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This paper investigates the instabilities and characteristics of relativistic linear waves of two-component plasma by assuming the
plasma to be in-viscid, homogeneous, collision-less, and magnetized. To do this, by taking moments of the relativistic Vlasov
equation, the basic equations of the two-component relativistic an-isotropic plasma are derived. The linearized equations are
analyzed for small perturbation under the assumption of the plasma which is initially at rest. After we derived the dispersion
relations, different wave modes and instabilities are discussed analytically and numerically presented as well.

1. Introduction

Recently, the wave propagation of the relativistic plasma has
been gained great attention in a variety of astrophysical
problems. There are several astrophysical [1] and magneto-
spheric situations where different plasma components which
are coupled by the large-scale ambient magnetic field coex-
ist. The plasma component can be described as a concatena-
tion of magneto-hydrodynamic (MHD) fluid components
[2]. As presented in [3], the study of MHD theory is devoted
to describing a compressional pulsation with a large azi-
muthal number. In this situation, the plasma system may
be appropriately described as the concatenation of two
MHD fluid components [4]. This concatenated modeling
of a composite plasma system has been extended to study
the effect of pressure anisotropy in the nonrelativistic [5, 6]
as well as relativistic [2, 7] domains. For instance, Rogava
et al. [8] used nonmodal analysis to investigate linear waves
in a cold electron-positron plasma and found that the veloc-
ity shear induces mode coupling and transient growth of the
compressional and shear Alf ve′n perturbations. In [9], the
propagation of linear and nonlinear electrostatic waves is
investigated in a magnetized anisotropic electron-positron-
ion (e-p-i) plasma with superthermal electrons and posi-

trons being studied. Chagelishvili et al. [10] moreover
utilized nonmodal investigation to think about the impact
of plane Couette stream on the solidness of direct waves in
a two-temperature plasma. Also, Goodman [11] considered
the impact of classical transport coefficients, and variety of
stream speed in a round and hollow symmetric electrically
driven steady-state MHD show for input parameters which
may mimic combination plasma in a tokamak. Vladimirov
and Ilin [12] utilized the vitality rule to explore the sound-
ness of a perfect, in-compressible consistent MHD stream
and found adequate conditions for the stream to be steady.
Furthermore, Goldberger et al. (hereafter called CGL) [13]
also derived a set of equations in which the ambient mag-
netic field simulates the role of collisions to diagonalize the
thermal pressure tenser into having two components, one
in the direction of a magnetic field and the other perpendic-
ular to it. Notwithstanding the extent of thermal anisotropy
which may exist in a particular situation, recently, many
researchers have studied pressure anisotropy in different
plasma wave situations using the CGL approximation
[9, 14, 15] and investigated different properties of linear
and nonlinear plasma waves.

On the other hand, the plasma waves not only studied in
the classical approach; many researchers also have studied
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waves in quantum plasmas using the quantum hydrody-
namic (QHD) model [16, 17] which has received much
interest due to their applications in a variety of physical sys-
tems. Abdikian and Mahmood [18] investigated the electro-
static solitary waves in a relativistically quantum magnetized
plasma in the presence of stationary ions and the external
magnetic field. In addition to these waves, the nonlinear
propagation of small amplitude magnetosonic solitons and
their chaotic motions in quantum plasma with degenerate
inertialess spin-up electrons, spin-down electrons, and clas-
sical inertial ions [19] studied.

The framework of relativistic MHD wave equations has
been done by Lichnerowicz [20], and the model is extended
to include the pressure anisotropy by Cissoko [21] who
proposed an energy closure similar to the double-adiabatic
or CGL laws, dðp⊥/ρBÞ/dt and dðp∥B2/ρ3Þ/dt (where p∥
and p⊥ are the parallel and perpendicular components of
the pressure relative the ambient magnetic field, respectively
[9]), and ρ is the plasma fluid density, for the case of nonrel-
ativistic plasma in a strong magnetic field [13]. As presented
in [22], Chou and Hau have studied relativistic MHD
plasma in the presence of pressure anisotropic slow waves
in a single component. The relativistic anisotropic MHD
model was then applied to obtain the solutions for pulsar
wind with the special limit of p∥ ≠ 0 and p⊥ = 0. In those
studies, the relativistic effect is due to the bulk flow but not
the thermal velocity of particles. The well-known linear
MHD wave dispersion relations have been examined by
Gedalin [23]. Tsikarishvili and Rogava [24] have done the
relativistic and ultrarelativistic gyrotropic plasma, respec-
tively. Kalra and Gebretsadkan [25] have further examined
the characteristics of linear MHD waves and instabilities in
several physical situations, and they discussed the implica-
tions of the dispersion relations for any physical situation
where the magnetic field is strong. Moreover, Kumar and
Kalra [2] also investigated the propagation of waves and
instabilities in a plasma model which consists of the concat-
enation of two magnetohydrodynamic (MHD) fluids, one of
which is relativistic and has anisotropic pressure compo-
nents given by double adiabatic equations derived by Geda-
lin [23], while the other one has pressure components given
by generalized polytropic laws.

