þ′

" #
′ = 0, ð11Þ

and in addition, the curve γðsÞ can be expressed as

γ sð Þ = cD1 +
ck2′ − 1

k3
D2, ð12Þ

where c is nonzero constant.

Proof. We may assume that

γ sð Þ = λ sð ÞD1 + μ sð ÞD2, ð13Þ

and we take the derivative of (13) according to s, and we
obtain

T = γ′ sð Þ = λk2ð Þ′ − μk3
� �

T + λ′B1 + λk3 + μ′
� �

B2: ð14Þ

Hence,

λk2ð Þ′ − μk3 = 1,
λ′ = 0,
λk3 + μ′ = 0:

8>><
>>: ð15Þ

From the second equation of (15), we get

λ = c, ð16Þ

and substituting (16) into the first equation of (15), we have

μ = ck2′ − 1
k3

: ð17Þ

Then, the curve γðsÞ can be denoted as

γ sð Þ = cD1 +
ck2′ − 1

k3
D2: ð18Þ

From the third equation of (15), we get

c = 1/k3ð Þ′
k3 + k2′/k3ð Þ′

, ð19Þ

that is,

1/k3ð Þ′
k3 + k2′/k3ð Þ′

" #
′ = 0: ð20Þ

This ends the proof.

Corollary 4. In particular, when k3 = a = constant ≠ 0, we
have k2 = ða2/2Þs2 + b, and the curve γðsÞ can be expressed as

γ sð Þ = cD1 +
ca2s − 1

a
D2, ð21Þ

where a and b are constants.

Theorem 5. Let γðsÞ: I ⟶ E4
1 be a null curve parameterized

by null arc length s. k2, k3 are the curvature functions of the
pseudonull curve γðsÞ. If the γðsÞ lies in D1D4 plane, then
the curvature functions k2, k3 satisfy

k2 =
s + c3
c1s + c2

, k23 =
c1 s + c3ð Þ2

c1s + c2ð Þ2 1 − s + c3ð Þ2� � , ð22Þ

and in addition, the curve γðsÞ can be expressed as

γ sð Þ = c1s + c2ð ÞD1 +
c1
k3

D4, ð23Þ

where c1, c2, and c3 are constants.

Proof. Assume that

γ sð Þ = λD1 + μD4: ð24Þ

Differentiating equation (24) with respect to s, we have

T = γ′ = λk2ð Þ′T + μk3ð Þ′N + λ′ − μk3
� �

B1

+ μk2ð Þ′ + λk3
� �

B2:
ð25Þ
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Then, we obtain the system of differential equations

λk2ð Þ′ = 1,
μk3ð Þ′ = 0,
λ′ − μk3 = 0,
μk2ð Þ′ + λk3 = 0:

8>>>>><
>>>>>:

ð26Þ

From the second equation of (26), we get

μk3 = c1: ð27Þ

Substituting (27) into the third equation of (26), we have

λ = c1s + c2: ð28Þ

Then, the curve γðsÞ can be denoted as

γ sð Þ = c1s + c2ð ÞD1 +
c1
k3

D4: ð29Þ

Substituting (28) into the first equation of (26), we have

k2 =
s + c3
c1s + c2

: ð30Þ

Substituting (27) and (28) into the fourth equation of
(26), we can calculate that

k23 =
c1 s + c3ð Þ2

c1s + c2ð Þ2 1 − s + c3ð Þ2� � : ð31Þ

This ends the proof.

Definition 6. Let γðsÞ: I ⟶ E4
1 be a null curve with parame-

terized by null arc length s. If there exists a fixed direction
V ≠ 0 such that

D1, Vh i = a, a ∈ℝ, ð32Þ

then the null curve γðsÞ is called the null Darboux helix, and
the fixed direction V is called an axis of the null Darboux
helix.

Theorem 7. Let γðsÞ: I ⟶ E4
1 be a null curve with parame-

terized by null arc length s. If γðsÞ is a null Darboux helix
in E4

1 whose fixed direction V satisfies

D1, Vh i = a, a ∈ℝ, ð33Þ

then V is given by

V = a − bk2e
Ð
ξds

� �
T + bξe

Ð
ξdsN

+ be
Ð
ξdsB1 −

bk2′
k3

e
Ð
ξdsB2,

ð34Þ

and the curvature functions k2, k3 satisfy

2k2 − ξ2 − ξ′
� �

e
Ð
ξds = a

b
, ð35Þ

where

ξ = k3 − k2′/k3ð Þ′
k2′/k3

, ð36Þ

and b ∈ℝ0, k3 ≠ 0, k2 ≠ const.

