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In this study, the Lie symmetry analysis is given for the time-fractional telegraph equation with the Riemann–Liouville derivative.
This equation is useable to describe the physical processes of models possessing memory. By applying classical and nonclassical Lie
symmetry analysis for the telegraph equation with α; β time-fractional derivatives and some technical computations, new infini-
tesimal generators are obtained. The actual methods give some classical symmetries while the nonclassical approach will bring back
other symmetries to these equations. The similarity reduction and conservation laws to the fractional telegraph equation are found.

1. Introduction

For decades, because fractional differential equations have a
major role in many different fields of science, the theory of
fractional differential equations has attracted broad interest
in the different areas of applied sciences [1–5]. The fractional
derivatives have also been of basic importance in the mathemat-
ical modeling of many systems in control [6], chemistry–
biochemistry [7, 8], finance [9], disease transmission dynamics
[10–12], and other disciplines. Fractional derivatives supply a
perfect and elegant tool to describe diverse materials and pro-
cesses with memory and hereditary characteristic of a variety of
different phenomena. By Xu et al. [13], Zhang et al. [14], Xu and
Zhang [15], and Zhang et al. [16], the analytical solutions of the
fractional differential equations have been obtained. The tele-
graph equations describe the current and voltage of wave prop-
agation of electric signals in a cable transmission line to find
distance and time, and has many applications such as neutron
transport [17], random walk of suspension flows [18], signal
analysis for transmission, propagation of electrical signals [19]
etc. Since the telegraph equation with classical derivatives can
not wells match the abnormal diffusion phenomena during the
finite long transmit progress, where the voltage or the current
wave possibly exists, inmodeling of this equation, from the point

of view of memory effects, we obtain the fractional telegraph
equations with fractional derivatives [20–22]. The time-
fractional telegraph equation can be written as follows:

Dα
t uþ γ1D

β
t uþ γ2u ¼ γ3uxx þ f x; tð Þ; 1<α ≤ 2; 0<β ≤ 1;

ð1Þ

where γ1; γ2; γ3 are arbitrary constants, f x;ð tÞ is smooth
function and Dα

t ;D
β
t represent the Riemann–Liouville frac-

tional derivatives. For α ¼ 2; β ¼ 1, the equation becomes the
classical telegraph equation. Recently, the fractional tele-
graph equation has been studied comprehensively theoreti-
cally and numerically [23–26]; however, there are limited
works using analytical methods. Lie group theory plays a
fundamental role in the theory of differential equations and
it is efficiently used to get exact solutions to differential
equations and fractional differential equations in some dis-
ciplines [27–33]. To obtain new infinitesimal generators of a
fractional differential equation and new solutions, we use the
class of conditional symmetries or the so-called nonclassical
symmetry method, which is proposed by Bluman and Cole
[34] for the first time. A number of investigators have applied
the method to find analytical solutions for the fractional
differential equations [35–40]. Conservation laws have a
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crucial role in the mathematical physics. They describe the
physically conserved quantities such as energy, mass, and
other constants of the motion. Noether’s [41] theorem pro-
duces a link between symmetries and conservation laws of
the differential equations.

In this paper, we intend to get the nonclassical Lie group
method and conservation laws of the telegraph equation with
fractional order. We obtain by using the nonclassical method,
infinitesimal generators that are new when compared with
obtained symmetries by the classical method. The continuation
of the article is as given below: mathematical preliminaries of
the Riemann–Liouville fractional derivative and a description
of classical and nonclassical Lie symmetry analysis are pre-
sented in Section 2. In Section 3 classical, nonclassical Lie sym-
metries, and similarity reductions of the telegraph equation
with fractional order are constructed. Utilizing the obtained
symmetries nontrivial conservation laws are given in Section 4.

2. Preliminaries

This section deals with basic concepts, definitions, and lem-
mas of fractional derivatives and classical, and nonclassical
Lie symmetry analysis.

2.1. Basic Definition on Fractional Derivatives

Definition 1. [5] Let α 2 Rþ. The Riemann–Liouville frac-
tional derivative of order m− 1<α ≤m of a function f 2
L1 0;½ T� is defined by

Dα
t f tð Þ ¼ 1

Γ m − αð Þ
dm

dtm

Z
t

0
t − sð Þm−α−1f sð Þds; ð2Þ

for all t 2 0;ð TÞ.