Dougherty [26] has studied wave propagation in hot
plasma by treating the dynamics of the medium by kinetic
theory [27, 28] and combines the theory with Maxwell’s
equations [29]. For the case of nonrelativistic two-
component magnetohydrodynamics plasma, Kalra and
Ghildyal [4] investigated the low-frequency plane waves
supported by a medium containing a thermal plasma of iso-
tropic pressure and a suprathermal collisionless plasma hav-
ing anisotropic pressure. They also analyzed the low-
frequency waves in a plasma model that is made up of two
thermally anisotropic MHD components using wave-front
diagrams [5]. The question of stability has been completely
ignored so far in the plasma models based on two MHD
components. Kumar and Singh [30] investigated the role of
relative motion between the fluid components of a plasma

model, which is simulated by concatenation of two aniso-
tropic MHD fluids, on the propagation of low-frequency
waves and instabilities. A significant outcome of such studies
based on a two-component MHD is that it allows an addi-
tional magnetosonic mode, which is the suprathermal mode,
besides the usual slow, fast, and Alf ve′n MHD modes. These
modes basically originate due to the interaction between the
two fluids of the plasma system and are the fastest mode of
propagation. These studies also admitted two-population
plasma systems were undertaken by considering to have iso-
tropic pressure. However, two-population plasma is embedded
in a strong magnetic field, the magnetic field suppresses the
equilibration of pressures parallel and perpendicular to itself.

The studies were undertaken so far assuming that either
one component of plasma or both the components of
plasma have isotropic pressure or nonrelativistic properties.
However, there are wide claims of astrophysical systems
where an-isotropic relativistic effects are important. But, to
the best of our knowledge, not much attention seems to be
given to both relativistic and anisotropic two-component
MHD waves. This motivated us to do the present research
which addresses this issue.

In this work, we devote the two-component plasma for
the case of relativistic and anisotropic pressure to study the
characteristics of relativistic linear waves and instabilities
of two-component plasma in the inviscid, homogeneous,
collisionless, and magnetized fluid. The well-known wave
modes such as slow, fast, and Alf ve′n modes of a single
MHD fluid is persist and is compared with our numerical
results as well. In addition, a new fourth mode, the fastest
of all modes, referred to as the suprathermal mode appears
due to the coupling between the two components of the
plasma which displays a rich variety of behavior depending
upon the numerical values of the input parameters. From
the results, we observe that the phase speeds of the wave
modes of the relativistic two-component plasmas are found
to be slower than their nonrelativistic counterpart due to
the relativistic corrections and the pressure anisotropies.

The layout of the paper is as follows. In the following
section, we review the derivation of basic equations of rela-
tivistic anisotropic magnetohydrodynamics; hereafter, we
call it RAM, the two-component relativistic anisotropic
plasmas are shown in the framework of the Vlasov equation.
The linearization and dispersion relations of RAM equations
are discussed in Section 3. In Section 4, the numerical results
of different polar plots of the phase speeds of the wave
modes are presented and analyzed. This section also covers
the discussion and conclusions of the work.

2. Derivation of Basic Equations of RAM

In this section, by employing the velocity moments, the
Vlasov equation (where c is the speed of light, f is the distri-
bution function, Fαβ is the energy-stress tensor, and uβ is
four vector velocity),

cuα
∂f
∂xα

+ e
m
Fαβuβ

∂f
∂uα

= 0: ð1Þ
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The differential operator ∂/∂xα transforms like a four-
vector and is denoted by ∂α. The Latin letters k, l,m,⋯ rep-
resent space indices 1, 2, 3, and the Greek letters α, β, μ,⋯
represent space time and take the values 1 to 4. The funda-
mental relativistic MHD equations are constructed under
consideration of the conservation laws of energy and
momentum of the system. Taking the different moments of
the Vlasov equation, we consider an unbounded and nondis-
sipative plasma that consists of two components denoted by
subscripts 1 and 2, each described by relativistic anisotropic
magneto hydrodynamics; hereafter, we call it RAM.