Proof. Let γðsÞ: I ⟶ E4
1 be a null Darboux helix with

parameterized by null arc length s. Then, for a fixed direc-
tion V satisfying

D1, Vh i = a, a ∈ℝ, ð37Þ

we can assume

V = u1T + u2N + u3B1 + u4B2: ð38Þ

By using (5), we can obtain

D1, Vh i = k2u3 + u1 = a, ð39Þ

D1′, Vh i = k2′u3 + k3u4 = 0: ð40Þ
Taking the derivative of equation (39) according to s, we

obtain

u1′ = − k2u3ð Þ′: ð41Þ

Differentiating equation (38) and using the Frenet equa-
tion (5), we have

u1′ − k3u4 + k2u2 = 0,
u1 + u2′ − k2u3 = 0,
u2 − u3′ = 0,
u4′ + k3u3 = 0:

8>>>>><
>>>>>:

ð42Þ

By (40), we can obtain

u4 = −
k2′
k3

u3, ð43Þ

Substituting (43) into the fourth equation of (42), we can
obtain

u3 = be
Ð
ξds, ξ = k3 − k2′/k3ð Þ′

k2′/k3
: ð44Þ

From (39), (44), and the third equation of (42), we have

u2 = u3′ = bξe
Ð
ξds,

u1 = a − k2u3 = −bξe
Ð
ξds + a:

ð45Þ
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Thus,

V = a − bk2e
Ð
ξds

� �
T + bξe

Ð
ξdsN + be

Ð
ξdsB1 −

bk2′
k3

e
Ð
ξdsB2:

ð46Þ

From the second equation of (42), the relationship
between k2 and k3 can be expressed as

2k2 − ξ2 − ξ′
� �

e
Ð
ξds = a

b
, ð47Þ

where b is given by the relation (44), and if b = 0, the axis
V = 0, which is a contradiction. Hence, b ≠ 0, which com-
pletes the proof.

Corollary 8. In particular, when a = 0, b = 1, we have

V = −k2T + ξN + B1 −
k2′
k3

B2

� 	
e
Ð
ξds, ð48Þ

and the curvature functions k2, k3 satisfy

ξ′ + ξ2 − 2k2 = 0, ð49Þ

where

ξ = k3 − k2′/k3ð Þ′
k2′/k3

: ð50Þ

Some examples of null Darboux helix in E4
1 are given

below.

Example 1. Let γðsÞ: I ⟶ E4
1 be a null curve with the arc

length s and the curvature

k2 =
s2 + 1
2 , k3 =

sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−s2 + 1

p , ð51Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = −
s2 + 1
2 T + sN + B1 −

ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p
B2

� 	
es

2/2: ð52Þ

Example 2. Let γðsÞ: I ⟶ E4
1 be a null curve with the arc

length s and the curvature

k2 =
sec2s + tan2s

2 , k3 = 2 sec s tan s, ð53Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = −
1 + sin2s
2 cos2s T + tan sN + B1 − sec sB2

� 	
sec s: ð54Þ

Example 3. Let γðsÞ: I ⟶ E4
1 be a null curve with the arc

length s and the curvature

k2 =
1
s2
, k3 = −

2
s2
, ð55Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = −
1
s2
T −

1
s
N + B1 −

1
s
B2

� 	 1
s
: ð56Þ

4. Darboux Helix and Planes of Pseudo
null Curve

When the Frenet frame fT ,N , B1, B2g of a nongeodesic
pseudonull curve makes an instantaneous helix motion in
E4
1, there exists an axis of the frame’s rotation. The direction

of such axis is given by the vector

D1 =N ,D2 = k2T ,D3 = T ,D4 = −k2N − k1B2, ð57Þ

and we call them the Darboux vectors for the pseudo null
curves in E4

1. The Darboux vectors satisfy the Darboux equa-
tions

T ′ =D1 ×D2 × T ,
N ′ =D3 ×D4 ×N ,
B1′ =D4 ×D3 × B1,
B2′ =D2 ×D1 × B2:

ð58Þ

From (58), we know that Frenet vectors T and B2 rotate
around the D1D2 plane, and Frenet vectors N and B1 rotate
around the D3D4 plane. We find that the D1D2 plane and
D3D4 plane play the role of Darboux vector in three-
dimensional space. We also note that D1 and D3 are Frenet
vectors of the pseudonull curve, fD1,D2,D3,D4g is linearly
independent, and D4 is orthogonal to D2 and D3. We are
going to use the subspace spanned by fD2,D4g and fD3,
D4g to represent D2D4 plane and D3D4 plane, respectively.

Similar to Section 3, we discuss the situation when the
curve γðsÞ is in D2D4 and D3D4 planes.

Theorem 9. Let γðsÞ: I ⟶ E4
1 be a pseudonull curve with

parameterized by arc length s. k1, k2 are the curvature func-
tions of the pseudonull curve γðsÞ. If γðsÞ lies in D2D4 plane,
then the curvature functions k1, k2 satisfy

c2k2′′ + c1k2k2′ + k2 = 0, ð59Þ

and in addition, the curve γðsÞ can be expressed as

γ sð Þ = c1D2 +
c2
k2

D4, ð60Þ

where c1 and c2 are nonzero constants.
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Proof. We may assume that

γ sð Þ = λD2 + μD4, ð61Þ

and we take the derivative of (61) according to s, and we
obtain

T = γ′ = μk1 − λk2ð Þ′
� �

T − μk2ð Þ′N

+ λ′B1 − λk1 + μk1ð Þ′
� �

B2:
ð62Þ

Hence,

u1k1 − λk2ð Þ′ = 1,
μk2ð Þ′ = 0,
λ′ = 0,
λk1 + μk1ð Þ′ = 0:

8>>>>><
>>>>>:

ð63Þ

From the second and the third equations of (63), we get

λ = c1, μk2 = c2, ð64Þ

where c1 and c2 are nonzero constants.
Then, the curve γðsÞ can be denoted as

γ sð Þ = c1D2 +
c2
k2

D4: ð65Þ

Substituting (64) into the fourth equation of (63), we
have

c2k1 = c1k2k2′ + k2: ð66Þ

From (66) and the first equation of (63), we get

c2k2′′ + c1k2k2′ + k2 = 0: ð67Þ

This ends the proof.

Theorem 10. Let γðsÞ: I ⟶ E4
1 be a pseudonull curve with

parameterized by arc length s. k1, k2 are the curvature func-
tions of the pseudonull curve γðsÞ. If the γðsÞ lies in D3D4
plane, then the curvature functions k1, k2 satisfy

k2
k1

= 1 − c1ð Þs2
2c1

+ c2s
c1

+ c3
c1
, ð68Þ

and in addition, the curve can be expressed as

γ sð Þ = c2 + 1 − c1ð Þsð ÞD3 +
c1
k1

D4, ð69Þ

where c1, c2, c3 are constants.

Proof. Assume that

γ sð Þ = λD3 + μD4: ð70Þ

Differentiating equation (70) with respect to s, we have

T = γ′ = μk1 + λ′
� �

T − λ − μk2ð Þ′
� �

N − μk1ð Þ′B2: ð71Þ

So we obtain the system of differential equations

μk1 + λ′ = 1,
λ − μk2ð Þ′ = 0,
μk1ð Þ′ = 0:

8>><
>>: ð72Þ

From the first and the third equations of (72), we get

λ = 1 − c1ð Þs + c2, ð73Þ

μk1 = c1: ð74Þ
Then, the curve γðsÞ can be denoted as

α sð Þ = 1 − c1ð Þs + c2ð ÞD3 +
c1
k1

D4: ð75Þ

Substituting (73) and (74) into the second equation of
(72), we have

μk2 =
1
2 1 − c1ð Þs2 + c2s + c3: ð76Þ

From equations (74) and (76), we can obtain

k2
k1

= 1 − c1ð Þs2
2c1

+ c2s
c1

+ c3
c1
, ð77Þ

where c1, c2, c3 are constants.

