Darboux Vector in Four-Dimensional Space-Time

$\mathrm{Na} \mathbf{H u}$ © ${ }^{1}{ }^{1}$ Tingting Zhang ${ }^{(1),}{ }^{1}$ and Yang Jiang ${ }^{2}{ }^{2}$
${ }^{1}$ School of Science, Shenyang University of Technology, Shenyang, China
${ }^{2}$ College of Mathematics and Systems Science, Shenyang Normal University, Shenyang, China
Correspondence should be addressed to Na Hu ; huna@sut.edu.cn

Received 8 February 2022; Accepted 25 March 2022; Published 12 April 2022
Academic Editor: Mehmet Atçeken
Copyright © 2022 NaHu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

As the space-time model of the theory of relativity, four-dimensional Minkowski space is the basis of the theoretical framework for the development of the theory of relativity. In this paper, we introduce Darboux vector fields in four-dimensional Minkowski space. Using these vector fields, we define some new planes and curves. We find that the new planes are the instantaneous rotation planes of rigid body moving in four-dimensional space-time. In addition, according to some characteristics of Darboux vectors in geometry, we define some new space curves in four-dimensional space-time and describe them with curvature functions. Finally, we give some examples.

1. Introduction

On the basis of the principle of relativity and Lorentz transformation, in 1907, Minkowski proposed to add a time dimension on the basis of three space dimensions, thus forming a four-dimensional space-time, and this spacetime is also called Minkowski 4-space. The metric tensor g in \mathbb{E}_{1}^{4} is given by

$$
\begin{equation*}
g=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}-d x_{4}^{2} \tag{1}
\end{equation*}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a standard rectangular coordinate system in \mathbb{E}_{1}^{4}. Minkowski space is not only closely related to physics but also provides theoretical and methodological support for the study of astrophysics and cosmology [1-4]. The study of submanifolds in Minkowski space is of interest in relativity theory; therefore, more and more geometers and physicists are committed to the study of submanifolds in Minkowski space. For example, in [5], the authors studied some local properties of slant geometry on spacelike submanifolds of codimension two in Lorentz-Minkowski space and investigate spacelike curves in Lorentz-Minkowski 3-space from different viewpoints as another special case. In [6], the authors studied null helices of 1-dimensional lightlike submanifolds and gave some characterizations of null helices
in \mathbb{R}_{1}^{3}. We refer the reader to [7-17] and the references therein for more related works.

The Darboux vector is the local speed vector of the Frenet frame of space curves, which was discovered and named after Gaston Darboux [18]. If an object moves along a regular curve, we can use the Frenet frame of space curves to describe the motion of the object in terms of two vectors: the translation vector and the rotation vector, where the rotation vector is the Darboux vector. Because the Darboux vector is directly related to the angular momentum, it is also called the angular momentum vector.

In the past few decades, many researchers have mainly studied Darboux vectors in 3-dimensional space [19-26] and have obtained some interesting conclusions. For example, in 2012, Ziplar introduced and studied Darboux helices in Euclidean 3-space and proved that Darboux helices coincide with slant helices [19]. In [20], Öztürk and Nešovic' defined the pseudo null and null Cartan Darboux helices in Minkowski 3-space and obtained the relationship between pseudo null, null Cartan Darboux helices, and slant helices. In [21], the quasi Darboux vector field of null curve in Minkowski 3 -space was defined, and some interesting conclusions about osculating developable of null curve which is defined by quasi Darboux vector field of null curve were obtained. Wang and Pei defined the Darboux vector of the null curve in [23] and described the direction of the rotation
axis of the Cartan frame in Minkowski 3-space. Later, in 2017, Düldül [27] extended the Darboux frame field to four-dimensional Euclidean space and gave the relationship between the curvature of Frenet frame and Darboux frame. In [28], Düldül defined some new vector fields in fourdimensional Euclidean space and showed that the determined new planes play the role of the Darboux vector. I larslan and Yildirim [29] defined the Darboux helices in four-dimensional Euclidean space as a curve whose Darboux vector makes a constant angle with some fixed direction and obtained relation between the curves Darboux helix, general helix, and V_{4}-slant helix in a special case.

Motivated by those ideas, in this paper, we construct four new vector fields along the space curve whose curvatures do not disappear in four-dimensional space-time. Based on these vector fields, we define some new planes and helices in fourdimensional space-time. The corresponding curvature functions are given when the position vectors of the curves lie on different planes. Moreover, we define Darboux helices in Minkowski 4 -space and give some descriptions of their curvature functions.

2. Preliminaries

Four-dimensional space-time \mathbb{E}_{1}^{4} is the real four-dimensional vector space \mathbb{R}^{4} equipped with the standard flat metric given by

$$
\begin{equation*}
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4} \tag{2}
\end{equation*}
$$

For any three vectors $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), y=\left(y_{1}, y_{2}, y_{3}\right.$, $\left.y_{4}\right)$, and $z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ in \mathbb{E}_{1}^{4}, their exterior product is given by

$$
x \times y \times z=\left|\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & -e_{4} \tag{3}\\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right|
$$

where $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is an orthogonal basis in \mathbb{E}_{1}^{4}, that is,
$e_{1}=(1,0,0,0), e_{2}=(0,1,0,0), e_{3}=(0,0,1,0), e_{4}=(0,0,0,1)$.

A vector v in \mathbb{E}_{1}^{4} is called spacelike, timelike, or null (lightlike), if $\langle v, v\rangle>0$ or $\langle v, v\rangle<0,\langle v, v\rangle=0$, respectively. In particular, the vector $v=0$ is said to be spacelike. A curve $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ is called spacelike, timelike, or null (lightlike) if all of its velocity vectors $\gamma^{\prime}(s)$ satisfy $\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle>0,\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle$ $\left\langle 0\right.$, or $\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle=0$, respectively. The norm of a vector v in \mathbb{E}_{1}^{4} is given by $\|v\|=\sqrt{|\langle v, v\rangle|}[15]$.

