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Growth series is an important invariant associated with group or monoid which classifies all the words of group or monoid.
Therefore, the growth series of braid monoids and Hecke algebras in Artin’s generators is presented in many scholarly
published articles. The growth series of braid monoids MB3 and MB4 in band generators is known. In this work, we compute
the complete presentation of braid monoid MB5 in band generators by solving all the ambiguities of MB5. The words on the
left-hand of each relation are reducible words, and the words on the right-hand side are canonical words. We partially find the
growth series ðQð5Þ

∗ Þ of reducible words. Then, we construct a linear system for canonical words of MB5 in band presentation
and compute the corresponding growth series. We also find the growth rate of growth series of MB5 in band generators.

1. Introduction

The growth series also known as Hilbert series is an impor-
tant invariant in the study of modern geometry. In physics,
growth series have recently become a power full tool in high
energy theory, appearing, for example in the study of
Bogomol’nyi-Prasad-Sommerfield operators of supersym-
metric gauge theories [1, 2]; supersymmetric quantum chro-
modynamics [3, 4], and instanton moduli space [5, 6]. In [7],
Hilbert series was used to construct an operator basis in 1/m
expansion of a theory with a nonrelativistic heavy fermion in
an electromagnetic (NRQED) or color gauge field (NRQCD/
HQET).

The braid group Bn+1 admits the presentation given by
Artin [8].

Bn+1 = x1,⋯, xn
xixj = xjxi, if i − jj j ≥ 2
xi+1xixi+1 = xixi+1xi, if 1 ≤ i ≤ n − 1

�����
* +

:

ð1Þ

The braid group Bn+1 admits other presentations such as
Sergiescu graph-presentation and Birman-Ko-Lee presenta-

tion or band presentation. The last presentation is given by

Bn+1 = ats, n ≥ t > s ≥ 1
atsarq = arqats, t − rð Þ s − rð Þ s − qð Þ t − qð Þ > 0
atsasr = atrats = asratr , n ≥ t > s > r ≥ 1

�����
* +

:

ð2Þ

Growth series of braid monoid MB3 and MB4 is com-
puted in [9]. In [10], growth series of the finite dimensional
Hecke algebra is presented. Growth series for graded S-
module was computed by Haider in [11]. The growth series
of binomial edge ideals was computed by Kumar and Sarkar
in [12]. In [13], growth series of the graded algebra of real
regular functions on the symplectic quotient associated to
an SU2-module is computed and given an explicit expression
for the first nonzero coefficient of the Laurent expansion of
the growth series at t = 1: Growth series and the coefficient
of Laurent expansion of growth series of special linear group
of 2 × 2 matrices are computed in [14]. In [15], Saito proved
that the growth functions associated with Artin monoids of
finite type are rational functions whose nominator is 1 and
the denominator is polynomial NnðtÞ having distinct roots.
Growth series of symplectic quotients by 2-torus is com-
puted in [16]. In [17], the Laurent coefficients of the growth
series of a Gorenstein algebra is presented. In the growth
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series 1/qnðtÞ of MBn (for n = 3, 4, 5, 6) for Artin generators,
the degrees of the polynomials qnðtÞ are 3, 4, 10, 15, respec-
tively (for detail see [18]). Universal upper bound for the
growth of Artin monoid is computed in [19]. Growth series
of braid monoid MB3 and MB4 in band generators is com-
puted in [9]. The degrees of polynomial qnðtÞ in case of band
generators are 2 and 3 (for n = 3 and 4). In this paper, we
compute the growth series of braid monoid MB5 using band
presentation, and we see that the degree of the polynomial
qnðtÞ is 4. We note that growth rate of MB5 in band genera-
tors is much slower than that of Artin generators.

2. Materials and Methods

In MB5, we fix a total order a21 < a31 < a32 <⋯ < anðn−1Þ on
the generators. In the monoid, the relation α = β will be writ-
ten as α < β in the length-lexicographic order. Let α1 = uw
and α2 =wv; then the word of the form uwv is said to be
ambiguity (for detail see [20]). If α1v = uα2 as a relation as
well as in the length-lexicographic order, then, we say that
the ambiguity is solvable. A presentation is complete if and
only if all the ambiguities are solvable (for detail see [21,
22]). Corresponding to the relations α = β, the changes γαδ
⟶ γβδ give a rewriting system. A presentation will be
called a complete presentation if and only if all the ambigu-
ities are solvable.

In a complete presentation (or in the general presenta-
tion) of MBn+1if a word W contains α, then W is called a
reducible word and we denote it by Bn

∗ in general. If word
W does not contain α, then W is called canonical word or
canonical form. Let U and V be nonempty words; then,
the word UaijV will be denoted as aij × ijaijV .

Definition 1 (see [23]). Let G be a finitely generated group
and S be a finite set of generators of G. Then, the word
length lsðgÞ of an element g ∈G is the smallest integer n
for which there exist s1,⋯, sn ∈ SUS−1 such that g = s1,⋯,
sn:

Definition 2 (see [23]). Let G be a finitely generated group
and S be a finite set of generators of G. Then, the growth
function of the pair ðG, SÞ associates to an integer k ≥ 0 the
number aðkÞ of the element g ∈ G such that lsðgÞ = k, and
the corresponding growth series is given by PGðtÞ =∑∞

k=0að
kÞtk.

In 2008, Bokut [22] gave the Gr€obner-shirshov basis
(GSB) of Bn+1 in band generators. The notion of this basis
is in [14, 20, 24–27] under different names: complete presen-
tation, presentations with solvable ambiguities, Gr€obner-
shirshov basis, rewriting system, and so on. In [28], we
proved the subset of GSB of Bn+1 given by Bokut [26] is a
GSB of MBn+1: Using the notation (used in [28]) ðt, sÞ for
generator ats and V ½t,s� orW ½t,s� for the words in akl such that
t ≥ k > l ≥ s, we have.