Corollary 11. In particular, when c1 = 1/1, c2 = c3 = 0, we
have k2/k1 = s2: Let k1 = 3s/ðs2 + 1Þ2 and k2 = 3s3/ðs2 + 1Þ2.
Then, the curve γðsÞ can be expressed as

γ′′ = 3s
ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p

2 s2 + 1ð Þ3
2s, s2, 1 − s2 −

s4

4
, 1 + s2 + s4

4

� 	
: ð78Þ

Definition 12. Let γðsÞ: I ⟶ E4
1 be a pseudo null curve with

parameterized by arc length s. If there exists a fixed direction
V ≠ 0 such that

D2, Vh i = a, a ∈ℝ, ð79Þ

then the pseudo null curve γðsÞ is called the pseudo null
Darboux helix, and the fixed direction V is called an axis
of the pseudo null Darboux helix.

Theorem 13. Let γðsÞ: I ⟶ E4
1 be a pseudonull curve with

parameterized by arc length s. If γðsÞ is a pseudonull Darboux

6 Advances in Mathematical Physics



helix in E4
1 whose fixed direction V satisfies

D2, Vh i = a, a ∈ℝ, ð80Þ

then V is given by

V = u1T −
k2′
k1

u1N + u1k2 + að ÞB1 + u1′B2, ð81Þ

and the curvature functions k1, k2 satisfy

u1′′ − k1k2u1 = ak1, ð82Þ

where

ξ = 1 + k22 − k2′/k1ð Þ′
k2′/k1

, ð83Þ

and a, b ∈ℝ, k1 ≠ 0, k2 ≠ const.

Proof. Let γðsÞ: I ⟶ E4
1 be a pseudo null Darboux helix

with parameterized by arc length s. Then, for a fixed direc-
tion V satisfying

D2, Vh i = a, a ∈ℝ, ð84Þ

we can assume

V = u1T + u2N + u3B1 + u4B2: ð85Þ

By using (84), we can obtain

D2, Vh i = u3 − u1k2 = a, ð86Þ

D2′, Vh i = −k1u2 − k2′u1 = 0: ð87Þ
Taking the derivative of equation (86) according to s, we

obtain

u3′ = k2u1ð Þ′: ð88Þ

Differentiating equation (85) and using the Frenet equa-
tion (7), we have

u1′ − u4 = 0,
u1 + u2′ + k2u3 = 0,
k1u2 + u3′ − k2u4 = 0,
u4′ − k1u3 = 0:

8>>>>><
>>>>>:

ð89Þ

Substituting (86) and (87) into the second equation of
(89), we can obtain

u1′ −
1 + k22 − k2′ /k1ð Þ′

k2′/k1
u1 = ak2: ð90Þ

By (90), we can obtain

u1 = e
Ð
ξds ak2e

−
Ð
ξds + b

� �
, ð91Þ

where

ξ = 1 + k22 − k2′/k1ð Þ′
k2′/k1

: ð92Þ

From (87), (88), and the first equation of (89), we have

u2 = −
k2′
k1

u1 = −
k2′
k1

e
Ð
ξds ak2e

−
Ð
ξds + b

� �
,

u3 = u1k2 + a = k2e
Ð
ξds ak2e

−
Ð
ξds + b

� �
+ a,

u4 = u1′ = c1k2+ξe
Ð
ξds ak2e

−
Ð
ξds + b

� �
:

ð93Þ

Thus,

V = u1T −
k2′
k1

u1N + u1k2 + að ÞB1 + u1′B2: ð94Þ

From the fourth equation of (89), the relationship
between k1 and k2 can be expressed as

u1′′ − k1k2u1 = ak1, a ∈ℝ: ð95Þ

This ends the proof.

Corollary 14. In particular, when a = 0, b = 1, we have

V = T −
k2′
k1

N + k2B1 + ξB2

� 	
e
Ð
ξds, ð96Þ

and the curvature functions k2, k3 satisfy

ξ′ + ξ2 − k1k2 = 0, ð97Þ

where

ξ = 1 + k22 − k2′/k1ð Þ′
k2′/k1

: ð98Þ

Some examples of pseudo null Darboux helix in E4
1 are

given below.

