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In the presented paper, a generalized nonlinear Schrodinger equation without delay convolution kernel and with special delay
convolution kernel is investigated. By using the geometric singular perturbation theory, the existence of traveling wave fronts is
proved. Firstly, we show that such traveling wave fronts exist without delay by non-Hamiltonian qualitative analysis. Then, for
the generalized nonlinear Schrodinger equation with a special local strong delay convolution kernel, the desired heteroclinic
orbit is obtained by using the Fredholm theory.

1. Introduction

In recent decades, there are two important integrable models
of nonlinear mathematical physics, which are the well-
known nonlinear Schrodinger (NLS) equation [1]

iut + auxx + bu uj j2 = 0 ð1Þ

and the derivative nonlinear Schrodinger (DNLS) equation

iut + auxx + bi u uj j2� �
x
= 0, ð2Þ

where i =
ffiffiffiffiffiffi
−1

p
, u is a complex valued function of the spatial

coordinate x and the time t, and a, b ∈ R are dispersion coef-
ficient and Landau coefficient, respectively. juj2 = uu∗, u∗ is
the complex conjugate of u. Equations (1) and (2) model
the propagation of intense laser beams in isotropic media
and admits solutions that become infinitely large after a
finite propagation distance. In the case of ultrashort laser
pulses, temporal effects (such as dispersion) can become
important. In addition, at sufficiently high intensities, the
electric field ionizes the medium, resulting in plasma forma-
tion [2, 3]. This, in turn, leads to changes in the optical prop-

erties of the medium, which are unaccounted for in (1). The
nonlinear Schrodinger equation model also neglects high-
order nonlinear polarizations by the medium. Traveling
wave solutions of this equation and a variety of generaliza-
tions have been widely studied for a long time [4–6]. In
reference [7], they theoretically address the existence of
traveling wave solutions of the following delay nonlinear
Schrodinger equation:

iut + uxx + f ∗ uð Þ uj j2 − γu uj j2x = 0: ð3Þ

ujuj2x means nonlinear response delay term [8] and
parameter γ > 0. They devoted to study of traveling waves
of nonlinear Schrodinger equation with distributed delay
by applying geometric singular perturbation theory, differ-
ential manifold theory, and the regular perturbation analy-
sis. The existence of a homoclinic connection and the
periodic orbits were established. In reference [9], some exact
solutions of the two-component general nonlinear Schrodin-
ger equation are obtained by using the general Darboux
transformation, including rogue-wave solution, breather
solution, and breather-rogue-wave interaction.
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In this paper, we shall use the geometric singular pertur-
bation theory [10–13] to investigate the following general-
ized nonlinear Schrodinger (GNLS) equation

iut + uxx + f ∗ uð Þ uj jn − γu uj j2x = 0: ð4Þ

where n ≥ 1 is an integer and f ∗ u represents a convolution
in the spatial variable. When n > 2, it means there is a time
delay for the higher order nonlinear Landau term. When n
= 2, equation (4) reduces to equation (3). We should remark
that time delay does implicitly play a significant role in the
dynamical behaviors of (4), as the nonlinear Landau term
involves the size of this time lag. For equation (4), we ana-
lyze the corresponding ordinary differential equation with-
out delay, with a nonlocal weak generic delay convolution
kernel, respectively, and then prove the existence of traveling
wave fronts by using geometric singular perturbation theory.

The remaining part of this paper is organized as follows.
The geometric singular perturbation theory is presented in
Section 2. In Section 3, equation (4) is investigated in two
cases: without delay, with a local strong generic delay kernel.
The existence of traveling wave fronts for equation (4) is
obtained by using geometric singular perturbation theory,
Fredholm theory. It is a simplified conclusion in Section 4.

2. Preliminaries

Firstly, we introduce the following result on invariant man-
ifolds which is due to Fenichel [14, 15].

Lemma 1. For the standard fast-slow system,

x′ tð Þ = f x, y, εð Þ,
y′ tð Þ = εg x, y, εð Þ,

(
ð5Þ

where 0 < ε≪ 1 is a real parameter, x = ðx1, x2,⋯, xkÞT ∈ Rk,
y = ðy1, y2,⋯, ylÞT ∈ Rl, k + l = n:x, y are C∞ on the set U ×
V , where U ⊂ Rn and V is an open interval containing 0.
Assume that for ε = 0, the system has a compact, normal
hyperbolic manifold of critical point M0, which is contained
in the set f ðx, y, 0Þ = 0: The manifold M0 is hyperbolic nor-
mally if the linearization of (5) at each point in M0 has
exactly l eigenvalues with zero real part, where l is the dimen-
sion of the center point. Therefore, for any 0 < r < +∞, if ε > 0
and sufficiently small, there exists a manifold Mε, which is
locally invariant under the flow of (5), which is Cr in x, y
and ε. What is more, Mε = fðx, yÞ: x = hεðyÞg for some Cr

function hεðyÞ and y in some compact K . There exist locally
invariant stable and unstable manifolds WsðMεÞ and Wuð
MεÞ that lie within OðεÞ, and are diffeomorphic to WsðMεÞ
and WuðMεÞ, respectively.