Theorem 3 (see [28]). A GSB of braid monoid MBn+1 consist
of following relations:

k, lð Þ i, jð Þ = i, jð Þ k, lð Þ k > l > i > j,
k, lð ÞV i−1, 1½ � i, jð Þ = i, jð ÞV j−1,1½ � k, lð Þk > i > j > l,

t3, t2ð Þ t2, t1ð Þ = t2, t1ð Þ t3, t1ð Þ,
t3, t1ð ÞV t2−1,1½ � t3, t2ð Þ = t2, t1ð Þ t3, t1ð ÞV t2−1,1½ �,

t, sð ÞV t2−1,1½ � t2, t1ð ÞW t3−1,t1½ � t3, t1ð Þ = t3, t2ð Þ t, sð ÞV t2−1,1½ � t2, t1ð ÞW t3−1,t1½ �′ ,

t3, sð ÞV t2−1,1½ � t2, t1ð ÞW t3−1,t1½ � t3, t1ð Þ = t2, sð Þ t3, sð ÞV t2−1,1½ � t2, t1ð ÞW t3−1,t1½ �′ ,

For t3 > t2 > t1, t > t3, t2 > s andW t3−1,t1½ � t3, t1ð Þ = t3, t1ð ÞW t3−1,t1½ �′ ,

ð3Þ

where W ½t3−1,t1�′ =W ½t3−1,t1�jðp, qÞ⟶ ðp, qÞ, if q ≠ t1 ; ðp, t1Þ
⟶ ðt3, pÞ:

Proposition 4 (see [9]). Solution of linear system for canon-
ical words of braid monoid MB4 is given by

P 4ð Þ
21 = t

1 − tð Þ 1 − 5t + 5t2ð Þ ,

P 4ð Þ
31 = t

1 − 5t + 5t2
,

P 4ð Þ
32 = t

1 − 5t + 5t2
,

P 4ð Þ
41 = t 1 − 2tð Þ

1 − 5t + 5t2
,

P 4ð Þ
42 = t − t2

1 − 5t + 5t2
,

P 4ð Þ
43 = t 1 − 2tð Þ

1 − 5t + 5t2
:

ð4Þ

And the growth series of MB4 in band generators is given
as

P 4ð Þ
M tð Þ = 1

1 − tð Þ 1 − 5t + 5t2ð Þ : ð5Þ

3. Results and Discussion

In this paper, we compute the growth series ofMB5 (in band
presentation). From Equation (2), we have the following
band-presentation of MB5:

a54, a53, a52, a51, a43, a42, a41, a32, a31, a21 R
3ð Þ
1 , R 3ð Þ

2 , R 4ð Þ
i , R 5ð Þ

j ,  i = 3,⋯, 10, j = 11,⋯, 30
���D E

,

ð6Þ
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where

R 3ð Þ
1 : a31a32 = a21a31, R

3ð Þ
2 : a32a21 = a21a31, R

4ð Þ
3

: a41a32 = a32a41, R
4ð Þ
4 : a41a42 = a21a41, R

4ð Þ
5

: a41a43 = a31a41, R
4ð Þ
6 : a42a21 = a21a41, R

4ð Þ
7

: a42a43 = a32a42, R
4ð Þ
8 : a43a21 = a21a43, R

4ð Þ
9

: a43a31 = a31a41, R
4ð Þ
10 : a43a32 = a32a42, R

5ð Þ
11

: a51a32 = a32a51, R
5ð Þ
12 : a51a42 = a42a51, R

5ð Þ
13

: a51a43 = a43a51, R
5ð Þ
14 : a51a52 = a21a51, R

5ð Þ
15

: a51a53 = a31a51, R
5ð Þ
16 : a51a54 = a41a51, R

5ð Þ
17

: a52a43 = a43a52, R
5ð Þ
18 : a52a21 = a21a51, R

5ð Þ
19

: a52a53 = a32a52, R
5ð Þ
20 : a52a54 = a42a52, R

5ð Þ
21

: a53a21 = a21a53, R
5ð Þ
22 : a53a31 = a31a51, R

5ð Þ
23

: a53a32 = a32a52, R
5ð Þ
24 : a53a54 = a43a53, R

5ð Þ
25

: a54a21 = a21a54, R
5ð Þ
26 : a54a31 = a31a54, R

5ð Þ
27

: a54a32 = a32a54, R
5ð Þ
28 : a54a41 = a41a51, R

5ð Þ
29

: a54a42 = a42a52, R
5ð Þ
30 : a54a43 = a43a53 ð7Þ

are given basic relations.
For the braid monoid MB5, we have given another form

of Theorem 3 that is directly used to compute the growth
series of MB5. This form is obtained by solving all the ambi-
guities in the band presentation of MB5.