Example 4. Let γðsÞ: I ⟶ E4
1 be a pseudo null curve, and s is

the pseudoarc length. The curvature function k1, k2 satisfies

k1 =
1

s s2 + 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p , k2 =
sffiffiffiffiffiffiffiffiffiffiffi

s2 + 1
p , ð99Þ
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and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V =
ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p
T − s

ffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p
N + sB1 +

sffiffiffiffiffiffiffiffiffiffiffi
s2 + 1

p B2: ð100Þ

Example 5. Let γðsÞ: I ⟶ E4
1 be a pseudo null curve with the

arc length s and the curvature

k1 =
2 sec2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sec2s − 1

p , k2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sec2s − 1

p
, ð101Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = tan sT − tan2sN + tan s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sec2s − 1

p
B1 + sec2sB2:

ð102Þ

Example 6. Let γðsÞ: I ⟶ E4
1 be a pseudo null curve with the

arc length s and the curvature

k1 =
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2es − 1
p , k2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2es − 1

p
, ð103Þ

and then, γðsÞ is a Darboux helix whose fixed direction is
given by

V = esT − e2sN + es
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2es − 1

p
B1 + esB2: ð104Þ

5. Conclusion

In this paper, we discuss some new space curves and planes
in four-dimensional space-time and give characterizations
of them in terms of the curvature functions. Before this
study, most researchers studied Darboux vector in three-
dimensional space and four-dimensional Euclidean space. In
this paper, the Darboux vector fields in three-dimensional
space are extended to four-dimensional space-time by math-
ematical method. By defining Darboux vector fields in four-
dimensional space-time in the form of vector products, we
find that the Frenet vectors rotate around a plane spanned
by two new vector fields, and this plane plays the role that
the Darboux vector plays in three-dimensional space. This
paper gives a new description of Darboux vector in four-
dimensional space-time, which promotes the further develop-
ment of angular momentum vector in physics and geometry.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

The authors have made the same contribution.

References

[1] A. Petrov, Einstein Spaces, Pergamon Press, 1969.
[2] M. P. Dabrowski, “Null string evolution in black hole and cos-

mological spacetimes,” Physical Review D., vol. 66, no. 4,
pp. 427–444, 2002.

[3] A. Ferrández, A. Giménez, and P. Lucas, “Relativistic particles
and the geometry of 4-D null curves,” Journal of Geometry and
Physics., vol. 57, no. 10, pp. 2124–2135, 2007.

[4] K. L. Duggal and D. H. Jin, “A classification of Einstein light-
like hypersurfaces of a Lorentzian space form,” Journal of
Geometry and Physics, vol. 60, no. 12, pp. 1881–1889, 2010.

[5] S. Izumiya and H. Yildirim, “Slant geometry on spacelike sub-
manifolds of codimension two in Lorentz-Minkowski space,”
Journal of Geometry and Physics, vol. 98, pp. 160–180, 2015.

[6] B. Sahin, E. Kiliç, and R. Günes, “Null helices in Minkowski 3-
space,” Differential Geometry Dynamical Systems, vol. 3,
pp. 31–36, 2001.

[7] B. O’Neill, Semi-Riemannian Geometry: With Applications to
Relativity, Academic Press, New York, 1983.

[8] J. A. Aledo, J. M. Espinar, and J. A. Galvez, “Timelike surfaces
in the Lorentz–Minkowski space with prescribed Gaussian
curvature and Gauss map,” Journal of Geometry and Physics,
vol. 56, no. 8, pp. 1357–1369, 2006.

[9] A. E. Treibergs, “Entire spacelike hypersurfaces of constant
mean curvature in Minkowski space,” Inventiones Mathemati-
cae, vol. 66, no. 1, pp. 39–56, 1982.

[10] B. Y. Chen, “When does the position vector of a space curve
always lie in its rectifying plane,” American Mathematical
Monthly, vol. 110, no. 2, pp. 147–152, 2003.

[11] L. J. Alías and J. M. Malacarne, “Spacelike hypersurfaces with
constant higher order mean curvature in Minkowski space-
time,” Journal of Geometry and Physics, vol. 41, no. 4,
pp. 359–375, 2002.

[12] Z. Özdemir and I. A. Gök, “New approach on type-3 slant
helix in E4,” Gen. Math, vol. 28, no. 1, pp. 40–49, 2015.