Definition 1 (see [30]). Let $\gamma(s)$ be a null curve parameterized by null arc length s (i.e., $\left\|\gamma^{\prime \prime}(s)\right\|=1$) in \mathbb{E}_{1}^{4}. Then, $\gamma(s)$ can be framed by a Cartan Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ such that

$$
\left[\begin{array}{c}
T^{\prime} \tag{5}\\
N^{\prime} \\
B_{1^{\prime}} \\
B_{2^{\prime}}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
k_{2} & 0 & -1 & 0 \\
0 & -k_{2} & 0 & k_{3} \\
-k_{3} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right],
$$

where

$$
\begin{align*}
\left\langle N, B_{2}\right\rangle & =\left\langle T, B_{2}\right\rangle=\left\langle N, B_{1}\right\rangle=\langle T, N\rangle=\langle T, T\rangle \\
& =\left\langle B_{1}, B_{1}\right\rangle=\left\langle B_{1}, B_{2}\right\rangle=0, \\
\langle N, N\rangle & =\left\langle B_{2}, B_{2}\right\rangle=\left\langle T, B_{1}\right\rangle=1, \tag{6}\\
T \times N \times B_{1} & =B_{2}, N \times B_{1} \times B_{2}=B_{1}, B_{1} \times B_{2} \times T \\
& =N, B_{2} \times T \times N=T .
\end{align*}
$$

In sequence, T, N, B_{1}, B_{2} are called the tangent, principal normal, first binormal, and second binormal vector field of $\gamma(s)$ and k_{2} and k_{3} are first curvature and second curvature of the curve $\gamma(s)$, respectively.

Definition 2 (see [16]). Let $\gamma(s)$ be a pseudo null curve parameterized by arc length s (i.e., $\left\|\gamma^{\prime \prime}(s)\right\|=0$) in \mathbb{E}_{1}^{4}. Then, the Frenet equation is defined by

$$
\left[\begin{array}{c}
T^{\prime} \tag{7}\\
N^{\prime} \\
B_{1^{\prime}} \\
B_{2^{\prime}}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & k_{1} & 0 \\
0 & k_{2} & 0 & -k_{1} \\
-1 & 0 & -k_{2} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right],
$$

where

$$
\begin{align*}
\left\langle B_{2}, B_{2}\right\rangle & =\left\langle B_{1}, B_{2}\right\rangle=\left\langle N, B_{1}\right\rangle=\left\langle T, B_{1}\right\rangle \\
& =\langle T, N\rangle=\left\langle T, B_{2}\right\rangle=\langle N, N\rangle=0, \\
\left\langle N, B_{2}\right\rangle & =\left\langle B_{1}, B_{1}\right\rangle=\langle T, T\rangle=1, \tag{8}\\
T \times N \times B_{1} & =N, N \times B_{1} \times B_{2}=T, B_{1} \times B_{2} \times T \\
& =B_{2}, B_{2} \times T \times N=B_{1},
\end{align*}
$$

and k_{1} and k_{2} are first curvature and second curvature of the curve $\gamma(s)$, respectively.

3. Darboux Helix and Planes of Null Curve

When the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ of a nongeodesic null curve makes an instantaneous helix motion in \mathbb{E}_{1}^{4}, there exists an axis of the frame's rotation. The direction of such axis is given by the vector

$$
\begin{equation*}
D_{1}=k_{2} T+B_{1}, D_{2}=B_{2}, D_{3}=T, D_{4}=k_{3} N+k_{2} B_{2} \tag{9}
\end{equation*}
$$

and we call them the Darboux vectors for the null curves in \mathbb{E}_{1}^{4}. The Darboux vectors satisfy the Darboux equations

$$
\begin{align*}
T^{\prime} & =D_{1} \times D_{2} \times T, \\
N^{\prime} & =D_{2} \times D_{1} \times N, \tag{10}\\
B_{1^{\prime}} & =D_{3} \times D_{4} \times B_{1}, \\
B_{2^{\prime}} & =D_{4} \times D_{3} \times B_{2} .
\end{align*}
$$

From (10), we know that Frenet vectors T and N rotate around the $D_{1} D_{2}$ plane, and Frenet vectors B_{1} and B_{2} rotate around the $D_{3} D_{4}$ plane. We find that the $D_{1} D_{2}$ plane and $D_{3} D_{4}$ plane play the role of Darboux vector in threedimensional space. We also note that D_{2} and D_{3} are Frenet vectors of the null curve, $\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$ is linearly independent, and D_{1} is orthogonal to D_{2} and D_{4}. We are going to use the subspace spanned by $\left\{D_{1}, D_{2}\right\}$ and $\left\{D_{1}, D_{4}\right\}$ to represent $D_{1} D_{2}$ plane and $D_{1} D_{4}$ plane, respectively.

Inspired by $[10,28]$, we discuss the situation when the curve $\gamma(s)$ lies in $D_{1} D_{2}$ and $D_{1} D_{4}$ planes.

Theorem 3. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a null curve parameterized by null arc length s. k_{2}, k_{3} are the curvature functions of the null curve $\gamma(s)$. If $\gamma(s)$ lies in $D_{1} D_{2}$ plane, then the curvature functions k_{2}, k_{3} satisfy

$$
\begin{equation*}
\left[\frac{\left(1 / k_{3}\right)^{\prime}}{k_{3}+\left(k_{2^{\prime}} / k_{3}\right)^{\prime}}\right]^{\prime}=0 \tag{11}
\end{equation*}
$$

and in addition, the curve $\gamma(s)$ can be expressed as

$$
\begin{equation*}
\gamma(s)=c D_{1}+\frac{c k_{2^{\prime}}-1}{k_{3}} D_{2} \tag{12}
\end{equation*}
$$

where c is nonzero constant.
Proof. We may assume that

$$
\begin{equation*}
\gamma(s)=\lambda(s) D_{1}+\mu(s) D_{2} \tag{13}
\end{equation*}
$$

and we take the derivative of (13) according to s, and we obtain

$$
\begin{equation*}
T=\gamma^{\prime}(s)=\left(\left(\lambda k_{2}\right)^{\prime}-\mu k_{3}\right) T+\lambda^{\prime} B_{1}+\left(\lambda k_{3}+\mu^{\prime}\right) B_{2} . \tag{14}
\end{equation*}
$$