The plasma is permeated by a uniform magnetic field,
which, on account of the idealized Ohm’s law

E + 1
c

� �
v × B = 0, ð2Þ

where E is the electric field and B is the magnetic field. These
two constraints are anisotropic components to move with
the same velocity perpendicular to the direction of the mag-
netic field. It does not restrict the component of velocity
along the direction of the magnetic field. The equations
assumed for the two-fluid plasma system consist of two sets
of equations, the full Maxwell’s equations. Each fluid is char-
acterized by its continuity, momentum, and energy equa-
tions. We also assume that there are no collisions between
particles so there is no viscosity, thermal conduction, or
resistivity.

We use a two-model system that interstellar environ-
ment has been simulated to be a concatenation of two aniso-
tropic MHD fluids [5, 30] consisting of a background plasma
(fluid1) and cosmic ray fluid (fluid2); further assumption for
the simplification of calculations that these two fluids have a
values s where s = 1 and s = 2 represents fluid1 and fluid2,
respectively. So throughout this paper, the quantities with
suffix s take the values 1 and 2 for fluid1 and fluid2. Using
these assumptions, we rewrite the continuity, Maxwell, and
energy-momentum equations [7, 25] of RAM for the two
fluids which can be written as:

∂Jαs
∂xα

= 0, the continuity equation, ð3Þ

∂∗Fαβ
s

∂xα
= 0, the relevantMaxwell′sequations, ð4Þ

∂Tαβ
s

∂xα
= 0, the energy −momentum equation: ð5Þ

respectively, where Jαs = ρsu
α
s and ∗Fα

s β = bαuβs − bβuαs . The
proper mass density and the specific internal energy density
for the two fluids are defined, respectively, as

es = ρs c2 + εs
� �

, and εs =
p⊥s
ρs

+ p∥s
2ρs

: ð6Þ

Equation of state

d
dt

p∥sB
2

ρ3s

� �
= 0, ð7Þ

d
dt

p⊥s
ρsB

� �
= 0: ð8Þ

The induction equation under the presumption of
idealize conductivity Ohm’s law together with Faraday’s
law gives:

∂B
∂t

= ∇ × v1 × Bð Þ = ∇ × v2 × Bð Þ, ð9Þ

where v1 and v2 denote velocities of fluid1 and fluid2,
respectively. By using Equations (3)–(8), we derive the line-
arization and dispersion relation in the following section to
analyze the characteristics of relativistic linear waves and
instabilities of two-component plasma.

3. Linearization and Dispersion Relations of
RAM Equations

In this section, we assume that the physical quantities have
been perturbed with time, and the small amounts of the
perturbed quantities have a sinusoidal behavior. To be more
clear, we use the notation “0” and “1” to identify the unper-
turbed and perturbed amount, respectively.

Then, the linearized form of the continuity equation
read as

∂
∂t

ρ1
ρ01

� �
+∇ · v1 = 0, ð10Þ

∂
∂t

ρ2
ρ02

� �
+∇ · v2 = 0, ð11Þ

where ρ01,2 for the equilibrium and ρ1,2 denotes corresponding
perturbed densities. The linearized equation of state for the
perpendicular and parallel component of pressures are
obtained, respectively, as

p1⊥s = p0⊥s
ρ1s
ρ0s

+ B1z
B0

� �
,

p1∥s
p0∥s

= 3 ρ
1
s

ρ0s
− 2B1z

B0
:

ð12Þ

Similarly, the linearized induction equation become as

∂B1
∂t

= B0 · ∇ð Þv1s − B0 ∇·v1s
� �

: ð13Þ

where v1s denotes the perturbed fluid velocities for the values of
s = 1 for fluid one and s = 2 for fluid two. It is evident from
these equations that one can obtain the two fluid velocity com-
ponents along the perpendicular direction of magnetic field
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which are equal.

v1x = v2x = vx and v1y = v2y = vy: ð14Þ

However, along the parallel direction of the magnetic field,
the two fluids can have different velocities. Because of the
assumption that the two fluids are under consideration of con-
strained tomove together by the Lorentz force across the mag-
netic field, the equation of conservation of momentum in the
directions perpendicular to the magnetic field in the linearized
form may be written as

