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In this paper, we give a concept of ðη, γÞð f ,gÞ-contraction in the setting of expanded b–metric spaces and discuss the existence and
uniqueness of a common fixed point. Introduced results generalize well-known fixed point theorems on contraction conditions
and in the given spaces.

1. Introduction and Preliminaries

The tremendous applications of fixed point theory had
always inspired the growth of this domain. In 1922, Banach
formulated his most simple but very natural result which is
now popularly referred to as the Banach contraction princi-
ple. In the course of the last several decades, this principle
has been extended and generalized in many directions with
several applications in many branches. Employing simula-
tion functions, Khojasteh et al. [1] initiated the idea of Z-
contractions and utilized the same to cover the varied types
of nonlinear contractions in the existing literature. Later,
Argoubi et al. [2] and Roldán-López-de-Hierro et al. [3]
independently sharpened the notion of simulation functions
and also proved some coincidences and common fixed point
results. Very recently, Lopez et al. [4] introduced the notion
of R-contractions in order to extend several nonlinear con-

tractions such as Z-contractions, manageable contractions,
and Meir-Keeler contractions. Indeed, R-contractions are
associated with R-functions that satisfy two independent
conditions involving two sequences of nonnegative real
numbers. Soon, inspired by R-contractions, Shahzad et al.
[5] introduced the notion of ðη, γÞ-contractions which
remains an extension of ðR, γÞ-contractions given in [6]
by Roldán-López-de-Hierro and Shahzad wherein the
authors proved very interesting results.

Czerwik [7] established a successful generalization of the
metric space concept by introducing the notion of b-metric
space. Following this, a number of authors have introduced
respective interesting theorems in b-metric, (see [8–14]).
Newly, Kamran et al. [15] inspired by the concept of b-
metric space, they introduced the concept of extended b

space and also developed some fixed point theorems for
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self-mappings defined in such spaces. Their results extend/
generalize many of the results already available in the litera-
ture. In this paper, we shall define a general contraction con-
dition with the help of some auxiliary functions and
investigate the existence and uniqueness of a fixed point
for such mappings in the frame of b-metric space.

Definition 1 (see [7]). Let X be a nonempty set and let d :
X × X⟶ ½0,∞Þ satisfy the following for all u, v,w ∈ X.

(i) dðu, vÞ = 0⇔ u = v

(ii) dðu, vÞ = dðv, uÞ
(iii) dðu,wÞ ≤ b½dðu, vÞ + dðv,wÞ�, where b ≥ 1

The pair ðX, dÞ is called a b-metric space; when b = 1, the
b-metric space becomes a usual metric space.

Example 2 (see [8, 9]). Let X =ℝ2. Then, the functional d :
X × X⟶ ½0,∞Þ defined by

is a b-metric space on X with b = 2.

Example 3 (see [16]). The space Lp½0, 1� (where 0 < p < 1) of
all real functions uðtÞ, t ∈ ½0, 1� such that

Ð 1
0juðtÞj

pdt <∞,
together with the functional

δ u, vð Þ =
ð1
0
u tð Þ − v tð Þj jpdt

� �1/p
,∀u, v ∈ Lp 0, 1½ �, ð2Þ

is a b-metric space with b = 21/p.

Example 4 (see [17]). Let X = fa, b, cg and d : X × X⟶ℝ+
such that

d a, bð Þ = d b, að Þ = d a, cð Þ = d c, að Þ = b,

d b, cð Þ = d c, bð Þ = α ≥ c,

d a, að Þ = d b, bð Þ = d c, cð Þ = a:

ð3Þ

Then,

d u, vð Þ ≤ α

2 d u,wð Þ + d w, vð Þ½ �: ð4Þ

Therefore, ðX, dÞ is a b-metric space for all u, v,w ∈ X. If
α > c, then the ordinary triangle inequality does not hold,
and ðX, dÞ is not a metric space.