Definition 2. A setM is locally invariant under the flow from
(5) if it has neighborhood V so that no trajectory can leave
M without also leaving V . In other words, it is locally invari-
ant if for all x ∈M, x · ½0, t� ⊂ V implies that x · ½0, t� ⊂M,
similarly with ½0, t� replaced by ½t, 0�, when t < 0, where the

notation x · t is used to denote the application of a flow after
time t to the initial condition x.

With a change of time-scale τ = εt, _= d/dτ, system (5)
can be reformulated to

ε _x tð Þ = f x, y, εð Þ,
_y tð Þ = g x, y, εð Þ:

(
ð6Þ

When ε ≠ 0, systems (5) and (6) are equivalent, system
(5) is called the fast system, and (6) is called the slow system.
Each of the scalings is naturally associated with a limit as ε
⟶ 0. These limits of (5) and (6) are, respectively, given by

x′ tð Þ = f x, y, 0ð Þ,
y′ tð Þ = 0,

(
0 = f x, y, 0ð Þ,
_y tð Þ = g x, y, 0ð Þ:

( ð7Þ

The former is called the layer problem and the latter is
called the reduced system.

3. Existence of Traveling Wave Fronts

Traveling wave front solution uðx, tÞ = ϕðx − ctÞ is strictly
monotonic with respect to ξ = x − ct and globally asymptot-
ically stable with phase shift. For equation (4), on certain
parametric conditions, there exist traveling wave fronts,
which satisfy ϕð−∞Þ ≠ ϕð+∞Þ. In fact, it means there are
two steady states of the equation, In this section, the system
reduction is presented. Then, we will establish the existence
of traveling wave fronts for equation (4) in two cases: with-
out delay and with a local strong generic delay kernel,
respectively.

3.1. The Model without Delay. For delay generalized nonlin-
ear Schrodinger equation (4), the traveling wave form with
uðx, tÞ = ϕðξÞeiðkx−αtÞ, ξ = x − ct, and c > 0, where ϕ is real-
valued function and represents the amplitude of the travel-
ing wave with wave number k > 0 and frequency α > 0. By
the property of the kernel function f , when without delay,
equation (4) reduces to

iut + uxx + u uj jn − γu uj j2x = 0: ð8Þ

For a given constant c > 0, substituting uðx, tÞ = ϕðξÞ into
(8), the real part and the imaginary part of the nondelay
equation are given by

−α + k2
� �

ϕ + ϕ′′ + ϕn+1 − 2γϕ2ϕ′ = 0,
−c + 2k = 0:

ð9Þ

Then, k = c/2. Equation (9) is equivalent to the following
system of first-order equations:
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ϕ′ = y,
y′ = k2 − α

� �
ϕ − ϕn+1 + 2γϕ2y,

(
ð10Þ

where ′ = d/dξ. Obviously, system (10) is a non-Hamiltonian
system. Assume that k2 − α > 0; it is not difficult to know

that (10) has two equilibria E0ð0, 0Þ and E1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0Þ,
and E0ð0, 0Þ is a center; E1ð

ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0Þ is a node when k2

− α > 1, γ > 2, and 1 ≤ n < 4.
In order to verify the existence of heteroclinic orbit

between E0ð0, 0Þ and E1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0Þ, we confine y > 0. For
a suitable value λ > 0, the triangular

Ω = ϕ, yð Þ: 0 ≤ ϕ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0 ≤ y ≤ λϕ
n o

ð11Þ

is positive invariant. Let F
!
be the vector defined by the right-

hand side system (10) and n! be the inward pointing normal

on the boundary of Ω. On the slide ϕ = λy, 0 ≤ ϕ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

,
setting that n! = ðλ,−1Þ, it obtains

F
!
· n! = y, k2 − α

� �
ϕ − ϕn+1 + 2τϕ2y

� �
· λ,−1ð Þ ϕ, λϕð Þj

= λ2ϕ − k2 − α
� �

ϕ − ϕn+1 + 2γλϕ3
� �

≤ λ2 + α − k2
� �

ϕ − 2γλϕ3 ≤ λ2 + α − k2
� �

ϕ:

ð12Þ

When 0 < λ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

p
, it is obvious that λ2 + α − k2 ≤ 0;

it implies that F
!
· n! ≤ 0. Thus, one branch of the stable man-

ifold at E1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0Þ always stays in the region Ω and joins

E1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0Þ into the origin. It implies that the desired het-
eroclinic orbit exists. Consequently, we obtain the following
theorem.