Proposition 1. [5] Let f be analytical in −ð h; hÞ for some
h>0, and let α 2 Rþ. Then

Dα
t f tð Þ ¼ ∑

1

n¼0

α

n

 !
tn−α

Γ nþ 1 − αð Þ f
nð Þ tð Þ; ð3Þ

for 0<t<h=2, where f nð Þ tð Þ denotes the n-th derivative of f
at t.

Proposition 2. [5] (Leibniz’s formula for Riemann–Liouville
fractional derivative) Let α 2 Rþ and assume that f and g are
analytical on −ð h; hÞ with some h>0. Then,

Dα
t fg½ � tð Þ ¼ ∑

1

n¼0

α

n

 !
f nð Þ tð ÞDα−n

t g tð Þ; ð4Þ

for 0< t<h=2.

Definition 2. [5] Let α; β 2 Rþ. The function Eα; β defined by

Eα;β zð Þ ¼ ∑
1

n¼0

zn

Γ αnþ βð Þ ; ð5Þ

whenever the series converges is called the two-parameter
Mittag–Leffler function with parameters α and β.

2.2. Description of Classical and Nonclassical Lie Symmetry
Analysis. Let us consider a one-parameter Lie group of infin-
itesimal transformations G on an open subset M ⊂ X ×U ≃
R3 with coordinate x;ð t; uÞ

x ¼ x þ εξ x; t; uð Þ þ O ε2ð Þ; ð6Þ

t ¼ t þ ετ x; t; uð Þ þ O ε2ð Þ; ð7Þ

u ¼ uþ εφ x; t; uð Þ þ O ε2ð Þ; ð8Þ

where ε is the group parameter. Then its associated Lie alge-
bra is spanned by the following infinitesimal generators

V ¼ ξ x; t; uð Þ ∂
∂x

þ τ x; t; uð Þ ∂
∂t

þ φ x; t; uð Þ ∂
∂u

: ð9Þ

We first recall the details of the classical symmetries
method for the fractional differential equation. Let us con-
sider the following time-fractional differential equation

F x; t; u; ux; uxx;⋯;Dα
t uð Þ ¼ 0; ð10Þ

defined over M ⊂ X ×U ≃ R3. A one-parameter group of
transformations as in Equation (7), is a classical Lie symme-
try group of Equation (10) if and only if for every infinitesi-
mal generator V of G we have

Pr α;tð ÞV Fð Þ F¼0 ¼ 0;j ð11Þ

where

Pr α;tð ÞV ¼ V þ φx ∂
∂ux

þ φxx ∂
∂uxx

þ⋯þ φ α;tð Þ ∂
∂Dα

t u
;

ð12Þ

with

φx ¼ Dx φð Þ −Dx ξð Þux −Dx τð Þut;
φxx ¼ Dx φxð Þ −Dx ξð Þuxx −Dx τð Þuxt;
⋯
φ α;tð Þ ¼ Dα

t φþ ξDα
t ux −Dα

t ξuxð Þ −Dαþ1
t τuð Þ

þDα
t Dt τð Þuð Þ þ τDαþ1

t u:

ð13Þ

Using Leibniz’s formula for Riemann–Liouville fractional
operator and the chain rule, we can write
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φ α;tð Þ ¼ Dα
t φþ φu − αDtτð ÞDα

t u − uDα
t φu

þ μ − ∑
1

n¼1

α

n

 !
Dn

t ξD
α−n
t ux

þ ∑
1

n¼1

α

n

 !
Dn
t φu −

α

nþ 1

 !
Dnþ1

t τ

" #
Dα−n

t u;

ð14Þ

where

μ ¼ ∑
1

n¼2

α

n

 !
tn−α

Γ nþ 1 − αð Þ ∑
n

m¼2
∑
m

k¼2

∑
k−1

r¼ 0

n

m

 !
k

r

 !
1
k!