Proposition 5. A complete presentation ofMB5 for band pre-
sentation is given by

a54, a53, a52, a51, a43, a42, a41, a32, a31, a21 R
3ð Þ
1 , R 3ð Þ

2 , R 3ð Þ
84 , R

4ð Þ
i , R 4ð Þ

j , R 5ð Þ
k , 

���D
i = 3,⋯, 10, j = 76,⋯, 83, k = 11,⋯, 75i,

ð8Þ

where the new relations Rð5Þ
31 ,… , Rð3Þ

84 are given as follows

R 5ð Þ
31 : a51a

n
21a31 = a32a51a21a

n−1
32 ,

R 5ð Þ
32 : a51a

n
21a41 = a42a51a21a

n−1
42 ,

R 5ð Þ
33 : a51a

n
21a32W 32ð Þa41 = a42a51a21a

n−1
42 W ′ 32ð Þ,

R 5ð Þ
34 : a51a

n
21a

r
32a42 = a43a51a

n
21a32a

r−1
43 ,

R 5ð Þ
35 : a51a

n
21a43 = a43a51a

n
21,

R 5ð Þ
36 : a51a

n
21a51 = a21a51a21a

n−1
52 ,

R 5ð Þ
37 : a51a

n
21a32W 32ð Þa51 = a21a51a21a

n−1
52 W ′ 32ð Þ,

R 5ð Þ
38 : a51a

n
21a42V 42ð Þa51 = a21a51a21a

n−1
52 V ′ 42ð Þ,

R 5ð Þ
39 : a51a

n
21a32W 32ð Þa43V 43ð Þa51

= a21a51a21a
n−1
52 W ′ 32, 21ð ÞV ′ 43ð Þ,

R 5ð Þ
40 : a51a

n
21a

r
32a31W 31ð Þa42V 42, 21ð Þa51

= a21a51a21a
n−1
52 ar32W ′ 31ð ÞV ′ 42ð Þ,

R 5ð Þ
41 : a51a

n
21a

r
32a52 = a31a51a

n
21a32a

r−1
53 ,

R 5ð Þ
42 : a51a

n
21a

r
32a43V 43; 42; 32ð Þa52

= a31a51a
n
21a32a

r−1
53 V ′ 43; 42; 32ð Þ,

R 5ð Þ
43 : a51a

n
21a

r
32a31W 31ð Þa42V 42; 43; 32ð Þa52

= a41a51a
n
21a

r
32W ′ 31ð ÞV ′ 42; 43; 32ð Þ,

R 5ð Þ
44 : a51a

n
21a42V 42; 43; 32ð Þa52 = a41a51a

n
21V ′ 42; 43; 32ð Þ,

R 5ð Þ
45 : a51a

n
21a53 = a31a51a

n
21,

R 5ð Þ
46 : a51a

n
21a32W 32ð Þar43a53 = a41a51a

n
21W ′ 32ð Þar43,

R 5ð Þ
47 : a51a

n
21a54 = a41a51a

n
21,

R 5ð Þ
48 : a51a

n
21a32W 32ð Þa54 = a41a51a

n
21W ′ 32ð Þ,

R 5ð Þ
49 : a51a31W 31ð Þa41 = a43a51a31W ′ 31ð Þ,

R 5ð Þ
50 : a51a31W 31ð Þa51 = a31a51a31W ′ 31ð Þ,

R 5ð Þ
51 : a51a31W 31ð Þa42V 42ð Þa51 = a31a51a31W ′ 31ð ÞV ′ 42ð Þ,

R 5ð Þ
52 : a51a31W 31ð Þa43V 43ð Þa51 = a31a51a31W ′ 31ð ÞV ′ 43ð Þ,

R 5ð Þ
53 : a51a31W 31ð Þa42V 42; 43; 32ð Þa52
= a41a51a31W ′ 31ð ÞV ′ 42; 43; 32ð Þ,

R 5ð Þ
54 : a51a31W 31ð Þan43a53 = a41a51a31W ′ 31ð Þa43an−154 ,

R 5ð Þ
55 : a51a31W 31ð Þa54 = a41a51a31W ′ 31ð Þ,

R 5ð Þ
56 : a51a41V 41ð Þa51 = a41a51a41V ′ 41ð Þ,

R 5ð Þ
57 : a52a31W 31ð Þa41 = a43a52a31W ′ 31ð Þ,

R 5ð Þ
58 : a52a31W 31ð Þa51 = a32a52a31W ′ 31ð Þ,

R 5ð Þ
59 : a52a31W 31ð Þa42V 42,ð Þa51 = a32a52a31W ′ 31ð ÞV ′ 42ð Þ,

R 5ð Þ
60 : a52a31W 31ð Þa43V 42ð Þa51 = a32a52a31W ′ 31ð ÞV ′ 43ð Þ,
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R 5ð Þ
61 : a52a31W 31ð Þa42V 42; 43; 32ð Þa52
= a42a52a31W ′ 31ð ÞV ′ 42; 43; 32ð Þ,

R 5ð Þ
62 : a52a31W 31ð Þan43a53 = a42a52a31W ′ 31ð Þa43an−154 ,

R 5ð Þ
63 : a52a31W 31ð Þa54 = a42a52a31W ′ 31ð Þ,

R 5ð Þ
64 : a52a

n
32a42 = a43a52a32a

n−1
43 ,

R 5ð Þ
65 : a52a32W 32ð Þa41V 41ð Þa51 = a42a52a32W ′ 32ð ÞV ′ 41ð Þ,

R 5ð Þ
66 : a52a

n
32a52 = a32a52a32a

n−1
53 ,

R 5ð Þ
67 : a52a

n
32a31W 31ð Þa42V 42; 43; 32ð Þa52

= a42a52a
n
32W ′ 31ð ÞV ′ 42; 43; 32ð Þ,

R 5ð Þ
68 : a52a

n
32a43V 43; 42; 32ð Þa52

= a32a52a32a
n−1
53 V ′ 43; 42; 32ð Þ,

R 5ð Þ
69 : a52a32W 32ð Þan43a53 = a42a52a32W ′ 32ð Þa43an−154 ,

R 5ð Þ
70 : a52a32W 32ð Þa54 = a42a52a32W ′ 32ð Þ,

R 5ð Þ
71 : a52a41V 41ð Þa51 = a42a52a41V ′ 41ð Þ,

R 5ð Þ
72 : a52a42V 42; 43; 32ð Þa52 = a42a52a42V ′ 42; 43; 32ð Þ,

R 5ð Þ
73 : a53a41V 41ð Þa51 = a43a53a41V ′ 41ð Þ,

R 5ð Þ
74 : a53a42V 42; 43; 32ð Þa53 = a43a53a42V ′ 42; 43; 32ð Þ,

R 5ð Þ
75 : a53a

n
43a53 = a43a53a43a

n−1
54 ,

R 4ð Þ
76 : a41a

n
21a31 = a32a41a21a

n−1
32 ,

R 4ð Þ
77 : a41a

n
21a41 = a21a41a21a

n−1
42 ,

R 4ð Þ
78 : a41a

n
21a

r
32a42 = a31a41a

n
21a32a

r−1
43 ,

R 4ð Þ
79 : a41a

n
21a43 = a31a41a

n
21,

R 4ð Þ
80 : a41a21a32W 32ð Þa41 = a21a41a21a32W ′ 32ð Þ,

R 4ð Þ
81 : a41a21a31W 31ð Þa41 = a31a41a31W ′ 31ð Þ,

R 4ð Þ
82 : a42a31W 31ð Þa41 = a32a42a31W ′ 31ð Þ,

R 4ð Þ
83 : a42a

n
32a42 = a32a42a32a

n−1
43 ,

R 3ð Þ
84 : a31a

n
21a31 = a21a31a21a

n−1
32 , ð9Þ

where n and r are positive integers, Wð3kÞ a canonical word
in MB3 starting with a3k, ðk = 1, 2Þ and

