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A path way model is concerned with the rules of swapping among different classes of functions. Such model is significant to fit a
parametric class of distributions for new data. Based on a such model, the path way or P transform is of binomial type and
contains a family of different transforms. Taking inspiration from these facts, present research is concerned with the
computation of new fractional calculus images involving the extended k-gamma function. The non-integer kinetic equations
containing the extended k-gamma function is solved by using pathway transform as well as validated with the earlier obtained
results. Py transform of Dirac delta function is obtained which proved useful to achieve the purpose. As customary, the results
for the frequently used Laplace transform can be recovered by taking § — 1 in the definition of Ps transform. Important new
identities involving the Fox-Wright function are obtained and used to simplify the results. It is remarkable that the several new

and novel results involving the classical gamma function became possible by using this approach.

1. Introduction

Research and studies reveal that a large number of integral
transforms are found in the literature. Each one of them is
suitable for different problems despite a simple mathemati-
cal relation existing between them. This role is vital to
understanding and applying the modern and classical theo-
ries. More recently, fractional type integral transform called
Py transform or pathway transform is introduced in [1]
based on pathway model [2, 3]. This model is significant to
study important forms of statistics [4, 5] due to their appli-
cations in astrophysics [6-8] and applied analysis [9-11].
By varying the pathway parameter, one can obtain three use-
tul forms. For a>0,8 >0,y >0, >0, and the normalizing
constants c;, ¢,, ¢;, the pathway model is defined as follows:
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For a complex valued integrable function f(¢), Py trans-
form is defined as follows [1]:
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which is R(n[1+(5-1)s]/6-1)>0.
Involved variable ¢ is transformed from In [1 + (8 — 1)s] °"!
to e~ similar to as the paths are transformed from binomial
to the exponential under pathway transformations [1].

Agarwal et al. [12] recently used such transforms to solve
the non-integer order differential and integral equations. Sri-
vastava et al. [13, 14] used this transform to find certain
results involving different special functions. For more
details, see [1-15] and references therein. Some properties
of the pathway transform are given in [1, 12]. For example,
the following result is detailed in [1]:
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The pathway or Pjs transform of Riemann-Liouville
fractional derivatives of function f(t) of order v is computed

by [1]:

convergent for
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The pathway or Py transform of Caputo derivatives of
function f(t) of non-integer order v and n—1<v<n is
given by [12]:

Py )54 = {0

_’S In[1+(a-1)s
fard a—1

If F(s)=Ps[f (t);s] and G(s)=Ps[g(t);s], then the
convolution theorem is stated in [1] as follows:
F(s)G(s) = Ps[ f (t); s]P5[g(t) ; 5] (6)

The Py transform (2) diminishes to Laplace transform
(Sneddon [16]) in the limiting case as § — 1:

L= [ et foasRe>o @)

which is a classical tool to solve nontrivial problems
[17-19] of diverse nature. It is remarkable that the following
relation between two transforms exist [13-15]:

|
LIF0)55)=Pa | £ S5,
®)
palf(eyss -] g EDA.

Advances in Mathematical Physics

Hence, by using (2), (7), and (8), the pathway or P;
transform of delta function is given by

L{6(2)58} = (6 and P, {6 (2) s} - (h‘“ e 1)5])r.
9)

A nontrivial generalization of the classical gamma func-
tion is investigated by Chaudhry and Zubair [20]:

Iy(z) = J e dt, (0= R(2) >0,b20),  (10)
0

which attracted the attention of many researchers due to
its applications, and therefore further extensions were
focused on by them [21]. One such generalization is named
as the “extended k-gamma function” given by [21]:

Jo

o —th - (bk/tk)
Iyi(z) = [ t“ ! exp — dt, (R(z)>0,b>0,k>0).
(11)

When k is unity, it diminishes to (10), and when b is
zero, it becomes k-gamma function defined by [22]:

l"k(z):JOOtZI( Vkdt  (keR), (12)

0

and when k = 1, the classical gamma function I';(z) =T
(z) is obtained, while for k =2, it is significant to investigate
the important Gaussian distributions [23, 24]. k-gamma
function has diverse applications for example, in physics
and chemistry [24, 25]; in non-integer order calculus [26,
27]; and in statistical analysis [28]. The interested reader is
directed to [29-33] and associated references therein for a
more extensive and exhaustive review of related work. In
recent years, Tassaddiq [34] has investigated a distributional
representation of the extended k-gamma function in terms
of complex delta function as follows:
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Hence, its action on a suitably chosen function over a
specific domain is easily obtainable by means of the standard
techniques applied to delta function, and it is found that [34]
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For further information on such representations con-
cerning other special functions, and for properties of delta
functions, one may refer to [34-45].

(15)

1.1. Novelty and Significance of the Research. The gamma
function is a basic and widely studied function, but if we
google “Laplace transform of gamma function,” then we
cannot find it in the existing literature [20] (see also
https://math.stackexchange.com/questions/2938166/what-
is-the-laplace-transform-of-gamma-function).

More recently, it has been computed by Tassaddiq in
[34] by using the distributional representation of the
extended k-gamma function. Present motivation is to fur-
ther explore and extend the results of [34] keeping in view
their novelty and significance to crack the problems that
remained unsolved for many years. For instance, quite a
few recent articles by Kiryakova ([46, 47] and references
therein) point out that the special functions are either gener-
alized fractional calculus operators of the basic functions (or
the generalized fractional calculus operators are defined as
the action of a specific special function on a general class
of functions and vice versa). This marriage of special func-
tions and fractional calculus is astounding. As a result, sev-
eral authors have worked to compute the image formulae
of a wide range of special functions using important frac-
tional transforms. Such findings are discussed in a review
article [46], and [15, 48, 49] contain an interesting debate
between the researchers. The authors are inspired by these
fractional operators because they connect numerous fre-
quently used fractional operators [46]. As a result, we use
the generalized fractional calculus operators to calculate
the novel fractional images of the extended k-gamma func-
tion. They are known as generalized fractional integrals
(multiple E-K operators) in [46, p. 8, Equation (19)]. In
addition, the lately common and highly used fractional oper-
ators Riemann-Liouville (R-L), Saigo, and Marichev-Saigo-
Maeda (M-S-M) are described with reference to such gener-
alized operators. This approach has been used first time in
this research and was not possible to use it for the famous
gamma function (and its generalizations) by using its known
(old) and classical representations.

This study plans as follows: Section 2 contains the neces-
sary preliminaries related to the family of generalized frac-
tional integrals (multiple E-K operators) and involved
special functions. Section 3.1 includes fractional images that
use the gamma function and its extensions. Section 3.2 goes
over fractional derivatives. The following Section 3.3 focuses
on the formulation and solution of a non-integer order
kinetic equation using the pathway transform. Section 3.4
computes integrals involving the products of a class of
special functions. Section 4 includes conclusion with a

detailed discussion and comparison of the findings with
other studies.

2. Preliminaries

Note: In this research, R, C, and R are the symbols to
denote the real part of any complex number, complex num-
bers, and real numbers separately. R* is a set of positive
reals, and Z; is a set of negative integers including 0.

Definition 1. (see [50]). For aeC;R(«a) >0, Mittag-Lefler
function is defined in a series form:

ZI'

(16)

Il
1MMg

I(ar+1)

I'(ar+1) denotes the familiar gamma function [20],
and, when a =1, it diminishes to the factorial, and hence
Mittag-Leftler function diminishes to the exponential func-
tion. Similarly, Mittag-Leffler function of parameters 2 and
3 i-e (a, B, yeC, R(a) > 0) is defined as

Bupl0)= Y ey (0= Y2 (1)

r=0

Definition 2 (see [46, 51, 52]). The Fox-Wright function
(p‘f’q) has a series representation

v (ai4)) Z H I'(a; +Aym) z"

P (bvB = TIL, ((b+Bm)m'
. (aie]R*(i:1,-~-.p);BjeIR+(j:1,--~.q);
q P
1+ Y B— Y A>0].
i=1 =
(18)

Definition 3 (see [46, 51, 52]). The fox H-function is defined
as follows:

(“:’A (“1’ s (ap4)
Hmn( ) Hmn
B)) (b B),- (b B)
— LJ H] 1 ( B Hz IF( _AJQ)) Z—é d§
2mi fHJ mn T (1=b; =B8] ml"(a- +A;9)
(1sms<q;0<n<p;A >OB>0 a,b;eC;
1:1’...,}7;]:1 )