Theorem 3. Assume that τ > 0 is small sufficiently, k2 − α > 1,
γ > 2, and 1 ≤ n < 4, then on the ðϕ, yÞ phase plane for system
(10), there exists a heteroclinic orbit between E0ð0, 0Þ and

E1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0Þ, which is confined on y > 0. The traveling
wave fronts uðx, tÞ = ϕðx + ctÞ for system (9) is strictly

decreasing and satisfying ϕð−∞Þ = 0, ϕð+∞Þ =
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

:

3.2. The Model with Nonlocal Delay. From Subsection 3.1,
the existence of heteroclinic orbits is shown, so we shall ver-

ify the one connecting E0ð0, 0Þ and E1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0Þ exists.
The delay to be incorporated in a way that allows for associ-
ated spatial averaging due to the diffusion. This idea was first
introduced by Britton [16]. The existence of traveling wave
fronts for equation (4) with a local strong generic kernel is
considered by using geometric singular perturbation theory,
the Fredholm theory. The convolution f ∗ u is denoted by

f ∗ uð Þ x, tð Þ =
ðt
−∞

f t − sð Þu x, sð Þds: ð13Þ

Because u is a complex valued function, the kernel f can
be defined as a complex valued function, i.e., the kernel

f : ½0,+∞Þ⟶C , which satisfies the following normaliza-
tion condition: ð∞

0
f tð Þj jdt = 1,

t f tð Þj j ∈ L1 0,+ð Þ,Rð Þ,
ð14Þ

such that the kernel does not affect the spatially uniform
steady-state. The average delay for the distributed delay ker-
nel f ðtÞ is defined as τ = Ð∞0 tj f ðtÞjdt. In particular, there are
the following nonlocal weak and strong generic delay kernels

f tð Þ = 1
τ
e− t/τð Þ,

f tð Þ = t
τ2

e− t/τð Þ,
ð15Þ

where the parameter τ > 0 measures the average time delay.
Here, we discuss equation (4) with a local strong generic ker-
nel. Equation (4) changes to

iut + uxx+ uj jn
ðt
−∞

t − s
τ2

e− t−sð Þ/τð Þu x, tð Þds − τu uj j2x = 0: ð16Þ

Suppose that the traveling wave front wave solution of
(16) is the form uðx, tÞ = ϕðξÞeiðkx−αtÞ, with ξ = x − ct, c > 0
is the wave speed. The real part and imaginary part of corre-
sponding ordinary differential equation is

−α + k2
� �

ϕ + ϕ′′ + ϕnω − 2
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

ϕ2ϕ′ = 0 − c + 2k = 0,
ð17Þ

where ′ = d/dξ and

ω x, tð Þ = f ∗ ϕð Þ ξð Þ =
ð∞
0

s
τ2

e− s/τð Þϕ ξð Þds: ð18Þ

By direct computation, it obtains

dω
dξ

= 1
cτ

φ − ωð Þ, ð19Þ

where

φ =
ð∞
0

1
τ
e− s/τð Þϕ ξð Þds: ð20Þ

Then, it has

dφ
dξ

= 1
cτ

ϕ − φð Þ: ð21Þ

Thus, equation (17) is equivalent to a four-dimensional
system as follows:
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ϕ′ = y,

y′ = k2 − α
� �

ϕ − ϕnω − 2
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

ϕ2y,

cτω′ = φ − ω,
cτφ′ = ϕ − φ,

8>>>>>><>>>>>>:
ð22Þ

which is under the boundary conditions ϕð−∞Þ = 0, ϕð+∞
Þ =

ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

,φð±∞Þ = 0. From the third and the fourth equa-
tion in (22), when τ⟶ 0, it has ω⟶ φ and φ⟶ ϕ. At
this limit, (22) can reduce to the nondelay model (9), which

holds two equilibria E0ð0, 0Þ, E1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0Þ. For τ > 0, in
the ðϕ, y, ω, φÞ phase space, (22) has two equilibria: ðϕ, y, ω
, φÞ = ð0, 0, 0, 0Þ and ðϕ, y, ω, φÞ = ð

ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

, 0,
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

,ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

Þ. The small parameter τ > 0 plays the delay in the
original system, and (22) reduces to a regular perturbed sys-
tem. Therefore, to show the existence of traveling wave
fronts for equation (4), we need to show the existence of
traveling wave fronts for system (22). Note that when τ = 0
, (22)) does not define a dynamical system in R4; therefore,
we use the transformation ξ = εζ; the system (22) can be
rewritten as

_ϕ = τy,

_y = τ k2 − α
� �

ϕ − ϕnω − 2
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

ϕ2y
h i

,

c _ω = φ − ω,
c _φ = ϕ − φ,

8>>>>>><>>>>>>:
ð23Þ

where · denotes the derivative with respect to ζ. System (23)
is the fast system, they are equivalent when τ > 0. When τ
= 0, then the flow of the slow system is defined to a set

M0 = ϕ, y, ω, ϕð Þ ∈ R4 : ω = φ, φ = ϕ
� �

, ð24Þ

which is a two-dimensional invariant manifold of (22) with
τ = 0. In order to find a two-dimensional invariant manifold
for sufficiently small τ > 0 by using geometric singular per-
turbation theory, we have to verify that the variant manifold
is normally hyperbolic. Therefore, we find an invariant man-
ifold Mτ of system (23) when τ > 0, which is closed to M0.
The restriction of (23) to this invariant manifold Mτ yields
a two-dimensional system, since the linearized matrix of
(23) restricted to M0 is

0 0 0 0
0 0 0 0

0 0 −
1
c

1
c

1
c

0 0 −
1
c

0BBBBBBB@

1CCCCCCCA
: ð25Þ

It is easy to obtain the eigenvalues are 0, 0, −1/c,−1/c;
then, the number of the eigenvalues with zero real part is

equal to dimM0 and the other eigenvalues are hyperbolic.
Thus, the slow manifold M0 is normally hyperbolic. From
geometric singular perturbation theory, it is obvious that
there exists a submanifold Mτ of the perturbed system (23)
of R4 for sufficiently small τ > 0, which can be written as

Mτ = ϕ, y, ω, φð Þ ∈ R4 : ω = φ + g ϕ, yτð Þ, φ = ϕ + h ϕ, y, τð Þ� �
,

ð26Þ

where h, g are smooth functions defined on a compact
domain and satisfy

g ϕ, y, 0ð Þ = 0, h ϕ, y, 0ð Þ = 0: ð27Þ

Thus, the functions g and h can be expanded into the
form of a Taylor series about τ as follows:

g ϕ, y, τð Þ = τg1 ϕ, y, τð Þ + τ2g2 ϕ, y, τð Þ +O τ3
� �

,

h ϕ, y, τð Þ = τh1 ϕ, y, τð Þ + τ2h2 ϕ, y, τð Þ +O τ3
� �

:
ð28Þ

Substituting ω = φ + gðϕ, y, τÞ and φ = ϕ + hðϕ, y, τÞ into
the slow system (22), we have

1
cτ

ϕ − φð Þ + τ
∂g1
∂ϕ

y + ∂g1
∂y

k2 − α
� �

ϕ − ϕnω − 2
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

ϕ2y
h i	 


− 2γϕ2y = 1
c
−g1 − τg2ð Þ, y

+ τ + ∂h1
∂ϕ

y + ∂h1
∂y

k2 − α
� �

ϕ − ϕnω − 2
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

ϕ2y
h i	 


= 1
c
−h1 − τh2ð Þ,

ð29Þ

By comparing coefficients of τ with each degree, we
obtain

g1 = cy, g2 = −2c2 k2 − α
� �

ϕ − ϕn+1
� �

, h1
= −cy, h2 = c2 k2 − α

� �
ϕ − ϕn+1

� �
:

ð30Þ

Thus, we have

g ϕ, y, τð Þ = τcy − 2c2τ2 k2 − α
� �

ϕ − ϕn+1
� �

+O τ3
� �

,

h ϕ, y, τð Þ = −τcy + c2τ2 k2 − α
� �

ϕ − ϕn+1
� �

+O τ3
� �

:

ð31Þ

Precisely, the slow system (22) restricted to Mε is

ϕ′ = y,
y′ = k2 − α

� �
ϕ − ϕn φ + gð Þ − 2γϕ2y:

(
ð32Þ

Obviously, when τ = 0, system (32) reduces to (23). The
equilibria Eτ0 and Eτ1 of system (32) are near to E0 and E1,
respectively. In order to prove the existence of traveling wave
fronts of equation (4), we establish the existence of a
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heteroclinic orbit connecting the critical point Eτ0. From
Lemma 1, we know that such a heteroclinic orbit exists when
τ = 0.