Definition 5 (see [15]). Let X be a nonempty set and ψ :
X × X⟶ ½1,∞Þ, and let dψ : X × X ⟶ ½0,∞Þ satisfy:

(i) dψðu, vÞ = 0⇔ u = v

(ii) dψðu, vÞ = dψðv, uÞ
(iii) dψðu,wÞ ≤ ψðu,wÞ½dψðu, vÞ + dψðv,wÞ�

The pair ðX, dψÞ is called an extended b-metric space. If
ψðu, vÞ = b, for b ≥ 1, then we reduce to Definition 1.

Example 6 (see [17]). Let X = fa, b, cg ∪ℝ+
0 and d : X × X

⟶ ½0,∞Þ be defined by

(i) If u, v ∈ℝ+
0 , then dψðu, vÞ = ju − vj2,

(ii) If u ∈ fa, b, cg and v ∈ℝ+
0 , then dψðu, vÞ = dψðv, uÞ

= 1 and dψðu, uÞ = 0

(iii) If u, v ∈ fa, b, cg, such that

dψ a, bð Þ = 1, dψ a, cð Þ = 1
2 and dψ b, cð Þ = 2, ð5Þ

with dψðu, vÞ = dψðv, uÞ and dψðu, uÞ = 0.

Notice that d is not a metric space since dψðb, cÞ > dψðb,
aÞ + dψða, cÞ. However, it is easy to see that d is an extended
b-metric space for ψ : X × X ⟶ ½1,∞Þ, where

ψ u, vð Þ≔

4
3 if u, v ∈ a, b, cf g,
2 if u, v ∈ℝ+

0 ,
1 if u, vð Þ or v, uð Þ ∈ a, b, cf g ×ℝ+

0 :

8>>><
>>>:

ð6Þ

Example 7 (see [15]). Let X = Cð½a, b�,ℝÞ be the space of all
continuous real valued functions defined on ½a, b�, let ψ : X
× X⟶ ½1,∞Þ where ψðu, vÞ = juðtÞj + jvðtÞj + 2, and note
that X is a complete extended b-metric space by considering

dψ u, vð Þ = sup
t∈ a,b½ �

u tð Þ − v tð Þj j2: ð7Þ

d u1, v1ð Þ, u2, v2ð Þð Þ≔
u1 − u2j j + v1 − v2j j, u1, v1ð Þ, u2, v2ð Þ ∈ 0, 1½ Þ × 0, 1½ Þ
u1 − u2j j + v1 − v2j j, u1, v1ð Þ, u2, v2ð Þ ∈ 1,∞ð Þ × 1,∞ð Þ
0, otherwise,

8>><
>>: ð1Þ
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In this context, wonderful theorems established by the
authors in extended b-metric space, for examples, Fahed
et al. and Swapna and Phaneendra [18, 19], got some new
fixed point results in an extended b-metric space. Also, Ullah
et al. [20] proved fixed point theorems in complex-valued
extended b-metric spaces. In this bearing, Mitrović et al.
[21] established new results in extended b-metric space, in
follows that we recollect some fundamental notions, for
example, convergence, the notion of the Cauchy sequence,
and completeness in an extended b- metric space.

Definition 8 (see [22]). Let ðX, dψÞ be an extended b-metric
space, and then

(i) A sequence un ∈ X is said to converge to u0 ∈ X if,
∀ε > 0, there exists N =NðεÞ ∈ℕ such that dψðun,
u0Þ < ε, ∀n ≥N . We write lim

n⟶∞
un = u0

(ii) A sequence un in X is said to be Cauchy if, ∀ε > 0,
there exists N =NðεÞ ∈ℕ such that dψðun, umÞ < ε,
∀n,m ≥N

Definition 9 (see [15]). An extended b -metric space ðX, dψÞ
is complete if every Cauchy sequence in X is convergent.

Lemma 10 (see [22]). Let ðX, dψÞ be a complete extended b-
metric space. If dψ is continuous map, then every convergent
sequence in X has a unique limit.