(19)

where & denotes a suitable Mellin-Barnes curve to keep
secluded the poles of {I'(b; +B;3) }]’Zl from that of

{r(1-a; -A;) };?:1
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Remark 4 (see [46, 51, 52]). If A,=B =1, then H-function
turns into Meijer G-function:

Hmr (@A) (apAy)
z
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020: [TLr r(b; +Bm)[[L,[(1-a; —Am) zm
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(b 1) (by1) by by

v (a5 4))
z
P q >
(byB) |
(I-apAy), - (I-a,4)
g |
(0,1), (1=by,B,), -, ((1-b;,B))
(21)
and the hypergeometric functions as
(1) L[ amanne a-a
p¥a sz| =Gygn |2
(b; 1) 0, (1=by 1), (1=b;1)

- % . I'(a,)--I'(a) . -
L]W (62058, ¢ 20)
(22)

Definition 5 (see [46]). The generalized fractional integrals
namely (multiple) E-K operators as defined in are

1 m
) (yk+vk+1 >
[seoy iz o 1 fk Ay
0
(”“‘E’ﬁ—k)l
< +v +1—i i>m
¢ VTR B

5m),

do; ka >0
k
(v (vie)
I f(2) =

Jf(f) 8 T >0

(23)

Here, the order of integration is represented by v, s, the
additional parameters are represented by B,'s, and weights
are symbolized by y,'s. It is important to notice that

Igzk)r;’k)f( ) =1f(z) ;v = 1. Since the function H*Y, cease to

exist for || > 1, therefore the upper limit in (23) can be
replaced by co.
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Definition 6. (see [46]). Similarly, the fractional derivative

of order v=(v,;>0,---,v,,>0) in response to (23) are
defined as
DE;;;)){”;(VH (f(Z)) Igr;k';'vk) (= Vk)f(z)
Vit t+1 ! l)m
1 "o RO B By 1
=D, Lf(za)H o do

where D, (polynomial of degree 7, +
z(dldz)) is

+17,, in variable

3

”hl

d
Dq:HH Eﬂ’ﬁj;’?k:{

=1 j=1 r

Vil +1;v ¢ Z
Vi3V €EZ .
(25)

Furthermore, the conforming non-integer order deriva-
tives of Caputo type are

+ DOk (vhtvk),(

Bom  1(2) = Lgem ") p 2 £(2)- (26)

Lemma 7 (see [46]). For [-B . (1+vy,)|<p;v,>0;k=1,
-+, m, we have

yi+1+p/Bi()))
ﬁk’" Zp} 1_[I“y+v+1+(p/ﬁ))zp (27)

Definition 8 (see [52-56]). For complex parameters y,, yl',

Y Vs> R (v) >0, the M-S-M fractional integral operators are
defined by

' ’ V(X '
<Ig:}’1)}’2’72’v f) (X) — X [ (X _ t)V*It‘Vl F3

I'v)),
R Ly ,>f(t)dt,
! ! t—yl/ 00
IYI’Y}’YZ’VZ’VI: — vl “NE
(B ) = s [ et
t
~(y1,y1',y2,y2’,v;1—— 1—;)f(t)dt
(28)

where F; represents Appel Function (Horn function) which is
defined as [52]

F3(V1’Y1,’Y2’Y2/>V;U;V)
X (V1)k()’1,)l()’2) (Yz ) Ukt

= (V)z Fﬂ,max (Jul, |v|) < 1.
k=0 +m s e
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Lemma 9 (see [52-56]). Let y,,y,’,y, 7, €C @>0AR(x)
>max {0, R(y, +y, +y,-v), Ry, —7,) 1L, R(v) >0,
then

Igiyf Va¥av (@)

ror (x+v=vi-v' =)0 (x+7.'-v)
F(x+y, ) (xrv=yi-v )0 (x+v=r"-7.)

i
LV _1.

(30)

Similarly, let y,,y,".y, 7, €C 0> 0,andif R(5) >0,

R(x) < 1+min {R(=y,), R(y, +y," = 6), Ry, +7,' - )}
, then following image formula holds true:

r(1=x=vey, +y, )P(1-x+y+9, -v)I1-x-y)
P(= 00 (1=x 7,49, +7,+9, V)T - x+y,-72)

)
VY T

.
Igfv,' T (1) =

(31)

Definition 10. (see [55]). For y,,y,, v € C with x; R(v) > 0by
Saigo fractional integral operators are defined by

x VN

Bond * v t
oY = W) Jo(x -t)""L,F, <v + Yy sVil- i) f(t)dt,
1

s v=1,—v— X
e (f(x)) = —(V)J (t=x)""Y L E (v +Yy Y13Vl — ?) f(t)dt,

(32)

where ,F, represents the Gauss hypergeometric function given
by (see [56])

. Y)e(r2)e ut
Fi(ypypVssu)= ) 2228 |yl <15 |u
Fu( v ya0) = QS el < L 5

=1(u#1),R(y; -y, -v,) >0.

Lemma 11 (see [53-56]). For y,,7, veC;R(v)>0,R(x)
>max [0, R(y, —,)], we have

F()I'(x+v,-v:)

Y2y (ox1) =
(@) T(x-v)T(x+v+y,)

wX’YJ’I’ (34)

and for y,,y, v e CAR(v) > 0AR(x) < I +min [R(y,),
R(y,):

Iy, - x+DI'(y,-x+1)

wX’YI’I.
F(I-x)I(y,+y,+v—x+1)

IZI YoV (wal) =
(35)

Definition 12 (see [53-56]). For complex y,v € C,R(v) >0,
Erdélyi-Kober integrals are defined by

5
0,y,v v x X 1
R2(F09) = (1009 = T3 Jo(x—t)v PE(Hdt (x> 0),
LY (f(x) = (Y ) (x) = r)((:() Jm(t -x)"'V(H)dt (x> 0).
(36)

Definition 13 (see [57, 58]). For v e CAR(v) >0, the R-L
fractional integrals are defined as

B0 = 7 | =07 0 (x>0),

0
00

L) = 1o | =00 (x>0)

X

(37)

respectively. These are also related to Weyl transform [57, 58].

Remark 14. All of the above fractional operators are related
and can be obtained as special cases of (17) by varying and
specifying different parameter values. This is described
below in the following Table 1.

3. Main Results

3.1. New Fractional Image Formulae Containing the
Extended k-Gamma Function

Lemma 15. Assuming b,k >0, prove that the subsequent
relation for the Fox-Wright function holds true:

00 —1/k n+r b kr -
" - 38
— ekf bke—kf ( )
=l T %
Proof. Let us consider (14), then
Q17K (b kr —
LT =2n y T Oy, k(n—r)E]>
n,r=0 e -
(39)
ek pre R
L(T,(2);8) = 2m exp <_k Tk
40
- ek ek (40)
R I i b

Hence, from both of the above Equations (39)-(40), the
required result is proved. O
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Remark 16. It is to be remarked that a general result is obvi-
ous from (38) as follows:

o [ n+r kr (al,Al)
Z : l/klzlrl 2 plI/q[ k(n_r)fl
n,r=0 o (b],B]) (41)
(apAj) | ekt pkeke
= lI/ - = .
Tl By kK

Similar results will also hold for Mittag-Leffler function
and other related functions.