Hence,

$$
\left\{\begin{array}{l}
\left(\lambda k_{2}\right)^{\prime}-\mu k_{3}=1 \tag{15}\\
\lambda^{\prime}=0 \\
\lambda k_{3}+\mu^{\prime}=0
\end{array}\right.
$$

From the second equation of (15), we get

$$
\begin{equation*}
\lambda=c, \tag{16}
\end{equation*}
$$

and substituting (16) into the first equation of (15), we have

$$
\begin{equation*}
\mu=\frac{c k_{2^{\prime}}-1}{k_{3}} . \tag{17}
\end{equation*}
$$

Then, the curve $\gamma(s)$ can be denoted as

$$
\begin{equation*}
\gamma(s)=c D_{1}+\frac{c k_{2^{\prime}}-1}{k_{3}} D_{2} \tag{18}
\end{equation*}
$$

From the third equation of (15), we get

$$
\begin{equation*}
c=\frac{\left(1 / k_{3}\right)^{\prime}}{k_{3}+\left(k_{2^{\prime}} / k_{3}\right)^{\prime}} \tag{19}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left[\frac{\left(1 / k_{3}\right)^{\prime}}{k_{3}+\left(k_{2^{\prime}} / k_{3}\right)^{\prime}}\right]^{\prime}=0 \tag{20}
\end{equation*}
$$

This ends the proof.
Corollary 4. In particular, when $k_{3}=a=$ constant $\neq 0$, we have $k_{2}=\left(a^{2} / 2\right) s^{2}+b$, and the curve $\gamma(s)$ can be expressed as

$$
\begin{equation*}
\gamma(s)=c D_{1}+\frac{c a^{2} s-1}{a} D_{2} \tag{21}
\end{equation*}
$$

where a and b are constants.
Theorem 5. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a null curve parameterized by null arc length s. k_{2}, k_{3} are the curvature functions of the pseudonull curve $\gamma(s)$. If the $\gamma(s)$ lies in $D_{1} D_{4}$ plane, then the curvature functions k_{2}, k_{3} satisfy

$$
\begin{equation*}
k_{2}=\frac{s+c_{3}}{c_{1} s+c_{2}}, k_{3}^{2}=\frac{c_{1}\left(s+c_{3}\right)^{2}}{\left(c_{1} s+c_{2}\right)^{2}\left(1-\left(s+c_{3}\right)^{2}\right)} \tag{22}
\end{equation*}
$$

and in addition, the curve $\gamma(s)$ can be expressed as

$$
\begin{equation*}
\gamma(s)=\left(c_{1} s+c_{2}\right) D_{1}+\frac{c_{1}}{k_{3}} D_{4}, \tag{23}
\end{equation*}
$$

where c_{1}, c_{2}, and c_{3} are constants.
Proof. Assume that

$$
\begin{equation*}
\gamma(s)=\lambda D_{1}+\mu D_{4} . \tag{24}
\end{equation*}
$$

Differentiating equation (24) with respect to s, we have

$$
\begin{align*}
T= & \gamma^{\prime}=\left(\lambda k_{2}\right)^{\prime} T+\left(\mu k_{3}\right)^{\prime} N+\left(\lambda^{\prime}-\mu k_{3}\right) B_{1} \\
& +\left(\left(\mu k_{2}\right)^{\prime}+\lambda k_{3}\right) B_{2} . \tag{25}
\end{align*}
$$

Then, we obtain the system of differential equations

$$
\left\{\begin{array}{l}
\left(\lambda k_{2}\right)^{\prime}=1 \tag{26}\\
\left(\mu k_{3}\right)^{\prime}=0 \\
\lambda^{\prime}-\mu k_{3}=0 \\
\left(\mu k_{2}\right)^{\prime}+\lambda k_{3}=0
\end{array}\right.
$$

From the second equation of (26), we get

$$
\begin{equation*}
\mu k_{3}=c_{1} . \tag{27}
\end{equation*}
$$

Substituting (27) into the third equation of (26), we have

$$
\begin{equation*}
\lambda=c_{1} s+c_{2} \tag{28}
\end{equation*}
$$

Then, the curve $\gamma(s)$ can be denoted as

$$
\begin{equation*}
\gamma(s)=\left(c_{1} s+c_{2}\right) D_{1}+\frac{c_{1}}{k_{3}} D_{4} . \tag{29}
\end{equation*}
$$

Substituting (28) into the first equation of (26), we have

$$
\begin{equation*}
k_{2}=\frac{s+c_{3}}{c_{1} s+c_{2}} \tag{30}
\end{equation*}
$$

Substituting (27) and (28) into the fourth equation of (26), we can calculate that

$$
\begin{equation*}
k_{3}^{2}=\frac{c_{1}\left(s+c_{3}\right)^{2}}{\left(c_{1} s+c_{2}\right)^{2}\left(1-\left(s+c_{3}\right)^{2}\right)} \tag{31}
\end{equation*}
$$

This ends the proof.
Definition 6. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a null curve with parameterized by null arc length s. If there exists a fixed direction $V \neq 0$ such that

$$
\begin{equation*}
\left\langle D_{1}, V\right\rangle=a, a \in \mathbb{R} \tag{32}
\end{equation*}
$$

then the null curve $\gamma(s)$ is called the null Darboux helix, and the fixed direction V is called an axis of the null Darboux helix.

