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We study 3-dimensional compact and simply connected trans-Sasakian manifolds and find necessary and sufficient conditions
under which these manifolds are homothetic to Sasakian manifolds. The first two results deal with finding necessary and
sufficient conditions on a compact and simply connected trans-Sasakian manifold to be homothetic to an Einstein Sasakian
manifold and in the third result deals with finding necessary and sufficient condition on a compact and simply connected
trans-Sasakian manifold to be homothetic to a Sasakian manifold.

1. Introduction

It is well known that for an almost contact metric manifold
(M, F,{,n, g) (cf. [1]), the product M = M x R has an almost
complex structure J, which with product metric g makes (
M, g) an almost Hermitian manifold. The properties of the
almost Hermitian manifold (M, ], g) control the properties
of the almost contact metric manifold (M, F,{,7, g) and
provide several structures on M such as a Sasakian structure
and a quasi-Sasakian structure (cf. [1-3]). There are known
sixteen different types of structures on (M, J, g) (cf. [4]), and
using the structure in the class %', on (M, ], g), a structure
(F,{,n, g, a, ) was introduced on M, which is called trans-
Sasakian structure (cf. [5]), that generalizes Sasakian struc-
ture, Kenmotsu structure, and cosymplectic structure on a
contact metric manifold (cf. [2, 3]), where aand 8 being
the real functions defined on M.

Recall that a trans-Sasakian manifold (M, F,{,#, g, a, )
is called a trans-Sasakain manifold of type («, f3), and trans-
Sasakian manifolds of type (0, 0), (a,0), and (0, 3) are called
a cosymplectic, a a-Sasakian, and a 3-Kenmotsu manifolds,
respectively. It is on account of a result proved in [6] that
a trans-Sasakian manifold of dimension five or greater than

five reduces to a cosymplectic manifold, a a-Sasakian mani-
fold, or a 3-Kenmotsu manifold, so there is an emphasis on
studying three-dimensional trans-Sasakian manifolds.

Among other questions, finding conditions under which
a compact 3-dimensional trans-Sasakian manifold (M, F,{
,#,g) is homothetic to a Sasakian manifold is of prime
importance. The geometry of 3-dimensional trans-Sasakian
manifold is also important owing to Thurston’s conjecture
(cf. [7]), and fetching conditions on a 3-dimensional trans-
Sasakian manifold (M, F,{,%,g) in matching it among
Thurston’s eight geometries becomes more interesting. It is
worth noting that in Thurston’s eight geometries, the first
place is occupied by the spherical geometry S°.

In ([8-13]), the authors have studied compact 3-
dimensional trans-Sasakian manifolds with some suitable
restrictions on functions aand 3 appearing in the definition
of a trans-Sasakian manifold for getting conditions under
which a trans-Sasakian manifold is homothetic to a Sasakian
manifold. In particular, it is known that a 3-dimensional
compact simply connected trans-Sasakian manifold (M, F,
(.1, g, a, B) satisfying Poisson equations Aa =3 and Aa =
o3, respectively, is necessarily homothetic to a Sasakian
manifold (cf. [10]).
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An interesting work on 3-dimensional trans-Sasakian
manifolds is found in [14, 15], where the authors have con-
sidered other aspects in Thurston’s eight geometries. In [10],
it is asked whether the function f on a 3-dimensional com-
pact trans-Sasakian manifold (M, F,{, 7, g, a, ) satisfying
grad $={(f){ necessitates the trans-Sasakian manifold to
be homothetic to a Sasakian manifold. In [15], it is shown
that this question has negative answer.

Einstein Sasakian manifolds are very important due to
their geometric importance (cf. [16]). In this paper, in our
first two results, we find necessary and sufficient conditions
on a compact simply connected 3-dimensional trans-
Sasakian manifold (M, F,{, 1, g, a, ) to be homothetic to
an Einstein Sasakian manifold, and in the third, we find a
necessary and sufficient condition on a compact simply con-
nected 3-dimensional trans-Sasakian (M, F,{,7, g,a, ) to
be homothetic to a Sasakian manifold.