Remark 17. A similar result can be proved by using the path
way transform. It can be deduced from (38) by using the
following replacement on LHS:

_ In[+@-1g

5-1 (42)

Henceforth,

(o8] _ n+r kr n-r n B »
Py(Tpe(z)s8) =20 Y U () (0= o)t (l 1+ I)E])

nlrlp! §-1

ek(In [1+(8-1)E))/(6-1)  pke—k(In [1+(8-1)8])/(8-1)
=2mexp| — X - X

- ' ekl [1+(8-1)8))/(8-1)  pkk(n [1+(51)5])/(51)}
B k B k :

(43)

Or equivalently, in equation (43), 2\pi\psi should not be
bold face

[ (_l/k)n+r(b)kr

Ps(Tyul(2)38) =21 ) ~—mme o ¥,
H‘FO In[1+(6-1 (44
) k(n - r) n [ gg 1_ )ﬂ]

Theorem 18. The E-K fractional transform (of multiplicity
m) involving the extended k-gamma function is computed as

(v (I [L+ (8 = Ds[\*! +(0-1)s\*
(I(ﬁk),m (T Py{Iyp(z)ss} | = T mle
X _ 1 1 m
1+ y —
(V’ B; ﬁi> ; K(In [1+(8-1)/5-1)

(V*' : ﬁlé,), k k

BT+ y )] <p3S=05k=1,-,m

B ek(in [1+(8-1)E]/5-1)

7
Proof. Let us first consider
(v (10 [L+ (8 = s\ ™!
I(ﬂ )om T Pa{Fb,k(Z) ;5} (%)
- X1
LTI R
-1
§ Uk "“(b) (k)P ()P
nrp . nlrlp!
In[1+(6-1)s
(Rl g
(46)
then exchanging the summation and integration
vo (In[1+ (6 xt
( et (P EE) b ;s}> 8
© n+r kr Pl _ +\P
o Y (=1/k) (b? '(1'<) (n-1)
a0 nlrlp!
(ropv) (I [1+ (8= 1)\ ¥ (In [1+ (8= 1)s]\
' (I(ﬂk)’m ( 5—1 5-1 (x).
(47)
Next, to solve the RHS integral (I E l;)) (r:">
((In[1+(8=1)s/(E = 1) ((An [1+ (8- 1)s))/(6 - 1))P),
we make substitution u=(In[1+ (8- 1)s])/(6 —1); then,

using (27) with back substitution (In [1+ (6 -
= u executes the following:

n - s \¥!
(5 )
& (k)" (B)* (k)P (n—1)P
Z (0" (k) (n-r)

n'rlp!
m Ty L+ ((x+rp-1DIB)) (I [L+(8-1)g\P!
nyz+8z+l+((X+P_1)/ﬁi))< 6-1 ) ’
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(48)

which after modifications by using (18) leads to the
following:

n —1)s]\*!
<122k))mk <1 [ 8(_51 1) ]) P&{Fb,k(z);s})

=2n<ln [1+(5—1)5]>X-1 2 (=1/k)"™" () v

_ ] m*m
§-1 et nlr!
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Henceafter, by making use of Lemma 15 leads to the
required result. O

I(Yk) Vi) In[1+ (8-
(Bx)>m S—-1
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Corollary 19. The E-K fractional transform (of multiplicity
m) involving the extended gamma function is computed as

S m}) =2n(P DNy,

x-1 1)'”
+1+ 55—,
(V’ BB/,

<y1+8 +1+

Proof. It follows by considering k =1 in (45). O

Corollary 20. The E-K fractional transform (of multiplicity
m) involving the k-gamma function is computed as

n - s\ *!
(I e (1[1:;(_811)]) Ps{I'i(2) ;5}> (x)

- x-1
o (ln [1+(6 1)5]) -
6 _ 1 m m
< r1+ A2 11 >m
Vi ,B /3 k(I [1+(8-1)])/(8-1)
m| k
X— 1
p;+0;+1+ >
( ﬁi "Bi/
(51)
Proof. It follows by considering b =0 in (45). O

1714’1’4’24’2,)" (hl [1 + (6 B
0+ 5—1

(x:1)

(X+Yz’>1) (X+V‘V1‘Y1”1)

Proof. It can be proved by using the case m =3 of Table 1
along with (29) in the main result (45). O

6-1

D]\ ¥ In [1+ (8 = 1)s\ Sxmn' 1
(x+v—V1—V1’—V2>1) (7 -n"1)

X+v-1 -7,

_ o(In [1+(3-1E)/(3-1) _ pe—(In [1+(6-1)8)/(8-1) |

TR

(50)

Corollary 21. The E-K fractional transform (of multiplicity
m) involving the classical gamma function is computed as

ri)(ve) (1 &= 1)s)\*!
(12133,5”)(1 ) Pamz);s}) B

P (17“ e 1)5]))(_1,”%

-1
-1 1\"
(””* 58,
_ plln [1+(@E-1)&)/(-1) |
1 m
L+ 0+ 1 S
"),

(52)
Proof. It can be proved by considering k=1;b=01n (45). O
Corollary 22. The E-K fractional transform of multiplicity

m = 3 or the Marichev-Saigo-Maeda fractional integral oper-
ator of the extended k-gamma function is given by

3

okl [1+(0-1)&)/(6-1)  pke—k(In [1+(6-1))/(8-1)

k - k

(53)

Corollary 23. The E-K fractional transform of multiplicity
m=3 or the Marichev-Saigo-Maeda fractional integral
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operator of the extended gamma function is given by

(Igﬂn’%’v}v ((ln [t ;(7617 l)s]>X71p5{Fb(z) ;s}>> (x)=2m <4]n [t ;Eal’ 1)5]>6+X7y‘7y|,713‘1’3

(1) (xrv-n-n'-w1) (x+n'-n"1)
_ e(ln [1+(6-1)&])/(8-1) _ be—(ln [1+(8-1)&])/(6-1) .
(xen1) (xrv-n-n"1) X+v-n'-r
(54)
Proof. It follows by considering k=1 in (53). O  Corollary 24. The E-K fractional transform of multiplicity

m = 3 or the Marichev-Saigo-Maeda fractional integral oper-
ator of the k-gamma function is given by

(IZ,:Y"’“’“"” (1711 Sl I)S}YIP 2 {T4(2) ;s}> (x)=2n (—ln Lk ”s])éwm X2

(1) (X+V‘Y1 -7 =y 1) (X+Vz, -nh 1) ok(In [L+(5-1)8])/(5-1)
- k
(X+V2I)1> <X+V_V1_V1”1> X+v=v'-v,
(55)
Proof. 1t follows by considering b =0 in (53). O  Corollary 25. The E-K fractional transform of multiplicity

m = 3 or the Marichev-Saigo-Maeda fractional integral oper-
ator of gamma function is given by

(Ig:y;%,y;,v (ln 1 ; (_61— 1)5]) X_IP(;{F(Z) ; s}) (x) =21 (ln 1 ; (_61— 1)5}) Stx-111 ’—135”3

(x1) <X+V_YI -7 ‘Vz’1> <X+Y2’ ‘Yll’l) ek(In [1+(3-1)8))/(6-1)
- k
(v 1) (x+v-n-n"1) X+v=v'-v
(56)
Proof. It follows by considering k=b=0 in (53). O  Corollary 26. The subsequent new result is valid containing

the Laplace transform of extended k-gamma function:

e (I [1+ (8 = Ds\ ¥ In [1+ (8 = 1)s]\ S nn'-1
I (7[ 6(71 ”) PS{Fb,k(Z);S}=2n<7[ 5(71 ”) \7,
(I—X—v+y +y’1) (1_X+V +y’—v 1) 1-x-y :
1tV 1tV =Y 1 k(I [1+(-DENE-1)  pkok(in [1+(6-1)8)/(6-1)
h k - k
(1-x1) (1-xryen s men =v1) 1-xey-m

(57)
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Proof. It can be proved by using case m =3 of Table 1 along
with (31) in the main result (45). O

(Iér“' A I)S])XilPs{mz) ;s}> =2 (500 ”‘])M’m' L,

{(1wil+y1',1) (1-xyen w1

(I-x1)

Proof. It follows by considering k=1 in (57). O
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Corollary 27. The subsequent new result is valid containing
the Laplace transform of extended gamma function:

I=x-n
_ olln [1H(E-1)8)/(8-1) _ po-(In [1+(6-1E)/6-1) | |

(1-x+ven tren =v1) 1-xey-y

(58)

Corollary 28. The subsequent new result is valid containing
the Laplace transform of k-gamma function:

(Igl’y{vwéw (W) - Ps{I(2); s}> (x) =27 (W) e /_1)

(1=x=venen'1) (1-xenen'-va)

3lP3
(1-x1)

Proof. Tt follows by considering b =1 in (57). O

(1=xeren rtn =v1) 1-xer-y,

l=x-n ok(in [1+(3-1)8))/(5-1)
k

Corollary 29. The subsequent new result is valid containing
the Laplace transform of gamma function:

<Igl'Y1’»Yz’Yz'xV <W> X_IP(S{F(Z) ;s}) (x)=2m (W) 6+X_V1_V1I_l3l},3

(1—X—v+y1+y1/,l> (1—X+y1+y2'—v,1>

(I-x1)

Proof. 1t follows by considering k=1 in (57). O

For the benefit of the users, further deductions from the
main result (45) and in the light of the discussion presented
in Section 2.1 are given as follows:

I-x-7
_ e(ln [1+(6—1)£])/(6—1) .