[13] M. Bektas and M. Yilmaz Yildirim, “(k, m)-type slant helices
for partially null and pseudo null curves in Minkowski 4-
space E14,” Applied Mathematics and Nonlinear Sciences.,
vol. 5, no. 1, pp. 515–520, 2020.

[14] E. Nešović, “On k-type null Cartan slant helices in Minkowski
3-space,” Mathematical Methods in the Applied Sciences,
vol. 41, no. 17, pp. 7583–7598, 2018.

[15] K. İlarslan and E. Nešović, “Spacelike and timelike normal
curves in Minkowski space-time,” Publications de I’ Institut
Mathematique, vol. 85, no. 99, pp. 111–118, 2009.

[16] A. Tawfik and M. Turgut, “k-type partially null and pseudo
null slant helices in Minkowski 4-space,” Mathematical Com-
munications, vol. 17, pp. 93–103, 2012.

[17] S. Izumiya and M. Kasedou, “Lightlike flat geometry of space-
like submanifolds in Lorentz-Minkowski space,” International
Journal of Geometric Methods in Modern Physics., vol. 11,
no. 5, pp. 1450049–1450200, 2014.

[18] M. P. Do Carmo,Differential Geometry of Curves and Surfaces,
Prentice-Hall, New Jersey, 1976.

[19] E. Ziplar and A. Senol, “On Darboux helices in Euclidean 3-
space,” Global Journal of Science Frontier Research, vol. 12,
no. 13, pp. 72–80, 2012.

[20] U. Öztürk and E. Nešović, “On k -type pseudo null Darboux
helices in Minkowski 3-space,” Kuwait Journal of Science,
vol. 439, no. 2, pp. 690–700, 2016.

8 Advances in Mathematical Physics



[21] E. Kiliç, H. B. Karadağ, and M. Karadağ, “Special null curves
on the ruled surfaces in the Minkowski 3-spaces,” Indian Jour-
nal of Mathematics Special Memorial, vol. 51, no. 1, 2009.

[22] K. Zhou and Z. Wang, “Pseudo-spherical Darboux images and
lightcone images of principal-directional curves of nonlight-
like curves in Minkowski 3-space,” Mathematical Methods in
the Applied Sciences, vol. 43, no. 1, pp. 35–77, 2020.

[23] Z. Wang and D. H. Pei, “Null Darboux developable and
pseudo-spherical Darboux image of null Cartan curve in Min-
kowski 3-space,” Hokkaido Mathematical Journal, vol. 40,
no. 2, pp. 219–240, 2011.

[24] J. Qian, X. Fu, and S. D. Jung, “Darboux associated curves of a
null curve on pseudo-Riemannian space forms,”Mathematics,
vol. 8, no. 3, p. 395, 2020.

[25] E. Nešović and U. Öztürk, “On k-type pseudo null Darboux
helices in Minkowski 3-space,” Journal of Mathematical Anal-
ysis and Applications, vol. 439, no. 2, pp. 690–700, 2016.

[26] S. Izumiya, H. Katsumi, and T. Yamasaki, “The rectifying
developable and the spherical Darboux image of a space
curve,” Banach Center Publications, vol. 50, no. 1, pp. 137–
149, 1999.

[27] M. Düldül, “Extension of the Darboux frame into Euclidean 4-
space and its invariants,” Turkish Journal of Mathematics,
vol. 41, no. 6, pp. 1628–1639, 2017.

[28] M. Düldül, “Vector fields and planes in E4 which play the role
of Darboux vector,” Turkish Journal of Mathematics, vol. 44,
no. 1, pp. 274–283, 2020.

[29] K. İlarslan and M. Yildirim, “On Darboux helices in Euclidean
4-space,” Mathematical Methods in the Applied Sciences,
vol. 42, no. 16, pp. 5184–5189, 2019.

[30] J. Walrave, Curves and Surfaces in Minkowski Space, [Ph.D.
thesis], K. U. Leuven, Fac. of Science, Leuven, 1995.

9Advances in Mathematical Physics


	Darboux Vector in Four-Dimensional Space-Time
	1. Introduction
	2. Preliminaries
	3. Darboux Helix and Planes of Null Curve
	4. Darboux Helix and Planes of Pseudo null Curve
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