−uð ÞrDm
t u

k−rDn−m
t Dk

uφ
À Á

:

ð15Þ

Here φu ¼ ∂φ=∂u, Dm
t ¼ ∂m=∂tm, Dt denotes the total

derivative operator defined by

Dt ¼
∂
∂t

þ ut
∂
∂u

þ utt
∂
∂ut

þ⋯; ð16Þ

and Dα
t f , Dt f denote the total fractional derivative and the

total derivative of f , w.r.t. t, respectively.
According to the group of transformations in nonclassi-

cal methods Equation (7), we consider the invariant surface
condition

Λ : ξ x; t; uð Þux þ τ x; t; uð Þut − φ x; t; uð Þ ¼ 0; ð17Þ

and we investigate the invariance of both the original equa-
tions together with this equation. Because for every ξ; τ, and
φ the invariant surface condition is always invariant under
the group of transformations Equation (7), then a one-
parameter group Equation (7), is a nonclassical Lie symme-
try group of Equation (10) if and only if for every infinitesi-
mal generator V of G, we have

Pr αð ÞV Fð Þ F¼0;Λ¼0 ¼ 0:
�� ð18Þ

3. Lie Symmetries and Similarity Reductions of
the Time-Fractional Telegraph Equation

In this section, we study the invariance properties of the
time-fractional telegraph equation. Let us consider the
time-fractional telegraph equation

Dα
t uþ γ1D

β
t uþ γ2u ¼ γ3uxx þ f x; tð Þ; 1<α ≤ 2; 0<β ≤ 1;

ð19Þ

where γ1; γ2; γ3 are arbitrary constants and f x;ð tÞ is given
smooth function. Now we wish to obtain infinitesimals ξ; τ,
and φ so that the one-parameter group Equation (7) be a

symmetry group admitted by Equation (19). According to
Equation (11) and by applying

Pr α;tð ÞV ¼ V þ φxx ∂
∂uxx

þ φ β;tð Þ ∂
∂Dβ

t u
þ φ α;tð Þ ∂

∂Dα
t u

;

ð20Þ

to Equation (19), we have the classical Lie’s invariance
criterion

φ α;tð Þ þ γ1φ
β;tð Þ þ γ2φ ¼ γ3φ

xx þ ξfx þ τft; ð21Þ

whenever u satisfies Equation (19). Substituting φ α; tð Þ;φ β; tð Þ;
φxx into this equation, replacing

Dα
t uþ γ1D

β
t u by − γ2uþ γ3uxx þ f whenever it occurs,

and equating the coefficients of the various monomials in the
partial derivatives of u, we obtain the classical determining
equations for the symmetry group of the time-fractional tele-
graph equation. Notice that φ β; tð Þ is defined similarly toφ α; tð Þ.
To analyze theses, the coefficients of uxuxt; uxt;D

β
t u are

τu ¼ 0; τx ¼ 0; τt ¼ 0; ð22Þ

respectively, hence τ is constant. On the other hand, due to
the lower limit of integral in Definition 2.1 be invariant
under the group of transformations Equation (7), we have
to suppose that

τ x; t; uð Þ ¼ 0: ð23Þ

Similarly, the coefficients of uxuxx; uxx;D
β−n
t ux (or

Dα−n
t ux) shows that ξ x;ð t; uÞ¼ ρ1 and the coefficients of

ux; u2x and Dβ−n
t u (or Dα−n

t u) reveals that

φ x; t; uð Þ ¼ ρ2uþ k x; tð Þ; ð24Þ

where ρ1; ρ2 are arbitrary constants, k is an arbitrary function
and satisfies the following fractional equation

Dα
t kþ γ1D

β
t kþ γ2k − γ3kxx þ ρ2f − ρ1fx ¼ 0: ð25Þ

Therefore

V ¼ ρ1
∂
∂x

þ ρ2uþ k x; tð Þð Þ ∂
∂u

; ð26Þ

and the classical symmetry algebra of Equation (19) is
spanned by the three vector fields

V1 ¼
∂
∂x

;V2 ¼ u
∂
∂u

;V3 ¼ k x; tð Þ ∂
∂u

: ð27Þ

Example 1. Let f x;ð tÞ¼ eλxh tð Þ where λ is arbitrary constant.
To obtain a classical invariant solution of Equation (19), we
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consider the one-parameter group generated by V ¼V1 þ
λV2 with invariant solution u x;ð tÞ¼ eλxg tð Þ: Substituting
this solution into Equation (19), the reduced fractional ordi-
nary differential equation (ODE) is