(1—X+Y1+Y1’+Vz+)’z,—v’1) L-x+y,-7,
(60)

If (y;, 7, v € CAR(v) > 0AR()) > max [0, R(y, - y,)]),
then the E-K fractional transform of multiplicity m =2 or
the left handed Saigo integral operator containing the
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extended k-gamma function and its specific cases are given
by

k k

(Ig:yzm <ln 1 :; (_81— 1>5]>X71P5{Fb,k(z) ;S}> (%)= 20 <ln 1+(5- 1)3})“"‘2?, {(X’ 1) (x+v,=vp1)

2
o-1 (X-vp1) (x+v+y,)

g (RO DYy )iy ) =2 (L O DYy FOO et r e
(I‘“ ( o-1 > P‘s{rb()’}>() 2( 6-1 > sz{(x—yz D (x+v+y,)
1) (X+v2-vp 1)

Iyl,w(ln [1+(6—1)5]>x IP (e . [1+ 5 1)s )x Y-
o+ 5-1 st X=vpl) (x+v+yy)

S I
(13:”‘”(1”1;(_6[1)3]) Po{I'(2) ) 2n<ln[1+6 Ds )“‘ {EM (r+v2=vi 1)

X-v»1l) (x+v+y,)

k(In [1+(6-1F)/(6-1)  pok(in [1+(61)E])/(61):|

_ oln [1+(E-1)E)/(8-1) _ pe(in [1+(51>5])/(51)} .

k

ek(ln [1+(51)5])/(81):|

_elln [1+<6-1)E])/(5-1)} ,

If y., v, v e CAR(V) > 0AR(x) <1+ min [R(y,), R(y,)],  extended k-gamma function, and its special cases are given
then the E-K fractional transform of multiplicity m=2 or by

the right handed Saigo integral operator containing the

i (2009 1 )

- xr-l (y,—x+L1) (p,—-x+L1)
:zn(ln [1;(51 1)51) 2%[ i >
- (I-x1) (+ytv=—x+1L1)

(ww () o) ;s}> )

M+ @D\t [t L) -yt L)
—ZH(T) 2‘1’2[

k k

ek(ln [1+(8-1)E)/(6-1)  pkek(n [1+(6—1)£])/(6—1)]

>

_ ol [L+(E-1E/(6-1) _ p-(in [1+(61)E})/(61)‘|
(1-x1) ((yy+y,+v-x+1L1)

(ww (P ;s}) ®

@D\ [ x LD (- x+ L1
—271((37) Z'I/Zl

(1-x1) ((yy+y,+v-x+L1)

(2o (P58 troa ) o

zzﬂ(ln [1+(8- 1)5]>X‘V1“2lp2 [(Vl —x+L1) (r-x+L1)

k

ek(ln [1+(5—1)§])/(5—1)]

5-1

_eln [1+(51)£])/(51)] .
(1-x1) (1 +y,+v-x+1L1)
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If ,veC,R(v)>0,R(v+p)>-R(y), then the E-K

Erdélyi-Kober integral operator containing the extended k
fractional transform of multiplicity m =1 or the left handed

-gamma function, and its special cases are given by

y (I [1+ (8= 1)\ ¥ 2eet ) ()= o (L H (@ - D\ (x+»r1)
(IW (PSS patrate })( )=2n( L EE) #ﬁ{uww,l)
y (I [1+ (8= 1)\ ¥ e Vi = (M@= D\ [+ D)
<Io+ () e })() (2L C2D) m[mw’l)
v (In[1+ (8= 1)s\ ¥ ) () 2 2n ln[1+ S VSR 28Y
(I& (T) Ps{I'(2); }>( )=2 ( {(X+y+v,l)

)
(Ig’*v<W)xlPa{r(zm})(x)—zn(l“1+ sl)’“ {(xw,l)

(x+y+w1)

ek(ln [1+(8-DEN/(6-1)  pek(in [1+(61)£])/(61):|
N k N k ’

_ e(ln [1+(8-1)&))/(6-1) _ be—(ln [1+(81)E])/(51):| ,

k

ekl [1+(51>E])/(51)}

_lln [1+<5-1)5])/<5-1)} .

(63)

Ify,veC;R(x+p) <1+ R(y), then the E-K fractional

Kober integral operator containing the extended k-gamma
transform of multiplicity m =1 or the right handed Erdélyi-

function, and its special cases are given by

ok(n [L+(8-1)E)/(@E-1)  phok(in [1+(51)§])/(51)}

n — x-1 0 3 -1 3 11
(Igf (W) Ps{T'4(2) ;S}) (x) =2n<w> v, {(Y x+1-1) : k
(y-x+1-1)

(y+v-x+1-1)
by (I [L+ (8= 1)s\ *! o) ) g (LB DI\
(IO (Rhen) Ps{w),})() e L P

n —1)s x-1 0 _ -1 : -1
<Ig,_v(l[1:;(—611)]) Pa{Tk(Z);S}> (x):zn(w> {(V x+1-1)

>

_ elln [1+(0-1)8])/(8-1) _ pe=(In [1+(5-1)E])/(5-1)}

6-1

ek(ln [1+(61)E])/(61):|

(y+v-x+1-1) k
n —1)s\¥! n —1)s]\ 4! —x+1-1
(15’” (o) Ps{l‘(z);s}) (=2 (21020 lvzl[&f;ﬂ)’_l) el [l+<6-1>ﬂ>f<6—1>}.

(64)

If v, e C,R(v)>0,R(x) >0, then the E-K fractional  extended k-gamma function, and its special cases are given
transform of multiplicity m=1 or the left handed by
Riemann-Liouville (R-L) integral operator containing the

L (@D, ) e (B E =D\ TOe D)
<10+( 51 ) Pa{Fb,k()’})()—z ( -1 ) llpl[(vﬂ(,l)
N _ 1 n _ +6-1 01
(Ig+<1 LA pa{p,,@;s}) = 2n(P L CID Ty J D
V(L O=DNT Y ) g E DN [0 D)
<IO+(6—1> PS{Fk()’}>()_2 ( 5—-1 ) 1\},1|:V+X’1)

(v+x1)

(

(
L (I [1+ (8- 1)s\*! . o (Inl+ -\ (1)
(Im (S pr ,s}> e =2a(= G EEIN T [ o

k - k

okin [1+(6-DE)/(6-1)  pke-k(in [1+(51)s]>/(51)]

>

_ e(ln [1+(8-1)&))/(8-1) _ be—(ln [1+(51)£])/(51):|

ok(n [1+(6-1)E])/(6-1)
— % I

_eln [1+(51)5])/(51)] .

(65)
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If §,yeC,0<R(8) <1-R(x +p), then the E-K frac-
tional transform of multiplicity m =1 or the right handed
Riemann-Liouville (R-L) integral operator containing the

N —1)s 1 n —1)s +6-1 1-v—y,—-1

(I(w) PB{FM(Z);SQ (= 2n( L0 ‘&"lﬁl-x_f) )

LI 1+ (8= 1)s\*! . o (I1+@-1s\ (1= v-pl)
(‘(m) P“{”‘Z)’S}) =255 ﬂjl[(l—x,—l)

n —1)s\ X! n -1)s

(H (LR L }> w=2n( L0

0-1

n — 1)\ X1 n - D\
(1(1[1:;(_811)]> Pa{r(z);s}> (x>:2”(W) {

It is to be remarked that the results obtained for this case
i-e m=1 can be expressed in terms of Mittag-Leffler func-
tion by using the relation

(61 In[1+(8-1)s] ]
¥, kn-1)( —————
C55))

1

r(:ﬂ(’) ([t (8-1)
X)Elerx(k(n r)<T>)-

3.2. Generalized Fractional Derivatives Containing the
Extended k-Gamma Function. By using the methodology of
Theorem 18 and new representation of the extended k
-gamma function, we can find the multiple fractional
derivatives concerning the extended k-gamma function.
Here, we obtain them directly by using the general result

wr k) | /In[1+ (8= 1)s]\ ¥ nft + (0 1)s

e (e A
+v+1+

(y" ¢ B ﬁk)

(”“*ﬁk ﬁk)m

13

extended k-gamma function, and its special cases are given
by

k k

eklln [L+(8-1)&)/(8-1)  pek(in [1+(3-1)§])/(5-1)}

_ e(ln [1+(8-1)&))/(6-1) _ be—(ln [1+(61)E])/(81):| ,

1) ]>X+a 1 {(1 v-yx-1) B ekl [1+(6—1)E])/(6—1):|
(1-x-1) k
(I=v-yx-1) _ olln [L(@-1)E)@E-1) |
(- 1)