Theorem 11 (see [15]). Suppose ðX, dψÞ is an extended b-
metric space such that dψ is a continuous mapping. Suppose
T : X ⟶ X, it fulfills

dψ Tu, Tvð Þ ≤ ηdψ u, vð Þ,∀u, v ∈ X, ð8Þ

where η ∈ ½0, 1Þ is such that, for each u0 ∈ X, we have
lim

n,m⟶∞
ψðun, umÞ < 1/η. Here, Tnu0 = un, n = 1, 2,⋯Then, T

has exactly one fixed point u0, moreover ∀v ∈ X, Tnv⟶ u0.

For our objectives, we recall the definition of orbital
admissible maps introduced by Popescu [23].

Definition 12. Let S be a self-map on X and η : X × X ⟶
½0,∞Þ. We say that S is an η-orbital admissible if for all u,
v ∈ X, we have

η u, Suð Þ ≥ 1⇒ η Su, S2u
À Á

≥ 1: ð9Þ

Remark 13 (see [23]). Every η-admissible mapping is an α
-orbital admissible mapping.

Definition 14 (see [24]). For a nonempty set X, suppose T :
X⟶ X and η : X × X⟶ ½0,∞Þ are mappings. One says
that self-mapping T on X is η -admissible if for u, v ∈ X,
one has

η u, vð Þ ≥ 1⇒ η Tu, Tvð Þ ≥ 1: ð10Þ

Definition 15 (see [17]). Let Φ be the family of functions ϕ :
½0,∞Þ⟶ ½0,∞Þ satisfying the following conditions

(i) ϑ is nondecreasing

(ii) ϑðχÞ < χ, χ > 0

2. Main results

Definition 16. Let ðX, dÞ be an extended b-metric space and
let η : X × X ⟶ ½0,∞Þ and ψ : X × X ⟶ ½1,∞Þ such that

η u, vð Þdψ Tu, Tvð Þ ≤ ψ f u, vð Þð Þ, ð11Þ

where

f u, vð Þ = sup
�ψ Su, Svð Þ, �ψ Tu, Suð Þ, �ψ Sv, Tvð Þ,

�ψ Su, Tuð Þ�ψ Sv, Tvð Þ
�ψ Su, Svð Þ ,

�ψ Su, Tvð Þ + �ψ Sv, Tuð Þ
2 sup ψ Sv, Tuð Þ, ψ Su, Tvð Þ½ �

8><
>:

9>=
>;:

ð12Þ

Then, S and T are ðη, γÞf -contraction for all u, v ∈ X, where
ψ ∈Ψ.

The headmost principal result of this paper is as follows:

Theorem 17. Let ðX, dÞ be a complete extended b - metric
space, and let S, T : X⟶ X be an ðη, γÞf -contraction map-
pings. Let

lim
n,m⟶∞

sup ϑn+1 rð Þ
ϑn rð Þ ψ un, umð Þ < 1, ð13Þ

for all u0 ∈ X, r > 0 where Tnun−n = Sun = un, n ∈ℕ. Assume
also that

(i) S and T are η-orbital admissible

(ii) There exists w ∈ X such that ηðSw, TwÞ ≥ 1

(iii) S and T are continuous

Then, S and T possess a unique coincidence fixed point u0;
that is, Su = Tu = u0.

Proof. By a supposition, for some u0 ∈ X, we have un = Sun
= Tnu0, ∀n ∈ℕ. Suppose that un0 = Tun0−1 = Sun0 . Let that
un ≠ un+1, ∀n ∈ℕ. Since T and S are η-admissible, we get

η u0, u1ð Þ = η Su0, Tu0ð Þ ≥ 1⇒ η Su1, Tu1ð Þ = η u1, u2ð Þ ≥ 1:
ð14Þ
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Repeatedly, we obtain for all n ∈ℕ