(i) W ′ð3kÞ =Wð3kÞ: a32 ⟶ a32, a21 ⟶ a41, a31 ⟶
a43, Vð4lÞ is a canonical word in MB4 starting with
a4l , ðl = 1, 2, 3Þ

(ii) V ′ð3lÞ = Vð3lÞ
:-
a41 ⟶ a54, a42 ⟶ a42, a43 ⟶ a53, a32 ⟶ a32, a21
⟶ a41, a31 ⟶ a43 and Vð4m, 32Þ =∑Að3Þ

3ðm−1Þ,m
= 2, 3 (as mentioned in Theorem 3)

Proof. We denote the ambiguity formed by left sides of the
relation Ri and Rj in MB5 by Ri-Rj = swt (say). If in the
ambiguity z = swt, LðzÞ = ðswÞt and RðzÞ = sðwtÞ are differ-
ent lexicographically, then we get a new relation in the com-
plete presentation of MB5, and if LðzÞ = ðswÞt and
RðzÞ = sðwtÞ are reduced to an identical word, then we say
the ambiguity is solvable and no new relation is formed.
The above relations are formed by solving the ambiguities
involving basic relations and new relations.

For an ambiguity Rð5Þ
11 − Rð3Þ

2 = a51a32a21 =w1(say), we
have

R w1ð Þ = a51a32a21 = a51a21a31, L w1ð Þ = a51a32 a21 = a32a51a21:

ð10Þ

Hence, we have a new relation Rð5Þ
w1

: a51a21a31 = a32a51
a21. Again, by solving new ambiguity Rð5Þ

w1
− Rð3Þ

1 = a51a21a31
a32 =w2(say), we have

R w2ð Þ = a51a21a31a32 = a51a
2
21a31, L w2ð Þ = a51a21a31 a32

= a32a51a21a32:

ð11Þ

Hence, we have another relation Rð5Þ
w2

: a51a
2
21a31 = a32

a51a21a32: Now by solving ambiguity Rð5Þ
w2

− Rð3Þ
1 = a51a

2
21a31

a32 =w3(say), we have

R w3ð Þ = a51a
2
21a31a32 = a51a

3
21a31, L w2ð Þ = a51a

2
21a31 a32

= a32a51a21a
2
32:

ð12Þ

Hence, we have a relation Rð5Þ
w2

: a51a
3
21a31 = a32a51a21a

2
32.

By continuing the same process, we have the general relation

R 5ð Þ
31 : a51a

n
21a31 = a32a51a21a

n−1
32 ,  n ≥ 1: ð13Þ

For an ambiguity Rð5Þ
12 − Rð4Þ

6 = a51a42a21 =w4 (say), we
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have

R w4ð Þ = a51a42a21 = a51a21a41, L w4ð Þ = a51a42 a21 = a42a51a21:

ð14Þ

Hence, we have a new relation Rð5Þ
w4

: a51a21a41 = a42a51
a21. Again, by solving new ambiguity Rð5Þ

w4
− Rð4Þ

4 = a51a21a41
a42 =w5 (say), we have

R w5ð Þ = a51a21a41a42 = a51a
2
21a41, L w5ð Þ = a51a21a41 a42

= a42a51a21a42,
ð15Þ

which give another relation Rð5Þ
w5

: a51a
2
21a41 = a42a51a21a42:

Now by solving ambiguity Rð5Þ
w5

− Rð3Þ
4 = a51a

2
21a41a42 =w6

(say), we have

R w6ð Þ = a51a
2
21a41a42 = a51a

3
21a41, L w6ð Þ = a51a

2
21a41 a42

= a42a51a21a
2
42:

ð16Þ

Hence, Rð5Þ
w6

: a51a
3
21a41 = a42a51a21a

2
42. By continuing the

same process, we have the general relation

R 5ð Þ
32 : a51a

n
21a41 = a42a51a21a

n−1
42 ,  n ≥ 1: ð17Þ

For an ambiguity Rð5Þ
12 − Rð4Þ

7 = a51a42a43 =w7 (say), we
have

R w7ð Þ = a51a42a43 = a51a32 a42 = a32a51a42 = a32a42a51,
L w7ð Þ = a51a42 a43 = a42a51a43 = a42a43 a51 = a32a42a51,

ð18Þ

where Lðw7Þ = Rðw7Þ are reduced to identical word, so
ambiguity is solvable and no new relation is formed. Using
a similar procedure, we obtained all above new relations in
complete presentation of MB5: Hence the proof is omitted.

As defined above, Am
∗ denotes the set of canonical words

and Bm
∗ the set of reducible words in MBn+1 in general. In

particular, Bð5Þ
5i:kl:mn:pq;rs, where 1 ≤ i ≤ 3 denote the set of

reducible words starting with a5iakl and ending on ars: In
this notation ars is a generator in MBd : 3 ≤ d ≤ 5, pq denotes
the canonical word (possibly empty) in MBd−1 starting with
apq, mn denotes the canonical word (possibly empty) in
MBd−2 starting with amn, and kl denotes the canonical word
(possibly empty) in MBd−3 starting with akl: We will denote
the empty word by ϕ: We denote the set all reducible words

starting with a5iakl and ending on ars by Bð5Þ
5i:kl;rs . Hence,

Bð5Þ
5i:kl:mn:pq;rs is a subset of B

ð5Þ
5i:kl;rs:

We are using other notions as follows:

(i) We denote the set fa21, a221, a321,⋯g by Að2Þ
21

(ii) AðnÞ
ij denotes the set of canonical words starting with

aij in MBn

(iii) ∑rAðnÞ
ij denotes the set of all the word in AðnÞ

ij such
that the index of each generator is increased by r.