[46, Theorem 4] also given as

(a; “i)ll)
VR)s(vk) ) e .
Dgkm Zp‘Pq 5 g3 A2
O

a;, o), +v +1+— —
(@l (e 1+ )

=z ¥ s Az

()l (5o m),

(68)

Generalized fractional derivatives containing the
extended k-gamma function is obtained by applying (68)
n (42):

) 1)%'1}”%

Sk(In[1+(8-1)E])/(8-1)
k B k

b e~k(In[1+(8-1)&])/(6-1)

(69)
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Similarly, one can obtain the corresponding Marichev-
Saigo-Maeda fractional derivatives [53-55] as follows:

- <(1n[1 O ;s}>

! !
(x1) (X=72+yp 1) <X Yy Y —Ys 1) HON[LHO-1EN/E-1)  pk pk(In[1+(5-1)8])/(6-1)
- k - k

>

(00

(X-v»1) (X—V+Y1++V2I)1> (x—vwl' + ¥ 1)

DYVirar ( (W) X_IPa {Tox(2)s 5}>

(1 XD 1) (1 xRt 1) (1 “Xnn v 1) KN[IH(E-1E)0-1) o k(n[1+(3-1)E))/(5-1)
- k - k

=20t P,
(1-x1) (1-x-n"+nh1)  (xeven" o)
(70)

The corresponding Saigo fractional derivatives [53-55]
are given as follows:

o (509

_ o (W[ + (8= D5\ (1) (X+v+y,+y1)
2( 5-1 ) lezl(xwz,l) (x+w1)

K(n[1+(8-1)E)/(8-1)  pk o=k(In[1+(8-1)8])/(6-1)
k - k ’

DY ((W) X_lPa{Fb,k(Z) ; 5}>

ﬂ(ln[u(é—l)s})“ll v l(l—x—yz,w (I-x+v+y,l)
o-1 Tla-xrvern 0-x)

- - k - k

k(In[1+(8-1)])/(8-1) bke—k(ln[1+(6—1)i])/(8—1)‘|

(71)

For B, =P in (69), the following generalized Erdélyi-
Kober fractional derivative is found:

c
tv+1l+ -, -
prvd (Il + (- 1) X_IP {Tou(2)ss} b =2 Inf1 + (8 - s\ ™! v (y B /3) @D/ pRklIn1+(G-DEDIS-D)
B 5-1 SULES 5-1 i ( L < 1) k k
+1+ =, =
"R B

(72)
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Similarly, one can obtain the corresponding left and
right-handed E-K and R-L fractional derivatives [53-55] as
follows:

| ([l + (& -1)s)\*! In[1 + (8- 1)s\*
Dg;{( [-:3(_1 H) P5{Fb»k }} ( -'(—‘5(_1 )]>
n —1)s]\ ¥ n —1)s\ X1 1- v, 1

D’_"V{C [1;(_61 ) })X Pa{Fb,k(Z);S}}=271<17[1;(_61 D) ])X 1‘1’1{( x+y+Evl)

)Sl)xlps{rb,k(z) ;s) } - <_ln[1 ;(_‘31— 1)S]> "’1’51,1,,1 [ (x1)

L+ @-1
D0+ 5-1

S i+ -1
oy

Remark 30. Special cases:

(1) By taking b=0 in the above results (69)-(76), the
corresponding fractional derivatives of generalized
gamma function can be attained

(2) By taking k=1 in the above results (69)-(76), the
corresponding fractional derivatives of k-gamma
function can be attained

(3) Similarly, by considering b =0 and k =1 ; in the above
results (69)-(76), the corresponding fractional deriva-
tives of classical gamma function can be attained

Remark 31. For the interest of large audience, the fractional
integrals and derivatives involving the Laplace transform of
the extended k-gamma function are listed in the Appendices
A and B.

3.3. Pathway Transforms and the Solution of Fractional
Kinetic Equation Involving the Extended k-Gamma
Function. The use of non-integer operators has appeared
recently in various technical [59-61] and science specialties
[17-19]. For instance, the fractional kinetic equation is use-
ful in studying gas theory, astrophysics, and aerodynamics
[62-64]. A general non-integer order kinetic equation con-
taining the extended k-gamma function was recently formu-
lated and solved [34] using the Laplace transform. The main
goal of this section is to formulate and solve this problem
using the pathway transform and then validate the results
using both methods.

Sexana et al. [62] used subsequent kinetic equations to
analyze the reaction and destruction to model changes in
production rates:

s\ In[l1+(8-1)s x-1-9 (v-x+L1)
) e }} (B 0) llpl[ X

15
v [(y v+ 1) | kn[1+(O-1EYE-1)  pkk(n[1+(8-1)¢])/(3-1)
(y+x1) k K
(73)
HK[1+E-DENE-1)  pk pk(In[1+(3-1)E))/(3-1)]
(1-x+71) k k _
(74)
kN[ O-DEN/(B-1) gk ~k(n[1+(6-1)E))/(5-1) ]
(x-v1) k k I
(75)
kIn[L+(O-DE/E-1)  pkek(In[1+(3-1)§)/(8-1)]
(1-x1) k k ]
(76)
O,(t") =O(t~t'),t* >0
de ©® = O(t) = change in reaction
T -d(®y) +P(®t)’ ) L
= d(®) = Change in destruction
= p(®) = Change in production

(77)

If we neglect the inhomogeneity and spatial fluctuation
of ®(t) with the concentration of species ,®(t=0)=0,,
then we can rewrite it as

d
=0, 78)

and further to this, we ignore the subscript j and integrate
(78) to get

A(t) -, = —I;1O(t), (79)

with ¢ as a constant. Haubold and Mathai [59] developed the
non-integer order kinetic equation:

o(1) -0, =~ 13,6(1), (80)
by using the Riemann-Liouville (R-L) fractional integral
(I3,,8>0). We now formulate and solve the fractional
kinetic equation, as proposed by Haubold and Mathai [59]

i-e for any integrable function f(t):
O(t) - f(H)®, = -d’ I}, O(1). (81)

Now, we can formulate and solve the following fractional
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kinetic equation comprising of the extended k-gamma func-
tion by using the above information.

Theorem 32. By using pathway transform, the solution of
non-integer kinetic equation

O(t) = Oy, (t) =-d" I}, O(t); b,k,d>0,v>0  (82)

is computed as follows:

o (=1/k)"T (D) (k(n - r))IEPE, _ (-d"t
@(t):ZﬂtX" > (=1/k)™" (B)™ (( (n!r!p!)) t)"E,, p( t).

nrp=0
(83)
Proof. By applying the path way transform Pg on (82)
Ps{®(1)} = OyPs{ Iy (1)} = Po{-d" [5,O(t)},  (84)
as well as by using (4) and (42) yield the following:

o=y, 3 UKD Py

n,r,p=0

. ((8— JCIRICE 1>s1>)' o),

nlrlp!

O(s) [1 ¥ ((6_ 1)/(In [;+ 6- 1)5]))?

“2m0, 3 <—1/k>"”<2:§<>f’(n—r>l° (85)

n,r,p=0

A(n 1+ (6-1)s])/(d - 1)}1’.
After some simple calculation, one can obtain

% (SR (0) (k)P (n —1)?

O(s) = 210, m%:o P
x {(In [1+ (8- 1)s])/(8 - 1)} Z (86)
(In [1+ (8- 1)s))/(d - 1)\ "
) e

The inverse path way transform of (86) is computed by
using (3) and given as follows:

$ (1K™ (0) (k)P (n—r)?

O(t) =210, ) o) !
n,r,p=0 (87)
o ( dvtv)m
XZ ;vm—p>0;v>0.
m:OF(Vm - p)

O
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As a result, using (17) in (87) yields the desired result.
Special cases:

(1) By taking b=0 in the above results (82)-(83), the
corresponding non-integer kinetic equation contain-
ing I', (t) (k-gamma function) as well as the solution
can be obtained [34]

(2) By taking k=1 in the above results (82)-(83), the
corresponding non-integer kinetic equation contain-
ing I',(t) (generalized gamma function) and its solu-
tion can be obtained [34]

(3) Similarly, by considering b=0 and k=1, in the
above results (82)-(83), the corresponding non-
integer kinetic equation containing I'(t) (gamma
function) and its solution can be obtained [34]

Remark 33. Hence, we obtain the same solution [34] by
using pathway transform. It validates that approach is con-
sistent by using both transforms. Similarly, the results under
various other related transforms like Sumudu transform
[65], Natural transform [66], and Elzaki transform [67]
can be obtained and validated.