Dα
t g tð Þ þ γ1D

β
t g tð Þ þ γ2 − γ3λ

2ð Þg tð Þ ¼ h tð Þ: ð28Þ

If, for example, γ2 ¼ γ3λ
2 the solution of this equation

can be written in terms of Mittag–Leffler functions

g tð Þ ¼ c1tα−1Eα−β;α −γ1tα−βð Þ þ c2tα−2Eα−β;α−1 −γ1tα−βð Þ
þ ∑

1

k¼0
−γ1ð ÞkIk α−βð Þþαh tð Þ;

ð29Þ

where c1; c2 are arbitrary constants and Iα is the
Riemann–Liouville fractional integral operator of order α,
thus

u x; tð Þ ¼ eλx c1t
α−1Eα−β;α −γ1t

α−βð Þ
�

þ c2t
α−2Eα−β;α−1 −γ1t

α−βð Þ þ ∑
1

k¼0
−γ1ð ÞkIk α−βð Þþαh tð Þ

�
;

ð30Þ
is the solution of time-fractional telegraph equation.

If h tð Þ¼ tp where p ≥ 0 then

u x; tð Þ ¼ eλx c1tα−1Eα−β;α −γ1tα−βð ÞÀ
þ c2tα−2Eα−β;α−1 −γ1tα−βð Þ
þ Γ pþ 1ð ÞtαþpEα−β;αþpþ1 −γ1tα−βð ÞÁ: ð31Þ

Choosing suitable values, the figures for Equation (31)
have been displayed in Figures 1 and 2.

Example 2. If there exists a class of solutions g x;ð t; uÞ¼ c to
the Equation (19) admitting group Equation (7), g x;ð t ; uÞ¼ c
defines a solution too [39], then we have

Vg x; t; uð Þ ¼ 1: ð32Þ

Now we consider the one-parameter group generated by
V3 ¼ k x;ð tÞ∂=∂u of the Equation (19), where k satisfies the
Equation (25). According to Equation (32), we can write

k x; tð Þgu ¼ 1: ð33Þ

The solution of this equation can be written in the form

g x; t; uð Þ ¼ u
k x; tð Þ þ

w x; tð Þ
k x; tð Þ ¼ c; ð34Þ

so

u ¼ ck x; tð Þ − w x; tð Þ: ð35Þ

If we assume, for instance, f x;ð tÞ¼w x;ð tÞ¼ z xð Þh tð Þ
therefore

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

ðaÞ

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

ðbÞ
FIGURE 1: The plot of u x;ð tÞ obtained by Example 1 for values of (a) α ¼ 1:5, β ¼ 0:5, λ ¼ 0:3, γ1 ¼ 0:2, c1 ¼ 0:8, c2 ¼ 0:9, and p ¼ 0 and (b)
α ¼ 1:8, β ¼ 0:8, λ ¼ 0:8, γ1 ¼ 1, c1 ¼ 0:4, c2 ¼ 0:8, and p ¼ 0.
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u ¼ ck x; tð Þ − z xð Þh tð Þ: ð36Þ

Substituting this solution into Equation (19), thus
according to Equation (25) and assuming that

γ3z00 xð Þ þ cρ1z0 xð Þ − γ2 þ cρ2 þ 1ð Þz xð Þ ¼ 0; ð37Þ

the reduced fractional ODE is

Dα
t h tð Þ þ γ1D

β
t h tð Þ ¼ 0: ð38Þ

The solution of this equation can be written in terms of
Mittag–Leffler functions

h tð Þ ¼ c3tα−1Eα−β;α −γ1tα−βð Þ þ c4tα−2Eα−β;α−1 −γ1tα−βð Þ;
ð39Þ

where c3; c4 are arbitrary constants. According to Equation
(37), if we assume that Δ ¼ cρ1ð Þ2 þ 4γ3 γ2 þð cρ2 þ 1Þ then
we determine the solution of Equation (19) in the following
cases:

If Δ>0, then we have

u x; tð Þ ¼ ck x; tð Þ − c5em1x þ c6em2x½ � c3tα−1Eα−β;α −γ1tα−βð ÞÂ
þ c4tα−2Eα−β;α−1 −γ1tα−βð ÞÃ;

ð40Þ

where m1;m2 denote the real roots to the auxiliary equation
of Equation (40).