Theorem 7. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a null curve with parameterized by null arc length s. If $\gamma(s)$ is a null Darboux helix in \mathbb{E}_{1}^{4} whose fixed direction V satisfies

$$
\begin{equation*}
\left\langle D_{1}, V\right\rangle=a, a \in \mathbb{R} \tag{33}
\end{equation*}
$$

then V is given by

$$
\begin{align*}
V= & \left(a-b k_{2} e^{\int \xi d s}\right) T+b \xi e^{\int \xi d s} N \\
& +b e^{\int \xi d s} B_{1}-\frac{b k_{2^{\prime}}}{k_{3}} e^{\int \xi d s} B_{2} \tag{34}
\end{align*}
$$

and the curvature functions k_{2}, k_{3} satisfy

$$
\begin{equation*}
\left(2 k_{2}-\xi^{2}-\xi^{\prime}\right) e^{\int \xi d s}=\frac{a}{b}, \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=\frac{k_{3}-\left(k_{2^{\prime}} / k_{3}\right)^{\prime}}{k_{2^{\prime}} / k_{3}} \tag{36}
\end{equation*}
$$

and $b \in \mathbb{R}_{0}, k_{3} \neq 0, k_{2} \neq$ const.
Proof. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a null Darboux helix with parameterized by null arc length s. Then, for a fixed direction V satisfying

$$
\begin{equation*}
\left\langle D_{1}, V\right\rangle=a, a \in \mathbb{R} \tag{37}
\end{equation*}
$$

we can assume

$$
\begin{equation*}
V=u_{1} T+u_{2} N+u_{3} B_{1}+u_{4} B_{2} \tag{38}
\end{equation*}
$$

By using (5), we can obtain

$$
\begin{align*}
& \left\langle D_{1}, V\right\rangle=k_{2} u_{3}+u_{1}=a \tag{39}\\
& \left\langle D_{1^{\prime}}, V\right\rangle=k_{2^{\prime}} u_{3}+k_{3} u_{4}=0 . \tag{40}
\end{align*}
$$

Taking the derivative of equation (39) according to s, we obtain

$$
\begin{equation*}
u_{1^{\prime}}=-\left(k_{2} u_{3}\right)^{\prime} \tag{41}
\end{equation*}
$$

Differentiating equation (38) and using the Frenet equation (5), we have

$$
\left\{\begin{array}{l}
u_{1^{\prime}}-k_{3} u_{4}+k_{2} u_{2}=0 \tag{42}\\
u_{1}+u_{2^{\prime}}-k_{2} u_{3}=0 \\
u_{2}-u_{3^{\prime}}=0 \\
u_{4^{\prime}}+k_{3} u_{3}=0
\end{array}\right.
$$

By (40), we can obtain

$$
\begin{equation*}
u_{4}=-\frac{k_{2^{\prime}}}{k_{3}} u_{3} \tag{43}
\end{equation*}
$$

Substituting (43) into the fourth equation of (42), we can obtain

$$
\begin{equation*}
u_{3}=b e^{\int \xi d s}, \xi=\frac{k_{3}-\left(k_{2^{\prime}} / k_{3}\right)^{\prime}}{k_{2^{\prime}} / k_{3}} \tag{44}
\end{equation*}
$$

From (39), (44), and the third equation of (42), we have

$$
\begin{align*}
& u_{2}=u_{3^{\prime}}=b \xi \int^{\int \xi d s} \tag{45}\\
& u_{1}=a-k_{2} u_{3}=-b \xi e^{\int \xi d s}+a
\end{align*}
$$

Thus,

$$
\begin{equation*}
V=\left(a-b k_{2} e^{\int \xi d s}\right) T+b \xi e^{\int \xi d s} N+b e^{\int \xi d s} B_{1}-\frac{b k_{2^{\prime}}}{k_{3}} e^{\int \xi d s} B_{2} . \tag{46}
\end{equation*}
$$

From the second equation of (42), the relationship between k_{2} and k_{3} can be expressed as

$$
\begin{equation*}
\left(2 k_{2}-\xi^{2}-\xi^{\prime}\right) e^{\int \xi d s}=\frac{a}{b} \tag{47}
\end{equation*}
$$

where b is given by the relation (44), and if $b=0$, the axis $V=0$, which is a contradiction. Hence, $b \neq 0$, which completes the proof.

Corollary 8. In particular, when $a=0, b=1$, we have

$$
\begin{equation*}
V=\left(-k_{2} T+\xi N+B_{1}-\frac{k_{2^{\prime}}}{k_{3}} B_{2}\right) e^{\int \xi d s}, \tag{48}
\end{equation*}
$$

and the curvature functions k_{2}, k_{3} satisfy

$$
\begin{equation*}
\xi^{\prime}+\xi^{2}-2 k_{2}=0 \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=\frac{k_{3}-\left(k_{2^{\prime}} / k_{3}\right)^{\prime}}{k_{2^{\prime}} / k_{3}} \tag{50}
\end{equation*}
$$

Some examples of null Darboux helix in \mathbb{E}_{1}^{4} are given below.

Example 1. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a null curve with the arc length s and the curvature

$$
\begin{equation*}
k_{2}=\frac{s^{2}+1}{2}, k_{3}=\frac{s}{\sqrt{e^{-s^{2}}+1}} \tag{51}
\end{equation*}
$$

and then, $\gamma(s)$ is a Darboux helix whose fixed direction is given by

$$
\begin{equation*}
V=\left(-\frac{s^{2}+1}{2} T+s N+B_{1}-\sqrt{s^{2}+1} B_{2}\right) e^{s^{2} / 2} \tag{52}
\end{equation*}
$$

Example 2. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a null curve with the arc length s and the curvature

$$
\begin{equation*}
k_{2}=\frac{\sec ^{2} s+\tan ^{2} s}{2}, k_{3}=2 \sec s \tan s \tag{53}
\end{equation*}
$$

and then, $\gamma(s)$ is a Darboux helix whose fixed direction is given by

$$
\begin{equation*}
V=\left(-\frac{1+\sin ^{2} s}{2 \cos ^{2} s} T+\tan s N+B_{1}-\sec s B_{2}\right) \sec s \tag{54}
\end{equation*}
$$