3.4. New Integrals of Products Involving Special Functions. It
is worth noting that the subsequent results containing the
products of a large class of special functions are evaluated
by taking (42) and (45):

' w - exp 7ek(ln ey _ prek(in [1+(6-1)8)/(8-1)
L k k

(Vf”f“ﬁ’fi)zn L

gm0
mn | & 11 8-1
y+1-—, —)
' B B/,
(Y p14 A ! i)m
! B B/, ekin [1+(8-1)E)/(E-1)  pe-k(in [1+(3-1)&)/(3-1)
m| k h k
-1 1
(y,.+v,+1+ X—, —)
By
(88)

and for k=1; b =0 special cases can be obtained:

[l T exp (et o)

Jo 6-1
1 1\"]
<yi+v,.+1——,—> 1
o g i Bi)y d£:2ﬂ<ln[l+(6—1)§]>
> 1 1 m 6—1
YI+1 R 7>
i/ 1

_ oln [L+(@-1)E)/(8-1) |

1

(89)

By making use of (13) and (23) alongwith the definition
of Dirac delta function, subsequent new integrals of products
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of special functions can be computed:

y;+v;+1- ! 1)m
1 1\™ i i E’ E
(wv - —) J I(E)H | € b lae
mo Bi i/ geC ’ 1 1\"
teC Fb,k(ZE)Hm,m E m dg (yl +1- F’ g>
+1 i i/ 1 (91)
Y m
ﬁ' ﬁi 1 <'})4+v‘+]_i,i)
—1/k)MT kr ! ! i i
—or Z /k e (b) J 6(zf+nk—kr) — 2_7-[ Hz,(r)n _ellz 1 ,
n,r=0 n.r. EeC 4 ’ ( 1 1 )”’l
1 m Vi +1-— —, —
<Yi+"i+1—— —) i Pi/1
0 B P
Hy (€ dg

' 1\" and further new integrals of products of special func-
yitl- E F) tions are computable by using the relation of Fox-H function

O (Z1/k)™ (b) o (Ve + v+ 1= 1Bk, (11BK)T -
=217 -1 Z ( ) Hm,m[(flz) m ] with other spe-

L (ye-+ 1= 1B, (B,

" cial functions as mentioned for example in Equations (19)-
11 (20) for G-function, Fox-Wright function, and Mittag-
. P Leffler function. For example,

1

(Yi+vi>m
j Iy ()G, & 1 ]ds
EeC

<Yi+vt+ 1- S i) (Y1)T
I e prekiz B Bi/4 2 l eklz  pkekiz (yﬁv,)i"]
B I moo | =~ Gmm |~ ~ ’
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(Vi+1__’_) z k k (v
i Pi/a
(90)
. . . . . (y; + V)
Hence, the following special cases involving the family of mo0 L
i : . Fh(ZE)Gm,m 5 d€
gamma function can be obtained: £eC )"
i/1
m 2 (vi + vy
(%- Fvrl- ﬁi l) - e, l—e“z ~ e o o
. i Pi/1 Yi
[ RS & o
&eC 1 1 ) "
Vit ==, =
i i/ 1
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z 1 1\" 2T 0 eklz (v + Vi),
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S L (v
+v;+1 R
YitVi A
1 Bi Bi/s m
Ty (zE)H™ | & dE J o [ it vi)
. i m I (z&)Gr E dé
“ nel- g g) w’
B Bi/, 3+ vy)" (92)
(+v+1 ! 1)m _2r mol_l i 11]
')} - =, = m,m
e | N BB : ()}
- 7 m,m T o1\ >
(Yi +1- _i’ _l>1 Similarly, ([64], Equation (32)) can be rewritten as by

using (23):
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4. Conclusion

The novel fractional transitions of the extended k-gamma
function are procured using the generalized fractional calcu-
lus” multiple E-K operators. As a result, specific new images
are acquired as special cases for the numerous different other
popular fractional transforms. It is only possible because
recent research [34] investigates the Laplace transform of var-
ious extensions of the gamma function. Furthermore, the
pathway transform is used to solve the fractional kinetic equa-
tion encompassing these extensions. As corollaries, specific
cases involving the gamma function family are discussed.
The findings are supported by the previously obtained solu-
tion of the fractional kinetic equation involving such func-
tions, which was solved using the Laplace transform. A
newly discovered representation of the generalizations of the
gamma function and their Laplace transform played an
important role. Novel identities containing the Fox-Wright
function were found to be extremely useful in simplifying
the results. Consequently, numerous results, including [46,
Lemmas 7-15, Theorems 2-4], are applicable to the Laplace
transform of the gamma function, and the key result (45)
along with important cases are completely provable using
the known theory and techniques. Given the known represen-
tations of the gamma function (as well as its extensions), it is
clear that this theory and techniques cannot be applied. As a
result, it is concluded that the results of this article are only
possible because of a new representation [34] of as a series of
complex delta functions, and this research is significant in
expanding the applicability of the gamma function (as well
as its extensions) beyond its original domain. By means of this
novel definition of the k-gamma functions, we can discover
more integrals in a simple way. For example, considering the
domain 0 < R(z) < 1, and for k = 2, we have corrected an inte-
gral of Gaussian function [35, Section 4]:

(I2(2),6(2)) = &(z+2n),{(2))

(94)

-2n) = -7
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It can be concluded that this research is substantial to
enhance the application of extended k-gamma beyond its orig-
inal domain.

Appendix

A. Generalized Fractional Integrals Involving
the Laplace Transform of the Extended
k-Gamma Function

The E-K fractional transform of multiplicity m containing
the Laplace transform of the extended k-gamma function is
given by

(15 L4 (o) 5})

1 m
+1 +
<Yl ﬁ ﬁz)l ek’f

k ke
=2l W _et ey
+0; PR S
(V’ a /s)
(A.1)
(vk),(8k) x-1 .
(2 s LT ,5})
<y +1+ ~ 1 l)m
» BB _
=2msd W, —ef —bet |,
<y +6;,+1+ ~1 l)m
l : [;i ,ﬁi 1
(A.2)

(12;’,?)( ST, (2) 5 5})

<Y1+1+ ﬁl ;)m &

=2ns"! W -,

m m m k
-1 1
01+ e, —
<% B; .31->1

(A.3)
k),(0k) y—
(1273,3); I LT (2) ;s}>
( +1+ ! l)m
Vi
; BB :
=2mA W, —¢
< +9; . ! 1>m
Vi
BB
(A4)

The E-K fractional transform of multiplicity m = 3 or the
Marichev-Saigo-Maeda fractional integral operator con-
taining the Laplace transform of the extended k-gamma
function is given by
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s : (61 (xro-v-n"-121) (xtn' -n"1)| s pres
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Igl_,yl,ypyp SX’IL{F(Z) 3sh= 272NN ’IS‘P3 —ef .
1-x%1) (1—x+vl+y1'+yz+yz'—&1) L=X+v1-7
(A.12)
BT, (0):5)
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The E-K fractional transform of multiplicity m = 2 or the =2k N1 ,¥, be ) Urr2=ned) & be ],
Saigo fractional integral operator containing the Laplace (Xx-121) (x+0+7,) k k

transform of the extended k-gamma function is given by (A.13)



20
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Ify,0 € C;R(x +p) <1+ R(p), then the E-K fractional
transform of multiplicity m = 1 or the right handed Erdélyi-
Kober integral operator containing the Laplace transform of
the extended k-gamma function and its special cases are
given by

(x+v1) ek ekt

Iy’ssX'IL T, (z);s) =281 W - ,
o {Fial2)s} ! 1[(x+y+8,1) k k

(A.21)

+7,1
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(A.22)
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+791 kg
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Ify,8 e C;R(x +p) <1+ R(y), then the E-K fractional
transform of multiplicity m =1 or the right handed Erdélyi-
Kober integral operator involving the Laplace transform of
the extended k-gamma function and its special cases are
given by
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If 6, x € C,R(8) >0,R(x) >0, then the E-K fractional
transform of multiplicity m=1 or the left handed
Riemann-Liouville (R-L) integral operator involving the
extended k-gamma function and its special cases are given

by
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B. Generalized Fractional Derivatives Involving
the Laplace Transform of the Extended
k-Gamma Function