η un, un+1ð Þ ≥ 1: ð15Þ

On regard of (15) and (11), we get

dψ un, un+1ð Þ = dψ Sun, Sun+1ð Þ = dψ Tun−1, Tunð Þ ≤ ϑ f un−1, unð Þð Þ, ð16Þ

where

Now, if f ðun−1, unÞ = dψðun, un+1Þ for some n ∈ℕ, thus

dψ un, un+1ð Þ ≤ ϑ dψ un, un+1ð ÞÀ Á
< dψ un, un+1ð Þ, ð18Þ

which is a contradiction. On the other hand, if f ðun−1, unÞ =
dψðun, un−1Þ, then for all n ≥ 1, we have

dψ un, un+1ð Þ ≤ ϑ dψ un, un−1ð ÞÀ Á
< dψ un, un−1ð Þ: ð19Þ

Sequentially for all n ∈ℕ, we get

dψ un, un+1ð Þ ≤ ϑn dψ u0, u1ð ÞÀ Á
: ð20Þ

Thus, there exists k ≥ 0 such that

dψ un, un+1ð Þ = k, when n⟶∞: ð21Þ

Taking n⟶∞ to inequality (19), we obtain

k ≤ ϑ kð Þ⇒ k = 0: ð22Þ

Therefore, when n⟶∞, we get

dψ un, un+1ð Þ = 0: ð23Þ

We will show that fung is a Cauchy sequence, as follows:

dψ un, un+mð Þ ≤ ψ un, un+mð Þ dψ un, un+1ð Þ + dψ un+1, un+mð ÞÂ Ã
≤ ψ un, un+mð Þdψ un, un+1ð Þ

+ ψ un, un+mð Þdψ un+1, un+mð Þ:
ð24Þ

Also,

dψ un+1, un+mð Þ ≤ ψ un+1, un+mð Þ dψ un+1, un+2ð Þ + dψ un+2, un+mð ÞÂ Ã
≤ ψ un+1, un+mð Þdψ un+1, un+2ð Þ

+ ψ un+1, un+mð Þdψ un+2, un+mð Þ:
ð25Þ

And so, until the inequality (24) reaches to

dψ un, un+mð Þ ≤ ψ un, un+mð Þ dψ un, un+1ð Þ + dψ un+1, un+mð ÞÂ Ã
≤ ψ u1, un+mð Þψ u2, un+mð Þ⋯ ψ un, un+mð Þϑn dψ u0, u1ð ÞÀ Á

+ ψ u1, un+mð Þψ u2, un+mð Þ⋯ ψ un, un+mð Þψ
Á un+1, un+mð Þϑn+1 dψ u0, u1ð ÞÀ Á
+⋯+⋯+ψ u1, un+mð Þψ u2, un+mð Þ⋯ ψ

Á un+m−1, un+mð Þϑn+m−1 dψ u0, u1ð ÞÀ Á
= 〠

n+m−1

i=n
ϑi dψ u0, u1ð ÞÀ ÁYi

j=1
ψ uj, un+m
À Á

= bn+m−1,

ð26Þ

f un−1, unð Þ = sup
dψ Sun−1, Sunð Þ, dψ Tun−1, Sun−1ð Þ, dψ Sun, Tunð Þ,

dψ Sun−1, Tun−1ð Þdψ Sun, Tunð Þ
dψ Sun−1, Sunð Þ ,

dψ Sun−1, Tunð Þ + dψ Sun, Tun−1ð Þ
2 sup ψ Sun, Tun−1ð Þ, ψ Sun−1, Tunð Þ½ �

8>><
>>:

9>>=
>>;

= sup
dψ un−1, unð Þ, dψ un, un−1ð Þ, dψ un, un+1ð Þ,

dψ un−1, unð Þdψ un, un+1ð Þ
dψ un−1, unð Þ ,

dψ un−1, un+1ð Þ + dψ un, unð Þ
2 sup ψ un, unð Þ, ψ un−1, un+1ð Þ½ �

8>><
>>:

9>>=
>>;

= sup dψ un, un−1ð Þ, dψ un, un+1ð Þ, dψ un−1, un+1ð Þ
2 sup ψ un, unð Þ, ψ un−1, un+1ð Þ½ �

� �

≤ sup dψ un, un−1ð Þ, dψ un, un+1ð Þ, dψ un−1, unð Þ + dψ un, un+1ð Þ
2

� �
= sup dψ un, un−1ð Þ, dψ un, un+1ð ÞÈ É

:

ð17Þ
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we conclude that

dψ un, un+mð Þ < bn+m−1 − bn: ð27Þ

The series

〠
∞

i=1
ϑi dψ u0, u1ð ÞÀ ÁYi

j=1
ψ uj, un+m
À Á

: ð28Þ

Suppose ϑnðdψðu0, u1ÞÞ
Qn

j=1ψðuj, un+mÞ =Bn, then

ϑn+1 dψ u0, u1ð ÞÀ ÁQn+1
j=1ψ uj, un+m

À Á
ϑn dψ u0, u1ð ÞÀ ÁQn

j=1ψ uj, un+m
À Á = Bn+1

Bn
,

ϑn+1 dψ u0, u1ð ÞÀ Á
ϑn dψ u0, u1ð ÞÀ Á ψ un+1, un+mð Þ = Bn+1

Bn
< 1,

ð29Þ

by (13) where n,m⟶∞. Then, (28) converges by [25]. As
result, in perspective of (27), we have

dψ un, un+mð Þ = 0, asn,m⟶∞: ð30Þ

Then, fung is a Cauchy sequence, and since ðX, dÞ is a
complete extended quasimetric space, there exists ω ∈ X
such that

dψ un, ωð Þ = 0, as n⟶∞: ð31Þ

By condition (ii), we obtain

lim
n⟶∞

dψ Tun, Tωð Þ = lim
n⟶∞

dψ un+1, Tωð Þ = dψ ω, Tωð Þ = 0,

lim
n⟶∞

dψ Sun, Sωð Þ = lim
n⟶∞

dψ un, Tωð Þ = dψ ω, Sωð Þ = 0:

ð32Þ

Hence, we deduce that Tω = Sω = ω. Furthermore, let
ω∗ ∈ X such that Tω∗ = Sω∗ = ω∗ where ω ≠ ω∗. So, by
(12), we obtain

dψ Sω, Sω∗ð Þ = dψ Tω, Tω∗ð Þ ≤ ϑ f ω, ω∗ð Þð Þ, ð33Þ

where

f ω, ω∗ð Þ

= sup
dψ Sω, Sω∗ð Þ, dψ Tω, Sωð Þ, dψ Sω∗, Tω∗ð Þ,

dψ Sω, Tωð Þdψ Sω∗, Tω∗ð Þ
dψ Sω, Sω∗ð Þ ,

dψ Sω, Tω∗ð Þ + dψ Sω∗, Tωð Þ
2 sup ψ Sω∗, Tωð Þ, ψ Sω, Tω∗ð Þ½ �

8>><
>>:

9>>=
>>;

= sup dψ ω, ω∗ð Þ, dψ ω, ω∗ð Þ
sup ψ ω∗, ωð Þ, ψ ω, ω∗ð Þ½ �

� �
= dψ ω, ω∗ð Þ:

ð34Þ

Then,

dψ Sω, Sω∗ð Þ = dψ Tω, Tω∗ð Þ = dψ ω, ω∗ð Þ ≤ ϑ dψ ω, ω∗ð ÞÀ Á
:

ð35Þ

Therefore, dψðω, ω∗Þ = 0; thus, ω = ω∗. Hence, T and S
possess a unique coincidence fixed point in X.

To mitigation the continuity case on the given self-map-
pings, we will modify Definition 16 as follows:

Definition 18. Let ðX, dÞ be an extended quasimetric space,
and we say that S and T are ðη, γÞg -contraction such that
η : X × X ⟶ ½0,∞Þ and ψ : X × X ⟶ ½1,∞Þ if for all u,
v ∈ X fulfilled

η u, vð Þdψ Tu, Tvð Þ ≤ ϑ g u, vð Þð Þ, ψ ∈Ψ, ð36Þ

and

g u, vð Þ = sup
dψ Su, Svð Þ

2 ,
dψ Su, Tuð Þ + dψ Su, Tvð Þ

2 ,
dψ Su, Tvð Þ + dψ Su, Tuð Þ
2 sup ψ u, Tuð Þ, ψ u, Suð Þ½ �

� �
:

ð37Þ

By remove continuity of the given mappings, we get
the following major result.