Example 3. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a null curve with the arc length s and the curvature

$$
\begin{equation*}
k_{2}=\frac{1}{s^{2}}, \quad k_{3}=-\frac{2}{s^{2}}, \tag{55}
\end{equation*}
$$

and then, $\gamma(s)$ is a Darboux helix whose fixed direction is given by

$$
\begin{equation*}
V=\left(-\frac{1}{s^{2}} T-\frac{1}{s} N+B_{1}-\frac{1}{s} B_{2}\right) \frac{1}{s} \tag{56}
\end{equation*}
$$

4. Darboux Helix and Planes of Pseudo null Curve

When the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ of a nongeodesic pseudonull curve makes an instantaneous helix motion in \mathbb{E}_{1}^{4}, there exists an axis of the frame's rotation. The direction of such axis is given by the vector

$$
\begin{equation*}
D_{1}=N, D_{2}=k_{2} T, D_{3}=T, D_{4}=-k_{2} N-k_{1} B_{2} \tag{57}
\end{equation*}
$$

and we call them the Darboux vectors for the pseudo null curves in \mathbb{E}_{1}^{4}. The Darboux vectors satisfy the Darboux equations

$$
\begin{align*}
T^{\prime} & =D_{1} \times D_{2} \times T, \\
N^{\prime} & =D_{3} \times D_{4} \times N, \tag{58}\\
B_{1^{\prime}} & =D_{4} \times D_{3} \times B_{1}, \\
B_{2^{\prime}} & =D_{2} \times D_{1} \times B_{2} .
\end{align*}
$$

From (58), we know that Frenet vectors T and B_{2} rotate around the $D_{1} D_{2}$ plane, and Frenet vectors N and B_{1} rotate around the $D_{3} D_{4}$ plane. We find that the $D_{1} D_{2}$ plane and $D_{3} D_{4}$ plane play the role of Darboux vector in threedimensional space. We also note that D_{1} and D_{3} are Frenet vectors of the pseudonull curve, $\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$ is linearly independent, and D_{4} is orthogonal to D_{2} and D_{3}. We are going to use the subspace spanned by $\left\{D_{2}, D_{4}\right\}$ and $\left\{D_{3}\right.$, $\left.D_{4}\right\}$ to represent $D_{2} D_{4}$ plane and $D_{3} D_{4}$ plane, respectively.

Similar to Section 3, we discuss the situation when the curve $\gamma(s)$ is in $D_{2} D_{4}$ and $D_{3} D_{4}$ planes.

Theorem 9. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a pseudonull curve with parameterized by arc length s. k_{1}, k_{2} are the curvature functions of the pseudonull curve $\gamma(s)$. If $\gamma(s)$ lies in $D_{2} D_{4}$ plane, then the curvature functions k_{1}, k_{2} satisfy

$$
\begin{equation*}
c_{2} k_{2^{\prime \prime}}+c_{1} k_{2} k_{2^{\prime}}+k_{2}=0 \tag{59}
\end{equation*}
$$

and in addition, the curve $\gamma(s)$ can be expressed as

$$
\begin{equation*}
\gamma(s)=c_{1} D_{2}+\frac{c_{2}}{k_{2}} D_{4} \tag{60}
\end{equation*}
$$

where c_{1} and c_{2} are nonzero constants.

Proof. We may assume that

$$
\begin{equation*}
\gamma(s)=\lambda D_{2}+\mu D_{4} \tag{61}
\end{equation*}
$$

and we take the derivative of (61) according to s, and we obtain

$$
\begin{align*}
T= & \gamma^{\prime}=\left(\mu k_{1}-\left(\lambda k_{2}\right)^{\prime}\right) T-\left(\mu k_{2}\right)^{\prime} N \tag{62}\\
& +\lambda^{\prime} B_{1}-\left(\lambda k_{1}+\left(\mu k_{1}\right)^{\prime}\right) B_{2}
\end{align*}
$$

Hence,

$$
\left\{\begin{array}{l}
u_{1} k_{1}-\left(\lambda k_{2}\right)^{\prime}=1 \tag{63}\\
\left(\mu k_{2}\right)^{\prime}=0 \\
\lambda^{\prime}=0 \\
\lambda k_{1}+\left(\mu k_{1}\right)^{\prime}=0
\end{array}\right.
$$

From the second and the third equations of (63), we get

$$
\begin{equation*}
\lambda=c_{1}, \mu k_{2}=c_{2}, \tag{64}
\end{equation*}
$$

where c_{1} and c_{2} are nonzero constants.
Then, the curve $\gamma(s)$ can be denoted as

$$
\begin{equation*}
\gamma(s)=c_{1} D_{2}+\frac{c_{2}}{k_{2}} D_{4} . \tag{65}
\end{equation*}
$$

Substituting (64) into the fourth equation of (63), we have

$$
\begin{equation*}
c_{2} k_{1}=c_{1} k_{2} k_{2^{\prime}}+k_{2} \tag{66}
\end{equation*}
$$

From (66) and the first equation of (63), we get

$$
\begin{equation*}
c_{2} k_{2^{\prime \prime}}+c_{1} k_{2} k_{2^{\prime}}+k_{2}=0 \tag{67}
\end{equation*}
$$

This ends the proof.
Theorem 10. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a pseudonull curve with parameterized by arc length s. k_{1}, k_{2} are the curvature functions of the pseudonull curve $\gamma(s)$. If the $\gamma(s)$ lies in $D_{3} D_{4}$ plane, then the curvature functions k_{1}, k_{2} satisfy

$$
\begin{equation*}
\frac{k_{2}}{k_{1}}=\frac{\left(1-c_{1}\right) s^{2}}{2 c_{1}}+\frac{c_{2} s}{c_{1}}+\frac{c_{3}}{c_{1}} \tag{68}
\end{equation*}
$$

and in addition, the curve can be expressed as

$$
\begin{equation*}
\gamma(s)=\left(c_{2}+\left(1-c_{1}\right) s\right) D_{3}+\frac{c_{1}}{k_{1}} D_{4} \tag{69}
\end{equation*}
$$

where c_{1}, c_{2}, c_{3} are constants.