Hence, j∑rAðnÞ
ij j = jAðnÞ

ij j, i.e., the cardinality remains

unchanged. In particular for the set Að2Þ
21 = fa21, a221

, a321,⋯g, we have ∑Að2Þ
21 = fa32, a232, a332,⋯g

(iv) AðnÞ
nj:kl denotes the set of canonical words starting

with anjakl in MBn

(v) The growth series of BðmÞ
∗ , AðmÞ

∗ and MB5 is denoted

by QðmÞ
∗ , PðmÞ

∗ and Pð5Þ
M ðtÞ, respectively

Note that growth series of Að2Þ
21 is Pð2Þ

21 = t/ð1 − tÞ:

Proposition 6. The following equalities hold for the reducible
words in MB5:

Q 5ð Þ
51:21;31 =

t3

1 − t
:

Q 5ð Þ
51:21;41 =

t3

1 − 2t
,

Q 5ð Þ
51:21;42 =

t4

1 − tð Þ2 ,

Q 5ð Þ
51:21;43 =

t3

1 − t
,

Q 5ð Þ
51:21;51 =

t3 − 2t4

1 − 5t + 5t2
,

Q 5ð Þ
51:21;52 =

t4 2 − 6t + 5t2
� �
1 − tð Þ2 1 − 2tð Þ2 ,

Q 5ð Þ
51:21;53 =

t3 1 − 3t + 3t2
� �
1 − tð Þ2 1 − 2tð Þ ,

Q 5ð Þ
51:21;54 =

t3

1 − 2t
,

Q 5ð Þ
51:31;41 =

t3

1 − 2t
,

Q 5ð Þ
51:31;51 =

t3 − t4

1 − 5t + 5t2
,

Q 5ð Þ
51:31;52 =

t4

1 − tð Þ2 ,
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Q 5ð Þ
51:31;53 =

t4

1 − tð Þ 1 − 2tð Þ ,

Q 5ð Þ
51:31;54 =

t3

1 − 2t
,

Q 5ð Þ
51:41;51 =

t3 1 − 2tð Þ
1 − 5t + 5t2

,

Q 5ð Þ
52:31;41 =

t3

1 − 2t
,

Q 5ð Þ
52:31;51 =

t3 − t4

1 − 5t + 5t2
,

Q 5ð Þ
52:31;52 =

t4

1 − tð Þ2 ,

Q 5ð Þ
52:31;53 =

t4

1 − tð Þ 1 − 2tð Þ ,

Q 5ð Þ
52:31;54 =

t3

1 − 2t
,

Q 5ð Þ
52:32;42 =

t3

1 − t
,

Q 5ð Þ
52:32;51 =

t4

1 − 5t + 5t2
,

Q 5ð Þ
52:32;52 =

t3 1 − 3t + 3t2
� �
1 − tð Þ 1 − 2tð Þ2 ,

Q 5ð Þ
52:32;53 =

t4

1 − tð Þ 1 − 2tð Þ ,

Q 5ð Þ
52:32;54 =

t3

1 − 2t
,

Q 5ð Þ
52:41;51 =

t3 1 − 2tð Þ
1 − 5t + 5t2

,

Q 5ð Þ
52:42;52 =

t3

1 − 2t
,

Q 5ð Þ
53:41;51 =

t3 1 − 2tð Þ
1 − 5t + 5t2

,

Q 5ð Þ
53:42;52 =

t3

1 − 2t
:

Q 5ð Þ
53:43;53 =

t3

1 − t
: ð19Þ

Proof. Using simple decomposition of words and ⨆ denotes
the disjoint union of sets then, we have

(1) Since Bð5Þ
51:21;31 = Bð5Þ

51:21;31 =fa51an21a31g = fa51g × Að2Þ
21

× fa31g, hence , Qð5Þ
51:21;31 = ðt3/1 − tÞ

(2) Bð5Þ
51:21;41 = Bð5Þ

51:21:ϕ;41⨆Bð5Þ
51:21:32;41

=fa51an21a41g⨆fa51an21a32Vð32Þa41g
=½fa51g × Að2Þ

21 × fa41g�⨆½fa51g × Að2Þ
21 × Að3Þ

32 × fa41g�
implies Qð5Þ

51:21;41 = t3/ð1 − 2tÞ

(3) Bð5Þ
51:21;42 = Bð5Þ

51:21:32;42 = fa51an21ar32a42g = fa51g × Að2Þ
21

×∑Að2Þ
21 × fa42g implies Qð5Þ

51:21;42 = t4/ð1 − tÞ2

Using similar procedure, we obtained all above Qð5Þ
∗ of

MB5: Hence, the proof is omitted.

Next, we construct linear system for canonical form in
MB5:

Proposition 7. The following equalities hold for the canonical
words in MB5:

P 5ð Þ
21 = t

1 − tð Þ 1 − 5t + 5t2ð Þ 1 + 〠
4

i=1
P 5ð Þ
5i

 !
,

P 5ð Þ
31 = t

1 − 5t + 5t2
1 + 〠

4

i=1
P 5ð Þ
5i

 !
,

P 5ð Þ
32 = t

1 − 5t + 5t2
1 + 〠

4

i=1
P 5ð Þ
5i

 !
,

P 5ð Þ
41 = t 1 − 2tð Þ

1 − 5t + 5t2
1 + 〠

4

i=1
P 5ð Þ
5i

 !
,

P 5ð Þ
42 = t − t2

1 − 5t + 5t2
1 + 〠

4

i=1
P 5ð Þ
5i

 !
,

P 5ð Þ
43 = t 1 − 2tð Þ

1 − 5t + 5t2
1 + 〠

4

i=1
P 5ð Þ
5i

 !
,

P 5ð Þ
51 = t + tP 5ð Þ

51 + 〠
4

i=2
P 5ð Þ
51:i1,

P 5ð Þ
52 = t + t〠

2

i=1
P 5ð Þ
5i + 〠

2

i=1
P 5ð Þ
52:3i + 〠

2

i=1
P 5ð Þ
52:4i,

P 5ð Þ
53 = t + t〠

3

i=1
P 5ð Þ
5i + 〠

3

i=1
P5
53:4i,

P 5ð Þ
54 = t + t〠

4

i=1
P 5ð Þ
5i ,
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P 5ð Þ
51:21 = tP 5ð Þ