ρ01R
∗
1
∂
∂t

v1yêx − v1xêy
� �

+ ρ02R
∗
2
∂
∂t

v2yêx − v2xêy
� �

+ êx
∂
∂y

− êy
∂
∂x

� �
p1⊥s +

B0B1z
4π

� �
− B0

∂
∂z

× p0⊥s − p0∥s
B2
0

+ 1
4π

� �
B1yêx − B1xêy
� �� �

= 0,

ð15Þ

where

R∗
1 = 1 + 1

ρ01c2
2p0⊥1 +

1
2 p

0
∥1 +

B2
0

4π

� �
, ð16Þ

and

R∗
2 = 1 + 1

ρ02c2
2p0⊥2 +

1
2 p

0
∥2 +

B2
0

4π

� �
: ð17Þ

We can rewrite Equation (15) separately for êx and êy
components, respectively, as

ρ01R
∗
1
∂
∂t

v1y + ρ02R
∗
2
∂
∂t

v2y +
∂
∂y

p1⊥s −
∂
∂z

p0⊥s − p0∥s
B0

� �
B1y +

B0
4π

∂B1z
∂y

−
∂B1y
∂z

� �
= 0,

ρ01R
∗
1
∂
∂t

v1x + ρ02R
∗
2
∂
∂t

v2x +
∂
∂x

p1⊥s −
∂
∂z

p0⊥s − p0∥s
B0

� �
B1x +

B0
4π

∂B1z
∂x

−
∂B1x
∂z

� �
= 0:

ð18Þ

Here, the pressure of the plasma components is given by

ps = p∥s
� �

− p⊥s
�
nn + p⊥sI, ð19Þ

where p∥s, p⊥s stands for parallel and perpendicular compo-
nents of pressures to the direction of a magnetic field, respec-
tively, I represents the unit second order tensor, and n refers a
unit vector in the parallel direction of a magnetic field. The lin-
earized equation for the conservation of momentum along the
magnetic field may also be written as

1
c2

es0 + p0∥s
� � ∂

∂t
vsz − p0⊥s − p0∥s

� � ∂
∂z

B1z
B0

� �
+ ∂p1∥s

∂z
= 0: ð20Þ

Here, we can define a new term for 1/c2ðes0 + p0∥sÞ as

1
c2

es0 + p0∥s
� �

= 1
c2

ρ0s c2 + ε0s
� �

+ p0∥s
� �

= ρ0s 1 + 1
ρ0s c

2 p0⊥s + 3p0∥s/2
� �� �

= ρ0s Q
∗
s ,

ð21Þ

where Q∗
s = 1 + 1/ρ0s c2ðp0⊥s + 3p0∥s/2Þ:

Using Equation (20), it can be written for fluid1 and
fluid2

ρ01Q
∗
1
∂
∂t

v1z − p0⊥1 − p0∥1
� � ∂

∂z
B1z
B0

� �
+ ∂p1∥1

∂z
= 0, ð22Þ

and

ρ02Q
∗
2
∂
∂t

v2z − p0⊥2 − p0∥2
� � ∂

∂z
B2z
B0

� �
+ ∂p1∥2

∂z
= 0, ð23Þ

respectively, where Q∗
1 = 1 + 1/ρ01c2ðp0⊥1 + 3/2p0∥1Þ, and Q∗

2 =
1 + 1/ρ02c2ðp0⊥2 + 3/2p0∥2Þ: Here, we consider an unbounded
homogeneous medium in which any arbitrary perturbation
can be Fourier analyzed and written in terms of plane waves
of frequency ω and wave vector k. Since the magnetic field
has been taken along the z-axis, the wave vector can be taken
in the xz plane with out any loss of generality. So, the pertur-
bation quantities is proportional to

~ exp i ωt − k⊥x − k∥z
� �� 	

, ð24Þ

where the wave vector kðk⊥, 0, k∥Þ is taken to be real. For
the differentiation with respect to time and space, we use the
following expressions for

∂
∂t

⟶ iω,∇⟶ −ik or∇x,y,z ⟶ −i k∥x, 0, k∥z
� �

: ð25Þ

By account, this assumption and the space-time depen-
dence given by Equation (24) is then applied to Equations
(10)–(20). Carrying out the usual normal-mode analysis,
we derive the desertion relations for Alf ve′n mode