In the first result, we consider a compact and simply
connected trans-Sasakian manifold (M, F,{,%, g, a, ) of
positive constant scalar curvature 7, the function f3 satisfying
Fischer-Marsden equation shows that the functions « and f3
are related to 7 by the inequality B(a? — f* - 7/4) > 0, and
the Ricci operator Q satisfying Codazzi-type equation with
respect to vector field { necessarily implies that (M, F,{, #,
g>, ) is homothetic to an Einstein Sasakian manifold. In
the second result, we show that a compact simply connected
trans-Sasakian manifold with function « constant along the
integral curves of {, scalar curvature 7 satisfying the inequal-
ity a(6a®—-7)>0, and the Ricci operator Q satisfying
Codazzi-type equation with respect to vector field { neces-
sarily imply that (M, F, {,#, g, «, f8) is homothetic to an Ein-
stein Sasakian manifold. Finally, in the last result, we show
that on a compact and simply connected trans-Sasakian
manifold, the function f satisfies the differential inequality
{(B?) < -2, and vector fields (VQ)(grada, {), { are orthog-
onal, which necessarily imply that (M, F,{,7, g, ) is
homothetic to a Sasakian manifold, where the covariant
derivative (VQ)(U,{) =V,Q¢ - Q(Vy{) for a smooth vec-
tor field U on M.

2. Preliminaries

Let (M, F,{,1,g) be an almost contact metric manifold
dim M =3, where F being a (1, 1)-tensor field, { a unit vec-
tor field, and # smooth 1-form dual to ¢ with respect to the
Riemannian metric g satisfying
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then (M, F,{,n, g, a, B) is said to be a trans-Sasakian mani-

fold, where (VF)(Uy, U,) =Vy FU, - F(Vy U,), U, U, €

I'(TM), and V is the Levi-Civita connection with respect

to the metric g (cf. [8-15]). Using equations (1) and (2), it
follows that

Vil =-aF(U)+B(U-n(U)), Uel(TM). (3)

Using the Ricci tensor Ric of a Riemannian manifold (

M, g), the Ricci operator Q is defined by Ric(U,, U,) = g(

QU,,U,) and U,, U, € I'(TM). We have the following for

a 3-dimensional trans-Sasakian manifold (M, F,{,#, g, «, 8

):
¢(a) = —2ap, (4)
Q= F(grad a) - grad p +2 (o’ = f*){ = {(B)L. (5)
Note that equation (3) implies
div{=2p, (6)
and using this equation together with equation (4), we have

div (ock{) = ka1 (a) + of div { = ~2ka* B+ 205 B = —2(k — 1)d*B.
(7)
Thus, on compact 3-dimensional trans-Sasakian mani-

fold (M, F,{,n, g,a, B), using equation (6) and the above
equation, we have

J B0

M

J ockﬁ:OforkqE 1.
M

Now, we state the following result of Okumura.

Theorem 1. [17] Let (M, g) be a Riemannian manifold. If M
admits a Killing vector field { of constant length satisfying

CZ(VUIVUZ(_ VVUIUZ() =9(UnQ)U; - g(UpU)E (9)

for nonzero constant ¢ and any vector fields U, and U,, then
M is homothetic to a Sasakian manifold.

FP=-1+n®{ F({)=0,n°F=0,g(FU,, FU,) = g(U}, U,) =n(U,)n(U,),

U, U, el (TM),
(1)
where I'(TM) is the space of smooth sections of the tangent

bundle TM (cf. [1]). If there exist functions aand 3 on an
almost contact metric manifold (M, F,{,#, g) satisfying

(VF)(Uy, Uy) = a(g(U,, Up)§ —n(Uy)Uy) + B(g(FU4, Uy)E = n(U,)FUY),

(2)

For a smooth function k on the Riemannian manifold (
M, g), then the operator A, defined by

A (U)=V, gradh, Uel(TM) (10)

is called the Hessian operator of h, and it is a symmetric
operator. Moreover, the Hessian Hess(h) of h is defined by

Hess(h)(U,, Uy) = g(A(Uy), Uy), Uy, Uy € I(TM).