Denote that ðϕ1, y1Þ and ð�u0, �v0Þ are the solutions of (10)
and (32), respectively, when τ = 0. For τ > 0, set that

ϕ1 = �u0 + τeϕ +O τ2
� �

, y1 = �v0 + τ~y +O τ2
� �

: ð33Þ

Substituting ϕ1 and y1 in (33) into (32) and comparing
the coefficients of τ with each degree, the differential equa-
tion system determining eϕ and ~y is

d
dξ

eϕ
~y

 !
+

0 −1
c + α + β�u0 + γ�u20 0

 ! eϕ
~y

 !
=

0
βc�v0

 !
:

ð34Þ

We intend to find a traveling wave solution satisfying
(34) satisfying ϕ~ð±∞Þ = 0,y~ð±∞Þ = 0. Denote that L2 is
the space of square integrable functions with inner produc-
tion,

eϕ ξð Þ, ~y ξð Þ
D E

=
ð+∞
−∞

eϕ ξð Þ, ~y ξð Þ
� �

dξ, ð35Þ

where h·, · i is the Euclidean inner product on R2. From
Fredholm theory, system (34) has a solution if and only if

ð+∞
−∞

eϕ ξð Þ,
0

βc�v0

 ! !
dξ = 0 ð36Þ

holds for all functions eϕðξÞ in the kernel of the adjoint of
operator L defined by the left-hand side of (34). Denote that
L∗ is the adjoint of operator L, and

L∗ = −
d
dξ

+
0 c + α + β�u0 + γ�u20

−1 0

 !
: ð37Þ

It implies that for all u1ðξÞ ∈ Ker, L∗ satisfy

deϕ ξð Þ
dξ

=
0 c + α + β�u0 + γ�u20

−1 0

 !eϕ ξð Þ: ð38Þ

Since the matrix in (38) is a variable coefficient matrix, it
is difficult to find the general solution. However, we can
prove that such solution satisfying u0ð−∞Þ = 0 must be the
zero solution to deduce the existence of heteroclinic orbit.
Although we can not find the exact expression, but u0ðξÞ is
the solutions for unperturbed system and u0ð−∞Þ = 0. Thus,
when ξ⟶ −∞, the matrix in (38) becomes a constant coef-
ficient matrix

0 c + α

−1 0

 !
: ð39Þ

The corresponding eigenvalues are determined by λ2 +
c + α = 0. Since c > 0, α > 0, there are two real nonzero eigen-
values λ = ± ffiffiffiffiffiffiffiffiffiffi

c + α
p

i. Hence, the solution satisfying
ϕ~ð±∞Þ = 0 is the zero solution, which means that the Fred-
holm orthogonality condition holds trivially and so solutions
of (38) exist, which satisfy ϕ~ð±∞Þ = 0 and y~ð±∞Þ = 0.
Therefore, we can conclude that for sufficiently small τ > 0,
there exists a heteroclinic orbit of (38) connecting E0τ which
is approaching to E0ð0, 0Þ as τ⟶ 0.

Theorem 4. Assume that k2 − α > 1, γ > 2, and 1 ≤ n < 4, (4)
with the local strong generic kernel

f ∗ uð Þ x, tð Þ =
ðt
−∞

t − s
τ2

e− t−sð Þ/τð Þu x, tð Þds ð40Þ

possesses a traveling wave front uðx, tÞ = uðx + ctÞ satisfying
uð−∞Þ = 0,uð+∞Þ =

ffiffiffiffiffiffiffiffiffiffiffiffi
k2 − α

n
p

when the parameter τ > 0 is
sufficiently small.

Remark 5. The time delay term f ∗ u in equation (4) is local
strong generic delay convolution, which can be replaced by
other delay convolution; the approach is still applicable pro-
vided the persistence of the traveling wave fronts, so we only
consider the strong generic delay convolution kernel to
investigate the traveling wave fronts for equation (4).

4. Conclusion

The paper investigates the existence of traveling wave fronts
for a generalized nonlinear Schrodinger equation without
delay, with a special local strong generic delay convolution
kernel, respectively. Based on the relation between traveling
wave fronts and heteroclinic orbit of the associated ordinary
differential equations, by applying geometric singular per-
turbation theory, the singular perturbation system is
changed to the regular perturbation system. Then, the Fred-
holm theory and linear chain trick are used to prove that the
solution is traveling wave front solution on certain paramet-
ric conditions. The sufficient conditions of the traveling
wave fronts that persisted for the generalized nonlinear
Schrodinger equation (4) are given.
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