U2 = ∑2
s=1 b2⊥s − b2∥s + 1
� �
1 + dð ÞR

( )
cos2θ: ð26Þ

In the current problem, the plasma is a two-component
MHD fluid, then it needs a careful treatment for using
parameters that have similar definition with those used by
Gedalin [31] and later modified by Gebretadkan and Kalra
[32] for a single-component RAM. Using these parameters,
it is convenient to write the dispersion relation for the
two-component RAM as follows:
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ω2 − k2∥V
2
RAs + k2⊥V

2
Fs

� �
 �
ω2 − k2∥V

2
S1

� �
ω2 − k2∥V

2
S2

� �
 �
− k∥k

2
⊥ V2

T1 V2
T1 1 − V2

RA1
c2

� �
ω2 − k2∥V

2
S2

� �� �� 

+ k∥k
2
⊥ V2

T2 V2
T2 1 − V2

RA2
c2

� �
ω2 − k2∥V

2
S1

� �� �� 
= 0,

ð27Þ

and the dispersion relations for two-components relativistic
anisotropic MHD plasma written as

Y2
s=1

U2 −
3cos2θb2∥s

Qs

( )
s

� 1 + dð ÞRU2 − 2〠
2

s=1
b2⊥s + 〠

2

s=1
b2∥s + b2⊥s
� �

cos2θ − 1
" #

− sin2θcos2θ × U2 b4⊥1
Q1

+ db4⊥2
Q2

 !"

− b4⊥1b
2
∥2 + db4⊥2b

2
∥1

� � 3cos2θ
Q1Q2

#
= 0:

ð28Þ

In this dispersion relation, the following dimensionless
parameters have been introduced

d = ρ02
ρ01

,U = ω

kvA
= v
vA

, k∥ = kcosθ,

k⊥ = k sin θ, k2 = k2∥ + k2⊥,

b2⊥s,∥s =
p⊥s,∥s
v2Aρ

0
1
v2A =

B2
0

4πρ01
M2

A =
v2A

1 + dð Þc2 ,

R = 1 +M2
A 〠

2

s=1
2b2⊥s +

1
2 b

2
∥s + 1

� �
,

Qs = 1 +M2
A 1 + dð Þ b2⊥s +

3
2 b

2
∥s

� �
,

ð29Þ

where MA is Alf ve′n speed of the two component plasma
normalized to c, VA is Alf ve′n speed of the single-
component plasma, and v is phase speed.

4. Result and Discussion

We already factor-out Alf ve′n mode solution in Equation
(26) and Equation (28), the 8th-order dispersion relation of
the two population relativistic anisotropic plasma which is
mainly addressed in this paper. The dispersion relation
obtained in Equation (27) is more general, and we first com-
pare with the well-known results by taking various limits.
For instance, the nonrelativistic analog of RAM is found by
using the results in Equation (28) by considering that c
⟶∞, then the values of MA = 0 implying that R =Q = 1.
So, the dispersion relation for the modified Alf ve′n wave

Equation (26) reduced to the characteristic equation for
the propagation of in anisotropic plasma as presented in

V2 = ∑2
s=1 p0⊥s − p∥s
� �

+ B2
0/4π

ρ01 + ρ02
� �

( )
cos2θ, ð30Þ

and the dispersion relation expressed by Equation (28) also
reduced and exactly agrees with the dispersion relation
obtained by Ghildyal and Kalra [5]. In the limit of the
single-component relativistic anisotropic plasma system
(since d = 0 implies that ρ02 = 0), the dispersion relations of
Equation (26) is reduced and exactly fits a characteristic
equation for the propagation of hydrodynamic waves in an
anisotropic relativistic plasma which is done by Gedalin
[23] with the modifications that is including c has been
retained to facilitate reducing them to the nonrelativistic
limits ðc⟶∞Þ by Gebretsadkan and Kalra [32], where
VA = ðB2

0/4πρ0Þ1/2 denotes the classical Alf ve′n speed and
b2⊥ = p⊥0/ρ0V2

A and b2∥ = p∥0/ρ0V2
A are the analogs of sound

speeds along and across the magnetic field [23, 32].