The E-K fractional derivatives of multiplicity m containing
the Laplace transform of the extended k-gamma function is
given by
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The multiple E-K fractional derivatives with m = 3 or the
Marichev-Saigo-Maeda fractional derivative operator
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involving the Laplace transform of the extended k-gamma
function is given by
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Saigo fractional derivatives operator involving the Laplace X+vp1l) (x+6.1)

transform of the extended k-gamma function is given by (B.13)
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If y,6 e C;R(x +p) <1+ R(y), then the multiple E-K
fractional derivatives with m =1 or the right handed Erdé-
lyi-Kober derivatives operator involving the Laplace trans-
form of the extended k-gamma function and its special
cases are given by
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If §,x € C,R(8) >0,R(x) >0,, then the multiple E-K
fractional derivatives with m =1 or the left and right handed
Riemann-Liouville (R-L) fractional derivatives involving the
Laplace transform of the extended k-gamma function and its
special cases are given by

(1) K pre k]
DY, X ' L{T,,(2) 55} = 2t | W - - ,
0 {b,k() } 1 1_()(—6,1) k k ]
(B.29)
(6 1) e pre K]
DS sCL{Ty 4 (2) 58} = 2ms W - )
0 {b,k() } 1 1_()(—8,1) k k ]
(B.30)
, 1
D}, sV L{I(z) 55} = 2ms¥ 1 | Ge 1) —et - be_fl ,
(x-90.1)
(B.31)
, 1 kg
DY, X L{I(2) ; s} = 2151 ¥, 1) L
(x-81)] *
(B.32)
, 1
D}, ' L{T(z) 55} = 275t | (1) - eﬂ, (B.33)
(x-0.1)




24
; ; @-x+L1)| & prek]
3 ox-1 . — Xx—1 _c
DOSYL{T i (2) 55} =21 (1) - - _)
(B.34)
S—x+1,1 1
D2 sV L{T,(2) s} = 25t | P ©-x ) —et —be |,
(I-x1) ]
(B.35)
S—-y+1,1 k&
DALy (a) ) = 2ms | AT
(1-x1) k
(B.36)
§—y+1,1
DAL I () sy - 2mst | © X ED ],
(I-x1)

(B.37)

Data Availability

The study did not report any data.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally.

Acknowledgments

The author (AT) is also thankful to the deanship of scientific
research at Majmaah University for providing excellent
research facilities.

References

[1] D.Kumar, “Solution of fractional kinetic equation by a class of
integral transform of pathway type,” Journal of Mathematical
Physics, vol. 54, no. 4, p. 043509, 2013.

[2] A. M. Mathai, “A pathway to matrix variate Gamma and nor-
mal densities,” Linear Algebra and Applications, vol. 396,
pp. 317-328, 2005.

[3] A.M. Mathai and H. J. Haubold, “Pathway model, superstatis-
tics, Tsallis statistics and a generalized measure of entropy,”
Physica A, vol. 375, no. 1, pp. 110-122, 2007.

[4] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statis-
tics,” Journal of Statistical Physics, vol. 52, no. 1-2, pp. 479-
487, 1988.

[5] C. Tsallis, Introduction to non-extensive statistical mechanics
approaching a complex world, Springer, New York, 2009.

[6] D. Kumar and H. J. Haubold, “On extended thermonuclear
function through pathway model,” Advances in Space
Research, vol. 45, no. 5, pp. 698-708, 2010.

[7] H. J. Haubold and D. Kumar, “Extension of thermonuclear
functions through the pathway model including Maxwell
Boltzman and Tsallis distributions,” Astroparticle Physics,
vol. 29, no. 1, pp. 70-76, 2008.

Advances in Mathematical Physics

[8] H.J. Haubold and D. Kumar, “Fusion yield Guderley model
and Tsallis statistic,” Journal of Plasma Physics, vol. 77, no. 1,
pp. 1-14, 2011.

A. A. Kilbas and D. Kumar, “On generalized Kritzel function,”
Integral Transform and Special Functions, vol. 20, no. 11,
pp. 835-846, 2009.

[10] D. Kumar, “P-transform,” Integral Transforms and Special
Functions, vol. 22, no. 8, pp. 603-616, 2011.

[11] D. Kumar and A. A. Kilbas, “Fractional calculus of P-trans-
form,” Fractional Calculus and Applied Analysis, vol. 13,
no. 3, pp. 309-328, 2010.

[12] R. Agarwal, S. Jain, and R. P. Agarwal, “Solution of fractional
Volterra integral equation and non-homogeneous time frac-
tional heat equation using integral transform of pathway type,”
Progress in Fractional Differentiation and Applications, vol. 1,
pp. 145-155, 2015.

[13] H. M. Srivastava, R. Agarwal, and S. Jain, “Integral transform
and fractional derivative formulas involving the extended gen-
eralized hypergeometric functions and probability distribu-
tions,” Mathematical Methods in the Applied Sciences, vol. 40,
no. 1, pp. 255-273, 2017.

[14] R.Srivastava, R. Agarwal, and S. A. Jain, “Family of the incom-
plete hypergeometric functions and associated integral trans-
form and fractional derivative formulas,” Filomat, vol. 31,
pp. 125-140, 2017.

[9

—

[15] R. Agarwal, S. Jain, R. P. Agarwal, and D. Baleanu, “A Remark
on the Fractional Integral Operators and the Image Formulas
of Generalized Lommel-Wright Function,” Frontiers in Phys-
ics, vol. 6, p. 79, 2018.

[16] 1. N. Sneddon, The Use of Integral Transforms, Tata McGraw

hill publishers, New Delhi, 1972.

[17] M. K. Sadabad, A. J. Akbarfam, and B. Shiri, “A numerical
study of eigenvalues and Eigenfunctions of fractional Sturm-
Liouville problems via Laplace transform,” Indian Journal of
Pure and Applied Mathematics, vol. 51, no. 3, pp. 857-868,
2020.

[18] H. Yasmin, “Numerical analysis of time-fractional Whitham-
Broer-Kaup equations with exponential-decay kernel,” Fractal
and Fractional, vol. 6, no. 3, p. 142, 2022.

[19] B.B. Delgado and J. E. Macias-Diaz, “On the general solutions
of some non-homogeneous Div-Curl systems with Riemann-
Liouville and Caputo fractional derivatives,” Fractal and Frac-
tional, vol. 5, p. 117, 2021.

[20] M. A. Chaudhry and S. M. Zubair, On a class of incomplete
gamma functions with applications, Chapman and Hall/CRC,
2001.

[21] S. Mubeen, S. D. Purohit, M. Arshad, and G. Rahman, “Exten-
sion of k-gamma, k-beta functions and k-beta distribution,”
Journal of MathematicalAnalysis, vol. 7, pp. 118-131, 2016.

[22] R. Diaz and E. Pariguan, “On hypergeometric functions and
Pochhammer k-symbol,” Divulgaciones Matematicas, vol. 15,
pp- 179-192, 2007.

[23] R.Diaz and E. Pariguan, “On the Gaussian _q_ -distribution,”
Journal of Mathematical Analysis and Applications, vol. 358,
no. 1, pp. 1-9, 2009.

[24] F. Fernandez-Navarro, C. Hervas-Martinez, P. A. Gutiérrez,
J. M. Pefia-Barragén, and F. Lopez-Granados, “Parameter esti-
mation of q-Gaussian radial basis functions neural networks
with a hybrid algorithm for binary classification,” Neurocom-
puting, vol. 75, no. 1, pp- 123-134, 2012.



Advances in Mathematical Physics

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

J. Karwowski and A. H. Witek, “Biconfluent Heun equation in
quantum chemistry: harmonium and related systems,” Theo-
retical Chemistry Accounts, vol. 133, no. 7, p. 1494, 2014.

P. Agarwal, M. Chand, D. O. Baleanu, D. Regan, and J. Shilpi,
“On the solutions of certain fractional kinetic equations
involving k-Mittag-Leftler function,” Advances in Difference
Equations, vol. 2018, 13 pages, 2018.

E. Set, M. Tomar, and M. Z. Sarikaya, “On generalized Griiss
type inequalities for k-fractional integrals,” Applied Mathe-
matics and Computation, vol. 269, pp. 29-34, 2015.

M. Lackner and M. Lackner, “On the likelihood of single-
peaked preferences,” Social Choice and Welfare, vol. 48,
no. 4, pp. 717-745, 2017.