21 −
t2

1 − t
P 5ð Þ
31 −

t2

1 − 2t
P 5ð Þ
41 −

t3

1 − tð Þ2 P
5ð Þ
42

−
t2

1 − t
P 5ð Þ
43 −

t2 − 2t3

1 − 5t + 5t2
P 5ð Þ
51 −

t3 2 − 6t + 5t2
� �
1 − tð Þ2 1 − 2tð Þ2 P

5ð Þ
52

−
t2 1 − 3t + 3t2
� �
1 − tð Þ2 1 − 2tð Þ P

5ð Þ
53 −

t2

1 − 2t
P 5ð Þ
54 ,

P 5ð Þ
51:31 = tP 5ð Þ

31 −
t2

1 − 2t
P 5ð Þ
41 −

t2 − t3

1 − 5t + 5t2ð ÞP
5ð Þ
51

−
t3

1 − 2tð Þ2 P
5ð Þ
52 −

t3

1 − tð Þ 1 − 2tð Þ P
5ð Þ
53 −

t2

1 − 2t
P 5ð Þ
54 ,

P 5ð Þ
51:41 = tP 5ð Þ

41 −
t2 1 − 2tð Þ
1 − 5t + 5t2

P 5ð Þ
51 ,

P 5ð Þ
52:31 = tP 5ð Þ

31 −
t2

1 − 2t
P 5ð Þ
41 −

t2 − t3

1 − 5t + 5t2
P 5ð Þ
51 −

t3

1 − 2tð Þ2 P
5ð Þ
52

−
t3

1 − tð Þ 1 − 2tð ÞP
5ð Þ
53 −

t2

1 − 2t
P 5ð Þ
54 ,

P 5ð Þ
52:32 = tP 5ð Þ

32 −
t2

1 − t
P 5ð Þ
42 −

t3

1 − 5t + 5t2
P 5ð Þ
51

−
t2 1 − 3t + 3t2
� �
1 − tð Þ 1 − 2tð Þ2 P

5ð Þ
52 −

t3

1 − tð Þ 1 − 2tð ÞP
5ð Þ
53

−
t2

1 − 2t
P 5ð Þ
54 ,

P 5ð Þ
52:41 = tP 5ð Þ

41 −
t2 1 − 2tð Þ
1 − 5t + 5t2

P 5ð Þ
51 ,

P 5ð Þ
52:42 = tP 5ð Þ

42 −
t2

1 − 2t
P 5ð Þ
52 ,

P 5ð Þ
53:41 = tP 5ð Þ

41 −
t2 1 − 2tð Þ
1 − 5t + 5t2

P 5ð Þ
51 ,

P 5ð Þ
53:42 = tP 5ð Þ

42 −
t2

1 − 2t
P 5ð Þ
52 ,

P 5ð Þ
53:43 = tP 5ð Þ

43 −
t2

1 − t
P 5ð Þ
53 : ð20Þ

Proof. We compute the growth series inductively. By using
decomposition of words, we have

(1) Að5Þ
21 = Að4Þ

21 ⨆½Að4Þ
21 × ðAð5Þ

51 ⨆Að5Þ
52 ⨆Að5Þ

53 ⨆Að5Þ
54 Þ� gives

Pð5Þ
21 = t/ðð1 − tÞð1 − 5t + 5t2ÞÞð1 +∑4

i=1P
ð5Þ
5i Þ

(2) Að5Þ
31 = Að4Þ

31 ⨆½Að4Þ
31 × ðAð5Þ

51 ⨆Að5Þ
52 ⨆Að5Þ

53 ⨆Að5Þ
54 Þ� implies

Pð5Þ
31 = 1/ð1 − 5t + 5t2Þð1 +∑4

i=1P
ð5Þ
5i Þ

(3) Að5Þ
32 = Að4Þ

32 ⨆½Að4Þ
32 × ðAð5Þ

51 ⨆Að5Þ
52 ⨆Að5Þ

53 ⨆Að5Þ
54 Þ� implies

Pð5Þ
32 = 1/ð1 − 5t + 5t2Þð1 +∑4

i=1P
ð5Þ
5i Þ

(4) Að5Þ
41 = Að4Þ

41 ⨆½Að4Þ
41 × ðAð5Þ

51 ⨆A5
52⨆A5

53⨆A5
54Þ� implies

Pð5Þ
41 = ðtð1 − 2tÞÞ/ð1 − 5t + 5t2Þð1 +∑4

i=1P
ð5Þ
5i Þ

(5) Að5Þ
42 = Að4Þ

42 ⨆½Að4Þ
42 × ðAð5Þ

51 ⨆A5
52⨆A5

53⨆A5
54Þ� implies

Pð5Þ
42 = ðt − t2Þ/ð1 − 5t + 5t2Þð1 +∑4

i=1P
ð5Þ
5i Þ

(6) Að5Þ
43 = Að4Þ

43 ⨆½Að4Þ
43 × ðAð5Þ

51 ⨆A5
52⨆A5

53⨆A5
54Þ� implies

Pð5Þ
43 = ðtð1 − 2tÞÞ/ð1 − 5t + 5t2Þð1 +∑4

i=1P
ð5Þ
5i Þ

The set Að5Þ
5i consists of all the words starting with the

generator a5i: Therefore, the set fa5ig × A5
5i is subset of A

ð5Þ
5i

consisting of all the words starting with a25i: We apply this
concept in the proof of items (7), (8), (9), and (10).