(11)



Advances in Mathematical Physics

The Laplace operator A on (M, g) is defined by Ah=
div (grad h), and we also have

Ah:trAh. (12)

Fischer-Marsden differential equation on a Riemannian
manifold (M, g) is (cf. [18])

(Ah)g + hRic = Hess(h). (13)
3. Trans-Sasakian Manifolds Homothetic to
Einstein Sasakian Manifolds

In this section, we find necessary and sufficient conditions
for a compact and simply connected 3-dimensional trans-
Sasakian manifold (M, F,{, 1, g, a, ) to be homothetic to
an Einstein Sasakian manifold.

Theorem 2. A compact and simply connected 3-dimensional
trans-Sasakian manifold (M, F,{,n, g, a, ) with positive

constant scalar curvature T and the function [3 a solution of
Fischer-Marsden equation satisfying

ﬁ(az—ﬁz—g) >0 (14)

is homothetic to an Einstein Sasakian manifold of positive
scalar curvature, if and only if, the Ricci operator Q satisfies

(VQ)(U,{)=(VQ)(¢,U), UeI(TM). (15)
Proof. Suppose (M, F,{,%, g, o, B) is a compact simply con-

nected 3-dimensional trans-Sasakian manifold satisfying the
hypothesis. Then, equation (13) gives

(AB)g + BRic = Hess(f), (16)

and taking trace in above equation and using equation (12),
we have

AB=-=. (17)
O
Note that by equation (3), we have VCC =0, and there-

fore, Hess(f3)(¢, () ={¢(B). Using this equation and equa-
tion (17) in equation (16), we get

-2 B+ BRic(0.0) =K (B). (18)

Now, using equation (5), we have Ric({,{) =2(a? — 8

—{(B)). Thus, the above equation becomes
~ZB+2B(e =B = L(B) =(B)- (19)

Using equation (6), we have div ({(B){) ={¢(B) +28¢(

B), and inserting it in the above equation, we conclude
T .
BB - ) =dv C(BY).  (20)

Integrating the above equation, we get

JMﬁ(oﬂ iy 2) - 0. (21)

Using the inequality in the statement, we conclude
/3<a2 - Z) 0. (22)

Since M is simply connected, it is connected, and there-
fore equation (22) implies either (i) 8=0 or (i) &® - B>~ T
/4 =0. Suppose (ii) holds, then as 7 is a constant, we get {(
a?) ={(pB?), which in view of equation (4) implies B{(f) =
—20a23; that is, 3°((B) = —6a?f*. Thus, we have

{(B’) =-6a’B. (23)

Using equation (6), we have div (8°¢) = {(’) + 2%, and
inserting it in above equation, we get

div (B°C) =2p* (B - 34%). (24)

Integrating the above equation, we get
J B (3a% - ) =0. (25)
M
Now, using (ii) in above integral, we have
2(5 2 T
J B (Zcx + —) =0, (26)
M 4

and since the scalar curvature 7 > 0, through above integral,
we conclude that $=0. Thus, using equations (2), (3), (4),
and (5), take the forms

(VF)(Uy, Uy) =a(g(U,, Uy)E =5(U,)Uy),

27
V,{ =—aFU, @7)

¢(a) =0,

(28)
Q¢ = F(grad a) + 2a°C.

Taking the covariant derivative in the second equation of
equation (28), we get

(VQ)(U,{) + Q(Vy{) = (VF)(U, grad a) + F(A,U) + 4aU(a){ +2a°V,(,
(29)



and using equation (27) in above equation, we arrive at

(VQ)(U,{) - aQ(FU) = 5aU(a){ + F(A,U) - 2&’FU, U € I(TM).
(30)

Now, using the Codazzi equation type condition on Q in
the hypothesis, we get

(VQ)({, U) - aQ(FU) = 5aU(a){ + F(A,U) —2a°FU, U e I[(TM).