R. Diaz and C. Teruel, “Q, k-generalized gamma and beta
functions,” Journal of Nonlinear Mathematical Physics,
vol. 12, no. 1, pp. 118-134, 2005.

A. Rehman and S. Mubeen, “Some inequalities involving k-
gamma and k-beta functions with applications - II,” Journal
of Inequalities and Applications, vol. 2014, 9 pages, 2014.

R. Diaz, C. Ortiz, and E. Pariguan, “On the k-gamma q-distri-
bution,” Open Mathematics, vol. 8, pp. 448-458, 2010.

P. Agarwal, M. Chand, J. Choi, and G. Singh, “Certain frac-
tional integrals and image formulas of generalized k-Bessel
function,” Communications of the Korean Mathematical Soci-
ety, vol. 33, pp. 423-436, 2018.

K. S. Nisar, S. R. Mondal, and J. Choi, “Certain inequalities
involving the k-Struve function,” Journal of Inequalities and
Applications, vol. 2017, 71 pages, 2017.

A. Tassaddiq, “A new representation of the extended k-gamma
function with applications,” Mathematical Methods in the
Applied Sciences, vol. 44, no. 14, pp. 11174-11195, 2021.

A. Tassaddiq, “A new representation of the k-gamma func-
tion,” Mathematics, vol. 8, no. 11, p. 8, 2020.

M. A. Chaudhry and A. Qadir, “Fourier transform and distri-
butional representation of gamma function leading to some
new identities,” International Journal of Mathematics and
Mathematical Sciences, vol. 37, 2096 pages, 2004.

A. Tassaddiq and A. Qadir, “Fourier transform and distribu-
tional representation of the generalized gamma function with
some applications,” Applied Mathematics and Computation,
vol. 218, no. 3, pp. 1084-1088, 2011.

A. Tassaddiq and A. Qadir, “Fourier transform representation
of the extended Fermi-Dirac and Bose-Einstein functions with
applications to the family of the zeta and related functions,”
Integral Transforms and Special Functions, vol. 22, pp. 453
466, 2018.

M. H. Al-Lail and A. Qadir, “Fourier transform representation
of the generalized hypergeometric functions with applications
to the confluent and gauss hypergeometric functions,” Applied
Mathematics and Computation, vol. 263, pp. 392-397, 2015.

A. Tassaddiq, “A new representation of the extended Fermi-
Dirac and Bose-Einstein functions,” International Journal of
Mathematical Analysis, vol. 5, pp. 435-446, 2017.

A. Tassaddiq, R. Safdar, and T. A. Kanwal, “A Distributional
representation of gamma function with generalized complex
domian,” Advances in Pure Math, vol. 7, no. 8, pp. 441-449,
2017.

A. Tassaddiq, “A new representation of the Srivastava A-gener-
alized Hurwitz-Lerch zeta functions,” Symmetry, vol. 10,
no. 12, p. 733, 2018.

[43]

[44]

(45]

(46]

(47]

(48]

[49]

(50]
(51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]

[62]

25

A. Tassaddiq, “An application of theory of distributions to the
family of A-generalized gamma function,” AIMS Mathematics,
vol. 5, no. 6, pp- 5839-5858, 2020.

I. M. Gel'fand and G. E. Shilov, Generalized functions: proper-
ties and operations, Academic Press, New York, NY, USA,
1969.

A. H. Zamanian, Distribution Theory and Transform Analysis,
Dover Publications, New York, USA, 1987.

V. Kiryakova, “Unified approach to fractional calculus images
of special functions—a survey,” Mathematics, vol. 8, no. 12,
p. 2260, 2020.

V. Kiryakova, “A guide to special functions in fractional calcu-
lus,” Mathematics, vol. 9, no. 1, p. 106, 2021.

V. Kiryakova, “Commentary a remark on the fractional inte-
gral operators and the image formulas of generalized
Lommel-Wright function,” Frontiers of Physics, vol. 7, p. 145,
2019.

R. Agarwal, S. Jain, R. P. Agarwal, and D. Baleanu, “Response:
commentary: a remark on the fractional integral operators and
the image formulas of generalized Lommel-Wright function,”
Frontiers of Physics, vol. 8, p. 72, 2020.

M. G. Mittag-Leffler, “Sur la nouvelle fonction E(x),” Comptes
rendus de U'Académie des Sciences, vol. 137, pp. 554-558, 1903.
A. A. Kilbas, H-Transforms: Theory and Applications, CRC
Press, 1st ed. edition, 2004.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,
Higher Transcendental Functions, McGraw-Hill Book Corp,
New York, 1953.

O. I. Marichev, “Volterra equation of Mellin convolution type
with a Horn function in the kernel,” Izvestiya Akademii Nauk
BSSR. Seriya Fiziko-Matematicheskikh Nauk, vol. 1, pp. 128-
129, 1974.

P. Rusev, I. Dimovski, and V. Kiryakova, Eds., Transform
Methods ¢ Special Functions, Institute of Mathematics &
Informatics, Bulgarian Academy of Sciences, 1998.

M. Saigo, “A remark on integral operators involving the Gauss
hypergeometric functions,” Mathematical Reports of College of
General Education,Kyushu University, vol. 11, pp. 135-143,
1978.

H. M. Srivastava and P. W. Karlsson, “Multiple Gaussian
Hypergeometric Series,” Chichester; Brisbane, QLD; Toronto,
ON: Halsted Press, New York, NY, 1985.

M. Samraiz, M. Umer, A. Kashuri, T. Abdeljawad, S. Igbal, and
N. Mlaiki, “On weighted (k, s)-Riemann-Liouville fractional
operators and solution of fractional kinetic equation,” Fractal
and Fractional, vol. 5, no. 3, p. 118, 2021.

A. 1. Zayed, Handbook of Functions and Generalized Function
Transforms, CRC Press, Boca Raton, 1996.

G. Yang, B. Shiri, H. Kong, and G. C. Wu, “Intermediate value
problems for fractional differential equations,” Computational
and Applied Mathematics, vol. 40, no. 6, p. 195, 2021.

B. Shiri, G. C. Wu, and D. Baleanu, “Terminal value problems
for the nonlinear systems of fractional differential equations,”
Applied Numerical Mathematics, vol. 170, pp. 162-178, 2021.

B. Shiri and D. Baleanu, “A general fractional pollution model
for lakes,” Communications on Applied Mathematics and
Computation, 2021.

R. K. Saxena, A. M. Mathai, and H. J. Haubold, “Unified frac-
tional kinetic Equation and a fractional diffusion equation,”
Astrophysics and Space Science, vol. 290, no. 3/4, pp. 299-
310, 2004.



26

(63]

[64]

(65]

[66]

(67]

R. K. Saxena and S. L. Kalla, “On the solutions of certain frac-
tional kinetic equations,” Applied Mathematics and Computa-
tion, vol. 199, no. 2, pp- 504-511, 2008.

A. Tassaddiq and R. Srivastava, “New results involving Rie-
mann zeta function using its distributional representation,”
Fractal and Fractional, vol. 6, no. 5, p. 254, 2022.

G. K. Watugala, “Sumudu transform: a new integral transform
to solve differential equations and control engineering prob-
lems,” International Journal of Mathematical Education in Sci-
ence and Technology, vol. 24, no. 1, pp. 35-43, 1993.

Z. H. Khan and W. A. Khan, “N-transform-properties and
applications,” NUST Journal of Engineering Sciences, vol. 1,
pp. 127-133, 2008.

T. M. Elzaki, “The new integral transform Elzaki transform,”

Global Journal of Pure and Applied Mathematics, vol. 7,
pp. 57-64, 2011.

Advances in Mathematical Physics



	Unified Approach to Fractional Calculus Images Involving the Pathway Transform of Extended k-Gamma Function and Applications
	1. Introduction
	1.1. Novelty and Significance of the Research

	2. Preliminaries
	3. Main Results
	3.1. New Fractional Image Formulae Containing the Extended k-Gamma Function
	3.2. Generalized Fractional Derivatives Containing the Extended k-Gamma Function
	3.3. Pathway Transforms and the Solution of Fractional Kinetic Equation Involving the Extended k-Gamma Function
	3.4. New Integrals of Products Involving Special Functions

	4. Conclusion
	Appendix
	A. Generalized Fractional Integrals Involving the Laplace Transform of the Extended k-Gamma Function
	B. Generalized Fractional Derivatives Involving the Laplace Transform of the Extended k-Gamma Function
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