(7) The set Að5Þ
51 is disjoint union of its subsets fa51g, f

a51g × Að5Þ
51 , A5

51:21, A
ð5Þ
51:31, A

ð5Þ
51:41, i.e Að5Þ

51 = fa51g⨆ðf
a51g × Að5Þ

51 Þ⨆Að5Þ
51:21⨆Að5Þ

51:31⨆Að5Þ
51:41: Therefore, we

have Pð5Þ
51 = t + tPð5Þ

51 +∑4
i=2P

ð5Þ
51:i1

Similarly, we have

(8) Að5Þ
52 = fa52g⨆ðfa52g × Að5Þ

52 Þ⨆ðfa52g × Að5Þ
51 Þ⨆Að5Þ

52:31
⨆Að5Þ

52:32⨆Að5Þ
52:41⨆Að5Þ

52:42 implies Pð5Þ
52 = t + t∑2

i=1P
ð5Þ
5i

+∑2
i=1P

ð5Þ
52:3i +∑2

i=1P
ð5Þ
52:4i

(9) Að5Þ
53 = fa53g⨆ðfa53g × Að5Þ

53 Þ⨆ðfa53g × Að5Þ
52 Þ⨆ðfa53

g × Að5Þ
51 Þ⨆Að5Þ

53:41⨆Að5Þ
53:42⨆Að5Þ

53:43
implies Pð5Þ

53 = t + t∑3
i=1P

ð5Þ
5i +∑3

i=1P
ð5Þ
53:4i

(10) Að5Þ
54 = fa54g⨆ðfa54g × Að5Þ

54 Þ⨆ðfa54g × Að5Þ
53 Þ⨆ðfa54

g × Að5Þ
52 Þ⨆ðfa54g × Að5Þ

51 Þ implies Pð5Þ
54 = t + t∑4

i=1
Pð5Þ
5i

(11) Að5Þ
51:21 = fa51g × Að5Þ

21 ½ðBð5Þ
51:21;31 × 31A

ð5Þ
31 Þ⨆ðBð5Þ

51:21;41
× 41A

ð5Þ
41 Þ⨆ðBð5Þ

51:21;42 × 42A
ð5Þ
42 Þ⨆ðBð5Þ

51:21;43 × 43A
ð5Þ
43 Þ⨆ð

Bð5Þ
51:21;51 × 51A

ð5Þ
51 Þ⨆ðBð5Þ

51:21;52 × 52A
ð5Þ
52 Þ⨆ðBð5Þ

51:21;53 × 53
Að5Þ
53 Þ⨆ðBð5Þ

51:21;54 × 54A
ð5Þ
54 Þ� implies

P 5ð Þ
51:21 = tP 5ð Þ

21 −
t2

1 − t
P 5ð Þ
31 −

t2

1 − 2t P
5ð Þ
41 −

t3

1 − tð Þ2 P
5ð Þ
42

−
t2

1 − t
P 5ð Þ
43 −

t2 − 2t3
1 − 5t + 5t2 P

5ð Þ
51 −

t3 2 − 6t + 5t2
� �
1 − tð Þ2 1 − 2tð Þ2 P

5ð Þ
52

−
t2 1 − 3t + 3t2
� �
1 − tð Þ2 1 − 2tð Þ P

5ð Þ
53 −

t2

1 − 2t P
5ð Þ
54

ð21Þ

(12) Að5Þ
51:31 = fa51g × Að5Þ

31 /½Bð5Þ
51:31;41 × 41A

ð5Þ
41 ⨆ðBð5Þ

51:31;51
× 51A

ð5Þ
51 Þ⨆ðBð5Þ

51:31;52 × 52A
ð5Þ
52 Þ⨆ðBð5Þ

51:31;53 × 53A
ð5Þ
53 Þ⨆ð

Bð5Þ
51:31;54 × 54A

ð5Þ
54 Þ implies
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P 5ð Þ
51:31 = tP 5ð Þ