4.1. Wave Propagation Parallel to Magnetic Field ðk⊥ = 0, k∥
= kÞ. In the special case when the wave vector is parallel to
the direction of the magnetic field θ = 0, there are no con-
straints to bind the motion of the two fluids. Each fluid
moves independently. Except for the Alf ve′n mode where
the combined density of the fluids governs its propagation,
the other modes are expected to propagate as if one mode
is unaffected by the presence of the other. Equations (26)
and (27) show that all the four modes propagate; two of
the modes have a double point which is a relativistic gener-
alization of the nonrelativistic model [23]. The phase speed
ðv = ω/kÞ of these modes is given by

V = ±VARS = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑2
s=1 p0⊥s − p0∥s + B2

0/4π
� �

ρ01 + ρ02 + 1/c2 ∑2
s=1 2p0⊥sp0∥s/2 + B2

0/4π
� �h i

vuut :

ð31Þ

The other three modes propagate with phase speeds

V2 −V2
ARS

� �
V2 − VS1
� �

V2 −VS2
� �

= 0: ð32Þ

From this, we can understand that

V1 = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑2
s=1 p0⊥s − p0∥s + B2

0/4π
� �

ρ01 + ρ02 + 1/c2 ∑2
s=1 2p0⊥s + p0∥s/2 + B2

0/4π
� �h i

vuut , ð33Þ

V2 = ± 3p0∥1
ρ01 + ρ02 + 1/c2 ∑2

s=1 p0⊥s + 3p0∥s/2
� �h i

8<
:

9=
;

1/2

, ð34Þ

V3 = ± 3p0∥2
ρ01 + ρ02 + 1/c2 ∑2

s=1 p0⊥s + 3p0∥s/2
� �h i

8<
:

9=
;

1/2

: ð35Þ
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The double mode given by Equations (31) and (33)
arises because the Alf ve′n mode and the fast mode have
identical speeds along the direction of the magnetic field.
The other two modes given by Equations (34) and (35) are
the suprathermal modes which are the generalization of
the corresponding sound speed modes in the nonrelativistic
model [5]. They are essentially analog to the sound mode
propagating in the relativistic MHD fluids and are not influ-
enced by the magnetic field. The velocity (B) perturbations
which are responsible for these modes (34) and (35) are par-
allel to the direction of propagation. Each fluid component
triggers these modes independently. Since the propagation
phase speed of the mode depends on the peculiar of MHD
fluids, one can choose parameters so that in the parallel
direction of a magnetic field, the suprathermal mode may
not be the fastest mode. The phase speed of these modes
are also reduced due to pressure anisotropies as well as rela-
tivistic effects.

The analysis of different wave modes show that only the
Alf ve′n wave mode can lead to instability if

〠
2

s=1
p0∥s > 〠

2

s=1
p0⊥s +

B2
0

4π : ð36Þ

This is the condition for fire-hose instability for the sys-
tem of two an-isotropic nonrelativistic concatenated plasmas
[5]. which is not affected by relativistic consideration. Since
Equation (31) gives a double point, in the nonlinear regime,
this mode will grow fastest [33]. However, the relativistic
framework affects the growth rate of the phase speed when
it is stable reduced.

4.2. Wave Propagation Perpendicular to the Magnetic Field
ðk∥ = 0, k⊥ = kÞ. When the wave vector is perpendicular to
the direction of the magnetic field, the motion of the two
fluids is constrained and the medium behaves as a concate-
nation of the two fluids where each fluid has lost its indepen-
dence. There is a triple degeneracy in phase speeds,

V2 −V2
FS

� �
V2� �

V2� �
= 0: ð37Þ

From this, we can understand that V4 = 0 implies that no
propagation and one obtains:

V1 =V2 = V3 = 0, ð38Þ

and only one mode propagates with a phase speed given by

V =V2
FS = ± ∑2

s=1 2p0⊥s + B2
0/4π

� �
ρ01 + ρ02 + 1/c2 ∑2

s=1 2p0⊥s + p0∥s/2 + B2
0/4π

� �h i
8<
:

9=
;

1/2

:

ð39Þ

This is a stable mode. As noted earlier, the phase speed
of this model is also found to be reduced due to relativistic
effects as compared with its nonrelativistic counterpart
[33]. In this mode, the velocity perturbations are confined

to the direction of the wave normal so that the wave propa-
gation is analogous to the usual longitudinal sound wave.
This is due to the fact that in this situation, the tension in
the magnetic lines of force vanishes; the presence of the
magnetic field only adds magnetic pressure to the plasma
pressure.