Proof. Assume that

$$
\begin{equation*}
\gamma(s)=\lambda D_{3}+\mu D_{4} \tag{70}
\end{equation*}
$$

Differentiating equation (70) with respect to s, we have

$$
\begin{equation*}
T=\gamma^{\prime}=\left(\mu k_{1}+\lambda^{\prime}\right) T-\left(\lambda-\left(\mu k_{2}\right)^{\prime}\right) N-\left(\mu k_{1}\right)^{\prime} B_{2} \tag{71}
\end{equation*}
$$

So we obtain the system of differential equations

$$
\left\{\begin{array}{l}
\mu k_{1}+\lambda^{\prime}=1 \tag{72}\\
\lambda-\left(\mu k_{2}\right)^{\prime}=0 \\
\left(\mu k_{1}\right)^{\prime}=0
\end{array}\right.
$$

From the first and the third equations of (72), we get

$$
\begin{align*}
\lambda & =\left(1-c_{1}\right) s+c_{2} \tag{73}\\
\mu k_{1} & =c_{1} \tag{74}
\end{align*}
$$

Then, the curve $\gamma(s)$ can be denoted as

$$
\begin{equation*}
\alpha(s)=\left(\left(1-c_{1}\right) s+c_{2}\right) D_{3}+\frac{c_{1}}{k_{1}} D_{4} . \tag{75}
\end{equation*}
$$

Substituting (73) and (74) into the second equation of (72), we have

$$
\begin{equation*}
\mu k_{2}=\frac{1}{2}\left(1-c_{1}\right) s^{2}+c_{2} s+c_{3} . \tag{76}
\end{equation*}
$$

From equations (74) and (76), we can obtain

$$
\begin{equation*}
\frac{k_{2}}{k_{1}}=\frac{\left(1-c_{1}\right) s^{2}}{2 c_{1}}+\frac{c_{2} s}{c_{1}}+\frac{c_{3}}{c_{1}} \tag{77}
\end{equation*}
$$

where c_{1}, c_{2}, c_{3} are constants.
Corollary 11. In particular, when $c_{1}=1 / 1, c_{2}=c_{3}=0$, we have $k_{2} / k_{1}=s^{2}$. Let $k_{1}=3 s /\left(s^{2}+1\right)^{2}$ and $k_{2}=3 s^{3} /\left(s^{2}+1\right)^{2}$. Then, the curve $\gamma(s)$ can be expressed as

$$
\begin{equation*}
\gamma^{\prime \prime}=\frac{3 s \sqrt{s^{2}+1}}{2\left(s^{2}+1\right)^{3}}\left(2 s, s^{2}, 1-s^{2}-\frac{s^{4}}{4}, 1+s^{2}+\frac{s^{4}}{4}\right) . \tag{78}
\end{equation*}
$$

Definition 12. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a pseudo null curve with parameterized by arc length s. If there exists a fixed direction $V \neq 0$ such that

$$
\begin{equation*}
\left\langle D_{2}, V\right\rangle=a, a \in \mathbb{R} \tag{79}
\end{equation*}
$$

then the pseudo null curve $\gamma(s)$ is called the pseudo null Darboux helix, and the fixed direction V is called an axis of the pseudo null Darboux helix.

Theorem 13. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a pseudonull curve with parameterized by arc length s. If $\gamma(s)$ is a pseudonull Darboux
helix in \mathbb{E}_{1}^{4} whose fixed direction V satisfies

$$
\begin{equation*}
\left\langle D_{2}, V\right\rangle=a, a \in \mathbb{R}, \tag{80}
\end{equation*}
$$

then V is given by

$$
\begin{equation*}
V=u_{1} T-\frac{k_{2^{\prime}}}{k_{1}} u_{1} N+\left(u_{1} k_{2}+a\right) B_{1}+u_{1^{\prime}} B_{2}, \tag{81}
\end{equation*}
$$

and the curvature functions k_{1}, k_{2} satisfy

$$
\begin{equation*}
u_{1^{\prime \prime}}-k_{1} k_{2} u_{1}=a k_{1} \tag{82}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=\frac{1+k_{2}^{2}-\left(k_{2^{\prime}} / k_{1}\right)^{\prime}}{k_{2^{\prime}} / k_{1}} \tag{83}
\end{equation*}
$$

and $a, b \in \mathbb{R}, k_{1} \neq 0, k_{2} \neq$ const.
Proof. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a pseudo null Darboux helix with parameterized by arc length s. Then, for a fixed direction V satisfying

$$
\begin{equation*}
\left\langle D_{2}, V\right\rangle=a, a \in \mathbb{R} \tag{84}
\end{equation*}
$$

we can assume

$$
\begin{equation*}
V=u_{1} T+u_{2} N+u_{3} B_{1}+u_{4} B_{2} . \tag{85}
\end{equation*}
$$

By using (84), we can obtain

$$
\begin{align*}
& \left\langle D_{2}, V\right\rangle=u_{3}-u_{1} k_{2}=a \tag{86}\\
& \left\langle D_{2^{\prime}}, V\right\rangle=-k_{1} u_{2}-k_{2^{\prime}} u_{1}=0 \tag{87}
\end{align*}
$$

Taking the derivative of equation (86) according to s, we obtain

$$
\begin{equation*}
u_{3^{\prime}}=\left(k_{2} u_{1}\right)^{\prime} . \tag{88}
\end{equation*}
$$