(31)

Using the second equation in equation (27), we compute
the Lie derivative of g with respect to { to conclude

(549)([]1» U,) =-ag(FU,,U,) - ag(FU, U;) =0, (32)

that is,  is a Killing vector field and that the flow of { con-
sists of isometries of the Riemannian manifold M. Thus,
we have

(£,Q)(U)=0, UeI(TM), (33)

and using equation (27), we conclude

(VQ)({,U)=aQ(FU) - aF(QU), UeI(TM). (34)
Combining the above equation with equation (31), we
have

—aF(QU) =5aU(a){ + F(A,U) =22’ FU, U eI (TM).
(35)

Taking the inner product with { in above equation, we

conclude
aU(a)=0, UeTI(TM). (36)

We claim that M being simply connected, « # 0; for if
a = 0, then by equation (27), we see that { is parallel and that
n is closed, which implies # is exact; that is, # =df for a
smooth function f on M. This implies { = gradf, and M
being compact, there is a point g € M such that (gradf)(q)
=0, and we get {(q) =0, a contradiction to the fact that {
is a unit vector field. Hence, « # 0, and equation (36) implies
U(a)=0, U eI'(TM); that is, « is a nonzero constant.

Now, equation (28) gives Q({) =2a’{, and taking the
covariant derivative in this equation yields

(VQ)(U,{) - aQ(FU) = -2’ FU. (37)

Using the condition in the hypothesis and equation (34)
with « # 0, in above equation, we get

-F(QU)=-2a’FU, UeI(TM). (38)

Operating F on above equation while using equation (1)
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and Q({) = 2a*{, we conclude
QU =2a’U, UEeI(TM). (39)

This proves that M is an Einstein manifold. Finally,
using equation (27), with « a nonzero constant, we compute

levUz{ - VVUI Uz{ = _“(VU1FU2 - F<VU1 UZ))
=—«(VF)(U,, Uy) =&*(g(Uy {)U, = g(U,, U, )0).
(40)

Hence, by Theorem 1, we conclude that M is homothetic
to a compact simply connected Einstein Sasakian manifold
of positive scalar curvature. The converse is trivial.

Theorem 3. A compact and simply connected 3-dimensional
trans-Sasakian manifold (M, F,{,n, g, a, ) satisfying {(«)
=0 and the scalar curvature T satisfying

a(6a’-7) 20 (41)

is homothetic to an Einstein Sasakian manifold, if and only if,
the Ricci operator Q satisfies

(VQ(U,{) = (VQ)GU), Uel(TM).  (42)

Proof. Suppose (M, F,{, 3, g, B) is a compact and simply
connected 3-dimensional trans-Sasakian manifold satisfying
the hypothesis. Then, using equation (4) and the condition
{(a) =0, we get aff=0. However, if a=0, then equation
(3) implies that # is closed, and as seen in the proof of The-
orem 2, we get a contradiction owing to simply connected-
ness of M. Thus, a#0, and on connected M, equation
af3=0 implies that §=0. Therefore, equations (27) and
(28) hold. Now, using equation (28), we have Q( = F(grad
) +20%{, which gives

—grad a = F(Q(). (43)
O

Taking covariant derivative in above equation, we have
~AU = (VF)(U, Q) + F(VQ)(U,{) + FQ(Vy(), Uel(TM), (44)

and using equation (27), we get

-A,U = a(Ric(U, {){ - Ric(¢, {)U) + F(VQ)(U,{) - «FQFU, U eT(TM).
(45)

Using condition in the hypothesis, we have

-A,U = a(Ric(U, {){ - Ric({, )U) + F(VQ)({, U) - «FQFU, U € I(TM).
(46)

Also, equation (27) implies that { is a Killing vector field,
and therefore, using its outcome equation (34) as well as
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equation (28), we conclude

-A,U = a(Ric(U, {){ - 20°U) + F(aQ(FU) - aF(QU)) - aFQFU, U eI(TM).
(47)
That is, on using equation (1), we have
AU=a(20’°U-QU), UeI(TM). (48)
Thus, we have

Aa = 60’ - T), (49)

and integrating the above equation, we get
J a(6a’ —7) =0. (50)

M

Using the condition in the hypothesis, we have a(6a?
—-17)=0, and as a # 0, we conclude 7 = 6a*. Consequently,
equation (49) implies that A« =0, and M being compact,
we conclude that « is a constant. Thus, « being nonzero con-
stant, equation (48) gives

QU =2a*U, Uel(TM). (51)

This proves that M is an Einstein manifold, and using
equation (27), we see that the unit Killing vector field { sat-
isfies

VUIVUZ(_VVU, UZC: “2(9(Uz»C)U1 —9(Up U,)0), U, U, eI(TM).