4.3. Oblique Propagation. The parallel and perpendicular
propagation of waves only did not contain all information
about plasma wave modes. Mahmood et al. [34, 35] studied
the arbitrary amplitude solitons propagating obliquely with
respect to an external magnetic field in a homogeneous mag-
netized electron-positron-ion plasma. In many situations in
space physics, the velocity distribution function is not
Maxwellian but has an enhanced superthermal “tail” and
other wave modes resulting from weakly nonlinear turbulent
acceleration [36–38]. It is important to be able to model such
plasmas and study the effects of the excess superthermal par-
ticles on wave behavior. In order to have an insight into the
characteristics of these various modes of propagation, it is
necessary to discuss the wave modes when the wave vector
is inclined at an arbitrary angle with respect to the direction
of an ambient magnetic field. As pointed out earlier, the
present problem finds a possible application in the propaga-
tion of interstellar cosmic rays following a supernova explo-
sion. To investigate such a situation, we use the numerical
values for the relevant astrophysical parameters [1]. To do
this, we multiply Equation (24) by Equation (28) to obtain
an eighth order polynomial equation in U . Then, it may be
written as follows:

〠
8

n=0
anU

n = 0: ð40Þ

From the eighth-order polynomial, we observe the exis-
tence of four incoming and four outgoing modes which are
the outcome of the two-component plasma. However, this
eighth-order polynomial equation is difficult to solve analyt-
ically; so, we shall try to analyze it numerically.

4.4. Numerical Analysis for the Wave Modes. In this section,
the study of a relativistic anisotropic plasma is presented in
the interest of both populations. We also consider the num-
ber of other situations in space for further investigations. In
order to observe the effect of the relativistic anisotropic for
two population plasma, we plot phase speeds of the four
modes. We set here the numerical values of M2

A = 0:9, b2⊥1
= b2∥1 = 0:5, b2⊥2 = b2∥2 = 0:0125 and d = 10 as presented [2].

These values are used to solve the already factor out Alf ve′
n mode solution, Equations (26), and the dispersion relation
given by (28) numerically. For the case of nonrelativistic
two-component MHD and single-component relativistic
limit, we take the values M2

A = 0 and d = 0, respectively, in
a polar diagrams using the parameters. First, we plot for
the modified Alf ve′n mode with its nonrelativistic two
population and relativistic single-component counterpart
in Figure 1.
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In Figure 1, we represent the modified Alf ve′n wave
which propagates along the magnetic field. We clearly
observe that its speed is reduced due to the relativistic effect
and have a difference in phase speeds of relativistic and non-
relativistic two components MHD plasma. In all cases, for
relativistic and nonrelativistic, there is no propagation
orthogonal with the magnetic field.

The above figure, Figure 2, represents the suprathermal
mode for relativistic and nonrelativistic two population
anisotropic MHD plasma. These wave modes both incoming
and outgoing propagate in all directions in the case of the

relativistic and nonrelativistic two-component plasmas.
The only difference is in the relativistic case, the phase speed
is reduced. The suprathermal wave mode is the only mode
that persists in a perpendicular direction to the magnetic
field. It is the sum of the two waves and is the fast wave
mode compared to the others.

Figure 3 shows the phase speeds of the RAM and NAM
in two-component plasm fast wave modes in both incoming
and outgoing modes. Each mode have the same phase speed
in magnitude, and both the modes do not propagate along
the perpendicular direction to the magnetic field. One moves
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Figure 1: Polar plots of the phase speeds of Alf ve′n mode for RAM and nonrelativistic anisotropic magnetohydrodynamics (NAM) two
component plasma using M2

A = 0:9, b2⊥1 = b2∥1 = 0:5, b2⊥2 = b2∥2 = 0:0125, and d = 10.
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Figure 2: Polar plots of the phase speeds of suprathermal mode for RAM and NAM two-component plasma using M2
A = 0:9, b2⊥1 = b2∥1 =

0:5, b2⊥2 = b2∥2 = 0:0125, and d = 10.
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to the right and the other to the left. The outer curve repre-
sents the nonrelativistic, and the inner one is the relativistic
two-component plasma fast wave modes.