Differentiating equation (85) and using the Frenet equation (7), we have

$$
\left\{\begin{array}{l}
u_{1^{\prime}}-u_{4}=0 \tag{89}\\
u_{1}+u_{2^{\prime}}+k_{2} u_{3}=0 \\
k_{1} u_{2}+u_{3^{\prime}}-k_{2} u_{4}=0 \\
u_{4^{\prime}}-k_{1} u_{3}=0
\end{array}\right.
$$

Substituting (86) and (87) into the second equation of (89), we can obtain

$$
\begin{equation*}
u_{1^{\prime}}-\frac{1+k_{2}^{2}-\left(k_{2^{\prime}} / k_{1}\right)^{\prime}}{k_{2^{\prime}} / k_{1}} u_{1}=a k_{2} \tag{90}
\end{equation*}
$$

By (90), we can obtain

$$
\begin{equation*}
u_{1}=e^{\int \xi d s}\left(a k_{2} e^{-\int \xi d s}+b\right) \tag{91}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=\frac{1+k_{2}^{2}-\left(k_{2^{\prime}} / k_{1}\right)^{\prime}}{k_{2^{\prime}} / k_{1}} . \tag{92}
\end{equation*}
$$

From (87), (88), and the first equation of (89), we have

$$
\begin{align*}
& u_{2}=-\frac{k_{2^{\prime}}}{k_{1}} u_{1}=-\frac{k_{2^{\prime}}}{k_{1}} e^{\int \xi d s}\left(a k_{2} e^{-\int \xi d s}+b\right), \\
& u_{3}=u_{1} k_{2}+a=k_{2} e^{\int \xi d s}\left(a k_{2} e^{-\int \xi d s}+b\right)+a, \tag{93}\\
& u_{4}=u_{1^{\prime}}=c_{1} k_{2}+\xi e^{\int \xi d s}\left(a k_{2} e^{-\int \xi d s}+b\right) .
\end{align*}
$$

Thus,

$$
\begin{equation*}
V=u_{1} T-\frac{k_{2^{\prime}}}{k_{1}} u_{1} N+\left(u_{1} k_{2}+a\right) B_{1}+u_{1^{\prime}} B_{2} . \tag{94}
\end{equation*}
$$

From the fourth equation of (89), the relationship between k_{1} and k_{2} can be expressed as

$$
\begin{equation*}
u_{1^{\prime \prime}}-k_{1} k_{2} u_{1}=a k_{1}, a \in \mathbb{R} \tag{95}
\end{equation*}
$$

This ends the proof.
Corollary 14. In particular, when $a=0, b=1$, we have

$$
\begin{equation*}
V=\left(T-\frac{k_{2^{\prime}}}{k_{1}} N+k_{2} B_{1}+\xi B_{2}\right) e^{\int \xi d s} \tag{96}
\end{equation*}
$$

and the curvature functions k_{2}, k_{3} satisfy

$$
\begin{equation*}
\xi^{\prime}+\xi^{2}-k_{1} k_{2}=0 \tag{97}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=\frac{1+k_{2}^{2}-\left(k_{2^{\prime}} / k_{1}\right)^{\prime}}{k_{2^{\prime}} / k_{1}} . \tag{98}
\end{equation*}
$$

Some examples of pseudo null Darboux helix in \mathbb{E}_{1}^{4} are given below.

Example 4. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a pseudo null curve, and s is the pseudoarc length. The curvature function k_{1}, k_{2} satisfies

$$
\begin{equation*}
k_{1}=\frac{1}{s\left(s^{2}+1\right) \sqrt{s^{2}+1}}, \quad k_{2}=\frac{s}{\sqrt{s^{2}+1}}, \tag{99}
\end{equation*}
$$

and then, $\gamma(s)$ is a Darboux helix whose fixed direction is given by

$$
\begin{equation*}
V=\sqrt{s^{2}+1} T-s \sqrt{s^{2}+1} N+s B_{1}+\frac{s}{\sqrt{s^{2}+1}} B_{2} . \tag{100}
\end{equation*}
$$

Example 5. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a pseudo null curve with the arc length s and the curvature

$$
\begin{equation*}
k_{1}=\frac{2 \sec ^{2} s}{\sqrt{2 \sec ^{2} s-1}}, k_{2}=\sqrt{2 \sec ^{2} s-1} \tag{101}
\end{equation*}
$$

and then, $\gamma(s)$ is a Darboux helix whose fixed direction is given by

$$
\begin{equation*}
V=\tan s T-\tan ^{2} s N+\tan s \sqrt{2 \sec ^{2} s-1} B_{1}+\sec ^{2} s B_{2} \tag{102}
\end{equation*}
$$

Example 6. Let $\gamma(s): I \longrightarrow \mathbb{E}_{1}^{4}$ be a pseudo null curve with the arc length s and the curvature

$$
\begin{equation*}
k_{1}=\frac{1}{\sqrt{2 e^{s}-1}}, k_{2}=\sqrt{2 e^{s}-1} \tag{103}
\end{equation*}
$$

and then, $\gamma(s)$ is a Darboux helix whose fixed direction is given by

$$
\begin{equation*}
V=e^{s} T-e^{2 s} N+e^{s} \sqrt{2 e^{s}-1} B_{1}+e^{s} B_{2} \tag{104}
\end{equation*}
$$

5. Conclusion

In this paper, we discuss some new space curves and planes in four-dimensional space-time and give characterizations of them in terms of the curvature functions. Before this study, most researchers studied Darboux vector in threedimensional space and four-dimensional Euclidean space. In this paper, the Darboux vector fields in three-dimensional space are extended to four-dimensional space-time by mathematical method. By defining Darboux vector fields in fourdimensional space-time in the form of vector products, we find that the Frenet vectors rotate around a plane spanned by two new vector fields, and this plane plays the role that the Darboux vector plays in three-dimensional space. This paper gives a new description of Darboux vector in fourdimensional space-time, which promotes the further development of angular momentum vector in physics and geometry.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflict of interest.

Authors' Contributions

The authors have made the same contribution.