(52)
Hence, in view of Theorem 1, we conclude that M is
homothetic to an Einstein Sasakian manifold. The converse

is trivial.

Theorem 4. A compact and simply connected 3-dimensional
trans-Sasakian manifold (M, F,{,n, g, o, 3) satisfying

(B <-2p° (53)

is homothetic to a Sasakian manifold, if and only if, the vector

fields (VQ)(grad «, {) and { are orthogonal.

Proof. Suppose (M, F,{,%, g,a, ) is a compact and simply
connected 3-dimensional trans-Sasakian manifold satisfying
the hypothesis. Then, using equation (5), we have

grad = F(grad a) - QC + 2(o? - B2)0 = {(B)S,  (54)

and taking covariant derivative in above equation with

respect to U € I'(TM), while using equation (3), we get

AgU = (VF)(U, grada) + FA,U - (VQ)(U,{) - Q(-aFU + BU - By(U){)
+2U(a? = B2)0 +2(o? - B7) (—~aFU + BU - Bp(U){)
= UG(B)G = G(B)(—aFU + BU = Br(U)0).
(55)
O

Taking trace in above equation and noting the following
outcome of equation (2),

i = 2al, (56)

i=1

for a local orthonormal frame {e,, e,, e;} on M, we get

{(t) - Bt + BRic(, C)+2C((x —,B)

AB=-2a((a) - %
o’ = B7) = () - 2BL(B),

+4(a
(57)

where we have used TrFA, =0, TrQF =0, TrF = 0, and well
known formula

Z(VQ)(ei, L grad 7. (58)

=1

N8}

Now, using equation (4) and Ric(¢,{) =2(a?® - B2 - {(B

)) in equation (57), we have

AB= —%C(T) — Br—6p> + 102’ B - 8BL(B) - {L(B),  (59)

that is,

M=€wr&wﬁHWWKWH%3<W

Note that on using equation (6), we have 1/2 div (1()
=1/2¢(7) + fr and

div ((£(B) +4P*)¢) =C(C(B) +4B%) +2B((B) +4P°).

(61)

Inserting these equations in equation (60), we arrive at

AB= —% div (0) - 6% + 100> B+ 2B({(B) + 48%) — div (({(B) +45){),
(62)

and integrating the above equation while keeping in mind
equation (8), we get

| @@)+2p)=o ()

Using the condition in the hypothesis, we conclude {(



B*) =28 and BL(B) = —p7; that is, 3°{(B) = —3*. We get

{(B?) =-3B*, which in view of equation (6) implies
div (B°¢) =-p*. (64)

Integrating the above equation yields = 0. Thus, equa-
tions (27) and (28) are now available to us. Taking covariant
derivative in second equation of equation (28) with respect
to UeI'(TM), we get

(VQ)(U,{) - aQ(FU) = (VF)(U, grad a) + FA,U + 4aU(a){ - 26’ FU,
(65)
where we have used the second equation in equation (27).

Now, using equation (27) and noting that {(«) =0 in above
equation, we conclude

(VQ)(U,{) — aQ(FU) =5aU(a){ + FA,U - 22’ FU. (66)

Taking the inner product with { in above equation, we
get

5aU(a) = g((VQ)(U, (), ¢) - ag(FU, QF).  (67)
Now, using equation (28), we have
9(FU,Q¢) = g(FU, F(grad a) +2a°() = U(at),  (68)
and inserting it in equation (67), we get
6aU(a) = g((VQ)(U,¢),?),

Uel(TM).  (69)

Taking U = grad « in above equation and using the con-
dition in the hypothesis, we conclude

al|grad a|* = 0. (70)

Note that M being compact and simply connected, « is
not allowed to be zero. Hence, the above equation implies
that « is nonzero constant. Thus, we have by virtue of equa-
tion (27) that

VUIVUZ‘:*VVUl u,l= @*(g(Up Q)U, - g(U,, U,)E), Uy, U, € T(TM).
(71)

This proves that M is homothetic to a Sasakian manifold.
The converse is trivial.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Advances in Mathematical Physics

Acknowledgments

This research is supported by the Deanship of Scientific
Research, Imam Mohammed Ibn Saud Islamic University,
Saudi Arabia, Grant No. 20-13-12-001.