Figures 4 depicts that the polar plot of phase speeds nor-
malized to the Alf ve′n speed in the relativistic two compo-
nents of the four modes of propagation. Three of these
modes are the analogs of the usual single-population relativ-
istic MHD modes. These are slow, Alf ve′n and fast as

labeled as 1, 2, and 3, respectively, while the fourth mode
called the suprathermal mode, which is labeled as 4, is char-
acteristic of the two-population plasma system and arises
due to the interaction of two MHD plasma components.
When one of the two components of plasma is made to van-
ish, the suprathermal mode disappears in such a way that a
part of it fuses with the single-component fast mode propa-
gating in a direction normal to the magnetic field. As clearly

B0
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RAM fast wave
modes

Phase speed
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Phase speed
of RAM

NAM fast wave
mode
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Figure 3: Polar plots of the phase speeds of fast mode for RAM and NAM two-component plasma.
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Figure 4: Polar plots of the phase speeds of all the four modes for relativistic anisotropic magnetohydrodynamics two-component plasma
using M2

A = 0:9, b2⊥1 = b2∥1 = 0:5, b2⊥2 = b2∥2 = 0:0125, and d = 10.
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shown in Figure 4 that the suprathermal mode is the mode
that only propagates perpendicular to the direction magnetic
field. This is a hybrid of the fast (in a single-component
plasma) and the suprathermal modes. The relative magni-
tude of the phase speeds of these four modes, slow, Alf ve′
n fast, and suprathermal are US <UA <UF <UST , respec-
tively. This shows that for the chosen numerical values of
the parameters, the modes are in the pseudo-MHD [32]
regime.

Finally, we plot both nonrelativistic and relativistic
two-component anisotropic MHD plasma dispersion solu-
tions together as shown in Figure 5, the broken lines
(1′, 2′, 3′, and 4′) indicate the wave modes for NAM and
the solid lines (represented by numbers 1, 2, 3, and 4)
for the relativistic component.

From this figure, Figure 5, we deduce the wave modes of
the relativistic plasma lags than their corresponding nonrel-
ativistic counterpart. As a result, we can conclude from the
above plot that we do have all eight modes which become
four incoming and four outgoing modes. The wave modes
of the relativistic two-component plasma are found to be
slower than their nonrelativistic component counterpart.
This is because the density of the two mediums is not the
same.

5. Conclusion

An in-viscid magneto-hydrodynamic (MHD) model, which
describes the mutual interaction of a relativistic an-
isotropic fluid interstellar plasma and cosmic rays, is used
to investigate the stability and propagation of waves. To do
so, starting from the relativistic collision-less Boltzmann
transport (relativistic Vlasov) equations, the basic equations,

and linear dispersion relations are derived. Using parameters
relevant to cosmic and interstellar plasmas, the generalized
dispersion relation discussed for different cases analytically
and numerically, and using polar plots of the phase speed
of both relativistic and nonrelativistic cases are drawn and
discussed. From the analysis of the dispersion relations, it
is found that all existing kinds of MHD waves for the case
of two-component anisotropic relativistic plasma definitely
have different phase speeds as compared to the standard the-
ory of linear MHD waves in cold collisionless plasma.

On the other hand, from the numerical analysis, polar
plots of the phase speeds of different wave modes for differ-
ent cases are also drawn. Furthermore, for perpendicular
propagation, we can definitely notice that the phase speed
of magneto-sonic waves in the collision-less plasma with rel-
ativistic temperature is much smaller than the same speed in
the nonrelativistic case. In the case of parallel propagation,
our analysis showed that all the four MHD wave modes
propagate, among which the first two are identical and prop-
agate with modified Alf ve′n speed, while the third mode
propagates with the relativistic sound speed, and the fourth
mode is the suprathermal mode which results due to the
existence of two-component plasma. However, for normal
propagation, it is found that three of the modes vanish and
the remaining one specifies a result analogous to ordinary
nonrelativistic MHD waves for propagation transverse to
the magnetic field, which is the suprathermal mode; the slow
mode disappears, and the fast mode has a phase speed whose
square is the sum of the squares of the sound and Alf ve′n
speeds. In addition to the parallel and normal propagation,
we have also found from the oblique one that the obtained
numerical solutions are plotted to give the result which is
in agreement with the above-mentioned outcomes.
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Figure 5: Polar plots of the phase speeds of all the four modes for RAM and NAM two-component plasma using M2
A = 0:9, b2⊥1 = b2∥1 =

0:5, b2⊥2 = b2∥2 = 0:0125, and d = 10.
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In this paper, it may be concluded that the two popula-
tion results in four-wave mode where the phase speeds are
reduced due to the relativistic corrections. It can also
conclude from the analytic and numerical solutions that
the phase speeds are not only reduced by the relativistic
effects but also reduced by the pressure anisotropies
(p∥1, p∥2, p⊥1, and p⊥2) which we claim is a new result.
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