References

[1] A. Petrov, Einstein Spaces, Pergamon Press, 1969.
[2] M. P. Dabrowski, "Null string evolution in black hole and cosmological spacetimes," Physical Review D., vol. 66, no. 4, pp. 427-444, 2002.
[3] A. Ferrández, A. Giménez, and P. Lucas, "Relativistic particles and the geometry of 4-D null curves," Journal of Geometry and Physics., vol. 57, no. 10, pp. 2124-2135, 2007.
[4] K. L. Duggal and D. H. Jin, "A classification of Einstein lightlike hypersurfaces of a Lorentzian space form," Journal of Geometry and Physics, vol. 60, no. 12, pp. 1881-1889, 2010.
[5] S. Izumiya and H. Yildirim, "Slant geometry on spacelike submanifolds of codimension two in Lorentz-Minkowski space," Journal of Geometry and Physics, vol. 98, pp. 160-180, 2015.
[6] B. Sahin, E. Kiliç, and R. Günes, "Null helices in Minkowski 3space," Differential Geometry Dynamical Systems, vol. 3, pp. 31-36, 2001.
[7] B. O'Neill, Semi-Riemannian Geometry: With Applications to Relativity, Academic Press, New York, 1983.
[8] J. A. Aledo, J. M. Espinar, and J. A. Galvez, "Timelike surfaces in the Lorentz-Minkowski space with prescribed Gaussian curvature and Gauss map," Journal of Geometry and Physics, vol. 56, no. 8, pp. 1357-1369, 2006.
[9] A. E. Treibergs, "Entire spacelike hypersurfaces of constant mean curvature in Minkowski space," Inventiones Mathematicae, vol. 66, no. 1, pp. 39-56, 1982.
[10] B. Y. Chen, "When does the position vector of a space curve always lie in its rectifying plane," American Mathematical Monthly, vol. 110, no. 2, pp. 147-152, 2003.
[11] L. J. Alías and J. M. Malacarne, "Spacelike hypersurfaces with constant higher order mean curvature in Minkowski spacetime," Journal of Geometry and Physics, vol. 41, no. 4, pp. 359-375, 2002.
[12] Z. Özdemir and I. A. Gök, "New approach on type-3 slant helix in \mathbb{E}^{4}," Gen. Math, vol. 28, no. 1, pp. 40-49, 2015.
[13] M. Bektas and M. Yilmaz Yildirim, "(k, m)-type slant helices for partially null and pseudo null curves in Minkowski 4space $\mathbb{E} 14$, ," Applied Mathematics and Nonlinear Sciences., vol. 5, no. 1, pp. 515-520, 2020.
[14] E. Nešović, "On k-type null Cartan slant helices in Minkowski 3-space," Mathematical Methods in the Applied Sciences, vol. 41, no. 17, pp. 7583-7598, 2018.
[15] K. İlarslan and E. Nešović, "Spacelike and timelike normal curves in Minkowski space-time," Publications de I' Institut Mathematique, vol. 85, no. 99, pp. 111-118, 2009.
[16] A. Tawfik and M. Turgut, "k-type partially null and pseudo null slant helices in Minkowski 4-space," Mathematical Communications, vol. 17, pp. 93-103, 2012.
[17] S. Izumiya and M. Kasedou, "Lightlike flat geometry of spacelike submanifolds in Lorentz-Minkowski space," International Journal of Geometric Methods in Modern Physics., vol. 11, no. 5, pp. 1450049-1450200, 2014.
[18] M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, 1976.
[19] E. Ziplar and A. Senol, "On Darboux helices in Euclidean 3space," Global Journal of Science Frontier Research, vol. 12, no. 13, pp. 72-80, 2012.
[20] U. Öztürk and E. Nešović, "On k-type pseudo null Darboux helices in Minkowski 3-space," Kuwait Journal of Science, vol. 439, no. 2, pp. 690-700, 2016.
[21] E. Kiliç, H. B. Karadağ, and M. Karadağ, "Special null curves on the ruled surfaces in the Minkowski 3-spaces," Indian Journal of Mathematics Special Memorial, vol. 51, no. 1, 2009.
[22] K. Zhou and Z. Wang, "Pseudo-spherical Darboux images and lightcone images of principal-directional curves of nonlightlike curves in Minkowski 3-space," Mathematical Methods in the Applied Sciences, vol. 43, no. 1, pp. 35-77, 2020.
[23] Z. Wang and D. H. Pei, "Null Darboux developable and pseudo-spherical Darboux image of null Cartan curve in Minkowski 3-space," Hokkaido Mathematical Journal, vol. 40, no. 2, pp. 219-240, 2011.
[24] J. Qian, X. Fu, and S. D. Jung, "Darboux associated curves of a null curve on pseudo-Riemannian space forms," Mathematics, vol. 8, no. 3, p. 395, 2020.
[25] E. Nešović and U. Öztürk, "On k-type pseudo null Darboux helices in Minkowski 3-space," Journal of Mathematical Analysis and Applications, vol. 439, no. 2, pp. 690-700, 2016.
[26] S. Izumiya, H. Katsumi, and T. Yamasaki, "The rectifying developable and the spherical Darboux image of a space curve," Banach Center Publications, vol. 50, no. 1, pp. 137149, 1999.
[27] M. Düldül, "Extension of the Darboux frame into Euclidean 4space and its invariants," Turkish Journal of Mathematics, vol. 41, no. 6, pp. 1628-1639, 2017.
[28] M. Düldül, "Vector fields and planes in \mathbb{E}^{4} which play the role of Darboux vector," Turkish Journal of Mathematics, vol. 44, no. 1, pp. 274-283, 2020.
[29] K. İlarslan and M. Yildirim, "On Darboux helices in Euclidean 4-space," Mathematical Methods in the Applied Sciences, vol. 42, no. 16, pp. 5184-5189, 2019.
[30] J. Walrave, Curves and Surfaces in Minkowski Space, [Ph.D. thesis], K. U. Leuven, Fac. of Science, Leuven, 1995.