References

[1] D. E. Blair, “Contact manifolds,” in Contact Manifolds in Rie-
mannian Geometry, vol. 509, Springer, Berlin, Heidelberg, 1976.

[2] D.E.Blairand]. A. Oubiila, “Conformal and related changes of
metric on the product of two almost contact metric manifolds,”
Publicacions Matematiques, vol. 34, no. 1, pp. 199-207, 1990.

[3] A. Fujimoto and H. Muto, “On cosymplectic manifolds,”
Tenso, vol. 28, pp. 43-52, 1974.

[4] A.Grayand L. M. Hervella, “The sixteen classes of almost Her-
mitian manifolds and their linear invariants,” Annali Di Mate-
matica Pura Ed Applicata, vol. 123, no. 1, pp. 35-58, 1980.

[5] J. A. Oubina, “New classes of almost contact metric struc-
tures,” Universitatis Debreceniensis, vol. 32, no. 3-4, pp. 187-
193, 1985.

[6] J. C. Marrero, “The local structure of trans-Sasakian mani-
folds,” Annali di Matematica Pura ed Applicata, vol. 162,
no. 1, pp. 77-86, 1992.

[7]1 W. P. Thurston, “Three dimensional manifolds, Kleinian
groups and hyperbolic geometry,” Bulletin (New Series) of
The American Mathematical Society, vol. 6, no. 3, pp. 357-
382, 1982.

[8] S. Deshmukh and M. M. Tripathi, “A note on trans-Sasakian
manifolds,” Mathematica Slovaca, vol. 63, no. 6, pp. 1361-
1370, 2013.

[9] S. Deshmukh, U. C. De, and F. Al-Solamy, “Trans-Sasakian
manifolds homothetic to Sasakian manifolds,” Universitatis
Debreceniensis, vol. 88, no. 3-4, pp. 439-448, 2016.

[10] S. Deshmukh, “Trans-Sasakian manifolds homothetic to Sasa-
kian manifolds,” Mediterranean Journal of Mathematics,
vol. 13, no. 5, pp. 2951-2958, 2016.

[11] S. Deshmukh and F. al-Solamy, “A note on compact trans-
Sasakian manifolds,” Mediterranean Journal of Mathematics,
vol. 13, no. 4, pp. 2099-2104, 2016.

[12] S. Deshmukh and U. C. De, “A note on trans-Sasakian mani-
folds,” Universitatis Debreceniensis, vol. 92, no. 1-2, pp. 159-
169, 2018.

[13] S. Deshmukh, A. Ishan, O. Belova, and S. B. Al-Shaikh, “Some
conditions on trans-Sasakian manifolds to be homothetic to
Sasakian manifolds,” Mathematics, vol. 9, no. 16, p. 1887, 2021.

[14] W. Wang and X. Liu, “Ricci tensors on trans-Sasakian 3-mani-
folds,” Univerzitet u NiSu, vol. 32, no. 12, pp. 4365-4374, 2018.

[15] Y. Wang and W. Wang, “A remark on trans-Sasakian 3-man-
ifolds,” Revista de La Union Mat. Argentina, vol. 60, no. 1,
pp. 257-264, 2019.

[16] C. Boyer and K. Galicki, Sasakian Geometry; Oxford Mathe-
matical Monographs, Oxford University Press, Oxford, NY,
USA, 2007.

[17] M. Okumura, “Certain almost contact hypersurfaces in Kaeh-
lerian manifolds of constant holomorphic sectional curva-
tures,” Tohoku Mathematical Journal, Second Series, vol. 16,
no. 3, pp. 270-284, 1964.

[18] A. E. Fischer and J. E. Marsden, “Manifolds of Riemannian
metrics with prescribed scalar curvature,” Bulletin of the Amer-
ican Mathematical Society, vol. 80, no. 3, pp. 479-485, 1974.



	On Compact Trans-Sasakian Manifolds
	1. Introduction
	2. Preliminaries
	3. Trans-Sasakian Manifolds Homothetic to Einstein Sasakian Manifolds
	Data Availability
	Conflicts of Interest
	Acknowledgments