31 −
t2

1 − 2t P
5ð Þ
41 −

t2 − t3

1 − 5t + 5t2 P
5ð Þ
51 −

t3

1 − 2tð Þ2 P
5ð Þ
52

−
t3

1 − tð Þ 1 − 2tð Þ P
5ð Þ
53 −

t2

1 − 2t P
5ð Þ
54

ð22Þ

(13) Að5Þ
51:41 = fa51g × Að5Þ

41 \ ½ðBð5Þ
51:41;51 × 51A

ð5Þ
51 Þ� implies

Pð5Þ
51:41 = tPð5Þ

41 − ððt2ð1 − 2tÞÞ/ð1 − 5t + 5t2ÞÞPð5Þ
51

(14) Að5Þ
52:31 = fa52g × Að5Þ

31 ½Bð5Þ
52:31;41 × 41A

ð5Þ
41 ⨆ðBð5Þ

52:31;51 × 51
Að5Þ
51 Þ⨆ðBð5Þ

52:31;52 × 52A
ð5Þ
52 Þ⨆ðBð5Þ

52:31;53 × 53A
ð5Þ
53 Þ⨆ð

Bð5Þ
52:31;54 × 54A

ð5Þ
54 Þ� implies

P 5ð Þ
52:31 = tP 5ð Þ

31 −
t2

1 − 2t P
5ð Þ
41 −

t2 − t3

1 − 5t + 5t2 P
5ð Þ
51 −

t3

1 − 2tð Þ2 P
5ð Þ
52

−
t3

1 − tð Þ 1 − 2tð Þ P
5ð Þ
53 −

t2

1 − 2t P
5ð Þ
54

ð23Þ

(15) Að5Þ
52:32 = fa52g × Að5Þ

32 ½Bð5Þ
52:32;42 × 42A

ð5Þ
42 ⨆ðBð5Þ

52:32;51 × 51
Að5Þ
51 Þ⨆ðBð5Þ

52:32;52 × 52A
ð5Þ
52 Þ⨆ðBð5Þ

52:32;53 × 53A
ð5Þ
53 Þ⨆ð

Bð5Þ
52:32;54 × 54A

ð5Þ
54 Þ implies

P 5ð Þ
52:32 = tP 5ð Þ

32 −
t2

1 − t
P 5ð Þ
42 −

t3

1 − 5t + 5t2ð ÞP
5ð Þ
51 −

t2 1 − 3t + 3t2
� �
1 − tð Þ 1 − 2tð Þ2 P

5ð Þ
52

−
t3

1 − tð Þ 1 − 2tð Þ P
5ð Þ
53 −

t2

1 − 2t P
5ð Þ
54

ð24Þ

(16) Að5Þ
52:41 = fa52g × Að5Þ

41 \ ½ðBð5Þ
52:41;51 × 51A

ð5Þ
51 Þ� implies

Pð5Þ
52:41 = tPð5Þ

41 − ððt2ð1 − 2tÞÞ/ð1 − 5t + 5t2ÞÞPð5Þ
51

(17) Að5Þ
52:42 = fa52g × Að5Þ

42 \ ½ðBð5Þ
52:42;52 × 52A

ð5Þ
52 Þ� implies

Pð5Þ
52:42 = tPð5Þ

42 − ðt2/ð1 − 2tÞÞPð5Þ
52

(18) Að5Þ
53:41 = fa53g × Að5Þ

41 \ ½ðBð5Þ
53:41;51 × 51A

ð5Þ
51 Þ� gives

Pð5Þ
53:41 = tPð5Þ

41 − ððt2ð1 − 2tÞÞ/ð1 − 5t + 5t2ÞÞPð5Þ
51

(19) Að5Þ
53:42 = fa53g × Að5Þ

42 \ ½ðBð5Þ
53:42;52 × 52A

ð5Þ
52 Þ� implies

Pð5Þ
52:42 = tPð5Þ

42 − ðt2/ð1 − 2tÞÞPð5Þ
52

(20) Að5Þ
53:43 = fa53g × Að5Þ

43 \ ½ðBð5Þ
53:43;53 × 53A

ð5Þ
53 Þ� implies

Pð5Þ
53:43 = tPð5Þ

43 − ðt2/ð1 − tÞÞPð5Þ
53

Theorem 8. The Hilbert series of the braid monoid MB5 in
band generators is given by

P 5ð Þ
M tð Þ = 1

1 − tð Þ 1 − 2tð Þ 1 − 7t + 7t2ð Þ : ð25Þ

Proof. Solving the system of linear equations constructed in
Proposition 7, we get

P 5ð Þ
21 = t

1 − tð Þ 1 − 2tð Þ 1 − 7t + 7t2ð Þ ,

P 5ð Þ
31 = t

1 − 2tð Þ 1 − 7t + 7t2ð Þ ,

P 5ð Þ
32 = t

1 − 2tð Þ 1 − 7t + 7t2ð Þ ,

P 5ð Þ
41 = t

1 − 7t + 7t2 ,

P 5ð Þ
42 = t

1 − 7t + 7t2 ,

P 5ð Þ
43 = t

1 − 7t + 7t2 ,

P 5ð Þ
51 = t − 5t2 + 5t3

1 − 2tð Þ 1 − 7t + 7t2ð Þ ,

P 5ð Þ
52 = t − t2

1 − 7t + 7t2 ,

P 5ð Þ
53 = t − t2

1 − 7t + 7t2 ,

P 5ð Þ
54 = t − 5t2 + 5t3

1 − 2tð Þ 1 − 7t + 7t2ð Þ :

ð26Þ

Therefore, the Hilbert series of the braid monoid MB5 is
given by

P 5ð Þ
M tð Þ = 1 + P 5ð Þ

21 + 〠
2

i=1
P 5ð Þ
3i + 〠

3

i=1
P 5ð Þ
4i + 〠

4

i=1
P 5ð Þ
5i

= 1
1 − tð Þ 1 − 2tð Þ 1 − 7t + 7t2ð Þ :

ð27Þ

Remark 9. By partial fractions of growth series of MB5 we
have 1/ðð1 − tÞð1 − 2tÞð1 − 7t + 7t2ÞÞ = −ð1/ð1 − tÞÞ − ð8/ð3ð
1 − 2tÞÞÞ − ð7/ð3ð1 − ðð7 − ffiffiffiffiffi

21
p Þ/2ÞtÞÞÞ + ð7/ð3ð1 − ðð7 +ffiffiffiffiffi

21
p Þ/2ÞtÞÞÞ. The only term that contributes in approxima-

tion of the series is 7/ð3ð1 − ðð7 + ffiffiffiffiffi
21

p Þ/2ÞtÞÞ and 7/ð3ð1 −
ðð7 + ffiffiffiffiffi

21
p Þ/2ÞtÞÞ = ð7/3Þð1 + ðð7 + ffiffiffiffiffi

21
p Þ/2Þt +

ðð7 + ffiffiffiffiffi
21

p Þ/2Þ2t2+⋯Þ: Therefore, the growth function is

að5Þk = ð7/3Þðð7 + ffiffiffiffiffi
21

p Þ/2Þk, and hence, the growth rate of M
B5 is ð7 +

ffiffiffiffiffi
21

p Þ/2 (approximately equal to 5.791).
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4. Conclusion

From band presentation of braid monoid MB5 we solve all
the ambiguities and get new and more interesting relations

Rð5Þ
31 to Rð5Þ

84 which are given in Proposition 5. When no more
ambiguity is remaining to be solved, then these new relations
with the basics relations are complete presentation of braid
monoid MB5 in band generators. The words on the left-
hand side of these new relations are reducible words, and
the words on the right-hand side are canonical words. In
Proposition 6, we partially find the growth series ðQð5Þ

∗ Þ of
reducible words. We also construct a linear system for
canonical words. The most important outcome of our work
is the growth series of braid monoidMB5 in band generators
which is given in Theorem 8. These results are very interest-
ing and useful for mathematicians. Using these results, one
can find the growth series of higher order braid monoids
and can generalize the results for MBn.
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