Theorem 19. Let ðX, dÞ be a complete extended quasimetric
space, and let S, T : X⟶ X be ðη, γÞg-contraction map-
pings. Let (13) and conditions (i) and (ii) of Theorem 17 be
satisfied. Assume also that

(iii) If fung is a sequence in X such that ηðun, un+1Þ ≥
1, ∀n and un ⟶ u ∈ X as n⟶∞, then there
exists a subsequence funkg ⊂ fung such that ηðun,
unkÞ ≥ 1, ∀k

Then, S and T possess a coincidence fixed point u0, that is,
Su = Tu = u0:

Proof. By inequality (11) and condition (iii) in Theorem 19,
there exists funkg ⊂ fung such that ηðunk, uÞ ≥ 1, ∀k. Apply-
ing inequality (11), we obtain that

dψ unk+1, Tuð Þ = dψ Tunk, Tuð Þ ≤ η unk, uð Þdψ Tunk, Tuð Þ ≤ ϑ g unk, uð Þð Þ:
ð38Þ

And

dψ unk, Suð Þ = dψ Sunk, Suð Þ ≤ η unk, uð Þdψ Sunk, Suð Þ ≤ ϑ g unk, uð Þð Þ:
ð39Þ
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Also, we have

Then,

g unk, uð Þ = sup dψ u, Suð Þ
2 ,

dψ u, Tuð Þ
2

� �
: ð41Þ

When

g unk, uð Þ = dψ u, Suð Þ
2 , ð42Þ

then neither dψðu, SuÞ > 0 nor dψðu, SuÞ = 0 for some u ∈ X
when k⟶∞. If dψðu, TuÞ > 0, then by inequality (39),
we obtain gðunk, uÞ > 0. Thus, from Definition 18, we get

ψ g unk, uð Þð Þ < g unk, uð Þ: ð43Þ

Also, by inequalities (38) and (42), we have

dψ Sunk, Suð Þ ≤ η unk, uð Þdψ Sunk, Suð Þ ≤ ϑ g unk, uð Þð Þ < g unk, uð Þ = dψ u, Suð Þ
2 :

ð44Þ

Thus,

2dψ u, Suð Þ ≤ dψ u, Suð Þ, ask⟶∞, ð45Þ

Which is an ambivalence. Therefore, dψðu, SuÞ = 0 and
u = Su. Likewise, we can get that u = Tu. Hence, u is a com-
mon fixed point for S and T in X, that is, u = Su = Tu.

Let u1, u2 ∈ X be two common fixed points of S and T
such that u1 ≠ u2 then by (38) and (39), we get

dψ u1, u2ð Þ = dψ Tu1, Tu2ð Þ
≤ η u1, u2ð Þdψ Tu1, Tu2ð Þ
≤ ϑ g u1, u2ð Þð Þ,

ð46Þ

where

Now, if dψðu1, u2Þ > 0, then ϑðgðu1, u2ÞÞ < ðgðu1, u2ÞÞ,
which implies by (46) that

2dψ u1, u2ð Þ < dψ u1, u2ð Þ, ð48Þ

but this is a contradiction. Hence, dψðu1, u2Þ = 0, i.e., u1 = u2.
This proves the uniqueness of the common fixed point of
given mappings.

Example 20. Suppose that G1 ∪G2 ∪G3 = X, where G1 =
ð−∞,0�, G2 = ð1/2, 1/3, 1/4, 1/5Þ and G3 = ½1, 2�. Consider
the extended b-metric space on X as follows:

dψ
1
2 ,

1
3

� �
= dψ

1
4 ,

1
5

� �
= 3
10 ,

dψ
1
2 ,

1
5

� �
= dψ

1
3 ,

1
4

� �
= 2
10 ,

dψ
1
2 ,

1
4

� �
= dψ

1
5 ,

1
3

� �
= 6
10 ,

dψ
1
2 ,

1
2

� �
= dψ

1
3 ,

1
3

� �
=⋯ = 0,

dψ u, vð Þ = u − vj j ∈ G3, else:

ð49Þ

It is apparent that the triangle inequality on G1 is not
fulfilled. Actually,

g unk, uð Þ = sup dψ Sunk, Suð Þ
2 ,

dψ Sunk, Tunkð Þ + dψ Sunk, Tuð Þ
2 ,

dψ Sunk, Tunkð Þ + dψ Sunk, Tuð Þ
sup ψ unk, Tunkð Þ, ψ unk, Sunkð Þ½ �

� �

= sup dψ u, Suð Þ
2 ,

dψ u, Tuð Þ
2 ,

dψ u, Tuð Þ
sup ψ Su, uð Þ, ψ u, Tuð Þ½ �

� �
:

ð40Þ

g u1, u2ð Þ = sup dψ Su1, Su2ð Þ
2 ,

dψ Su1, Tu1ð Þ + dψ Su1, Tu2ð Þ
2 ,

dψ Su1, Tu1ð Þ + dψ Su1, Tu2ð Þ
sup ψ u1, Tu1ð Þ, ψ u1, Su1ð Þ½ �

� �

= sup dψ u1, u2ð Þ
2 ,

dψ u1, u2ð Þ
sup ψ u1, u1ð Þ½ �

� �
=
dψ u1, u2ð Þ

2 :

ð47Þ
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6
10 = dψ

1
2 ,

1
4

� �
≥ dψ

1
2 ,

1
3

� �
+ dψ

1
3 ,

1
4

� �
= 5
10 : ð50Þ

Observes that the condition (iii) in Definition 5 is sat-
isfied. Suppose that f , g : X ⟶ X are defined as

Tu =

0, ifu ∈ G1,

1
4 , ifu ∈ G2,

1
2 , ifu ∈ G3,

8>>>>>><
>>>>>>:

Su = u,∀u ∈ X:

ð51Þ

Taking

η u, vð Þ =
1, if u, v ∈ G2 ∪G3

0, if else,

(
ð52Þ

T and S are an ðη, γÞ-contractive mappings with γðtÞ
= t/2, t ∈ ½0,∞Þ. Furthermore, there exists u0 ∈ X such that
ηðTu0, Su0Þ ≥ 1.

Actually, we have for u = 1/2 ∈ X.

η T
1
2

� �
, S 1

2

� �� �
= η

1
4 ,

1
2

� �
= 1: ð53Þ

Now, suppose that u, v ∈ X with ηðu, vÞ ≥ 1. It implies
that u, v ∈ G2 ∪G3.

By Definition 1, we have ηðTu, SvÞ ≥ 1, and then T and S
are η-admissible mappings. Also, T and S are clearly not
continuous mappings.

Otherwise, if un ⊂ X such that, ηðun, un+1Þ ≥ 1, then
un ∈ G2 ∪G3 for all n. Assume the sequence fung is con-
sidered iteratively as f un−1 = un for all n. Considering the
arbitrary point u0 ∈ X, it is located in either G2 or G3;
so, we have two cases:

In case u0 ∈ G2, thus fung is constant sequence and
un ⟶ 1/4 ∈ G2. Then, for all n, we have ηðun, un+1Þ ≥ 1,
which implies that ηðun, 1/4Þ = ηðun+1, 1/4Þ ≥ 1.

In case u0 ∈ G3, thus fung is constant sequence and
un ⟶ 1/2 ∈ G2. Then, for all n, we have ηðun, un+1Þ ≥ 1,
which implies that ηðun, 1/2Þ = ηðun+1, 1/2Þ ≥ 1.

Consequently, T and S fulfill the conditions of Theorem
19; hence, T and S have a unique common fixed point on X,
which is u = 1/4.

3. Conclusion

By replacing f ðu, vÞ or gðu, vÞ with a proper one, we can
conclude several results from the showed prime result in
this paper on different sides. For example, we can obtain
results in this frame of periodic contractions and partially
ordered spaces.
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