If Δ ¼ 0, then we have

u x; tð Þ ¼ ck x; tð Þ − c7 þ c8xð Þemx½ � c3tα−1Eα−β;α −γ1t
α−βð ÞÂ

þ c4tα−2Eα−β;α−1 −γ1tα−βð ÞÃ;
ð41Þ

where m denote the repeated real root to the auxiliary equa-
tion of Equation (37).

If Δ<0, then we have

u x; tð Þ ¼ ck x; tð Þ − eθ1x c9cos θ2x þ c10sin θ2xð Þ½ �
c3tα−1Eα−β;α −γ1tα−βð Þ þ c4tα−2Eα−β;α−1 −γ1tα−βð ÞÂ Ã

;

ð42Þ

where θ1 Æ θ2i denote the complex roots to the auxiliary
equation of Equation (37) and c5;…; c10 are arbitrary
constants.

Our next goal is now to obtain nonclassical determining
equations, employing Pr α; tð ÞV to Equation (19) and accord-
ing to Equation (18), the nonclassical infinitesimal invari-
ance criterion is given by

φ α;tð Þ þ γ1φ
β;tð Þ þ γ2φ ¼ γ3φ

xx þ ξfx þ τft; ð43Þ

which must be satisfied whenever u satisfies Equation (19)
and the invariant surface condition Equation (17). According
to invariant surface condition, we consider two different
cases: ξ ≠ 0 and ξ ¼ 0. In the case ξ ≠ 0, without loss of
generality, we can choose ξ ¼ 1, then we have

ux ¼ φ − τut; uxt ¼ φt þ φu − τtð Þut − τuu2t − τutt ;

ð44Þ
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ðaÞ
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FIGURE 2: The plot of u x;ð tÞ obtained by Example 1 for values of α ¼ 1:25; 1:5; 1:75; 2 and β ¼ 0:25; 0:5; 0:75; 1 (a) at the time t ¼ 1, (b)
for − 10<x<10 and 0<t<10; with parameters λ ¼ γ1 ¼ c1 ¼ c2 ¼ p ¼ 1.
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uxx ¼ φx þ φφu − τφtð Þ − 2τφu þ τx þ τuφ − ττtð Þut
þ 2ττuu2t þ τ2utt;

ð45Þ

After substituting φ α; tð Þ;φ β; tð Þ;φxx into Equation (43)
with ξ ¼ 1, replacingDα

t uþ γ1D
β
t u by − γ2uþ γ3uxx þ f sim-

ilar to classical case, and also resubstituting the expressions
ux; uxt; uxx wherever it occurs, we attain the nonclassical
determining equations for the symmetry group. Now we
analyze the order of the derivatives which appear. The coef-
ficient of ututt is τ2τu ¼ 0, thus we conclude τ ¼ 0 or τu ¼ 0.

If τ ¼ 0 according to coefficient of Dβ−n
t u (or Dα−n

t u), we
have

φ x; t; uð Þ ¼ Θ x; uð Þ þ Ξ x; tð Þ; ð46Þ

where Θ x;ð uÞ;Ξ x;ð tÞ are arbitrary functions. After substi-
tuting φ into the remaining term gives

φ x; t; uð Þ ¼ θ xð Þuþ Ξ x; tð Þ; ð47Þ

where θ xð Þ and Ξ x;ð tÞ satisfy the following system

θ00 xð Þ þ 2θ xð Þθ0 xð Þ ¼ 0; ð48Þ

Dα
t Ξ x; tð Þ þ γ1D

β
t Ξ x; tð Þ þ γ2Ξ x; tð Þ − γ3Ξxx x; tð Þ

−2γ3θ0 xð ÞΞ x; tð Þ þ θ xð Þf − fx ¼ 0:

ð49Þ

To find the function Ξ x;ð tÞ, we solve equation Equation
(48) thus

θ xð Þ ¼ ρ3; or θ xð Þ ¼ 1
x þ ρ4

; or θ xð Þ ¼ ρ5
e2ρ5x þ ρ6
e2ρ5x − ρ6

;

ð50Þ

where ρ3;…; ρ6 are arbitrary constants. A comparison with
Equation (24) shows that the nonclassical method is more
general than the classical method for the symmetry group.

If τ ≠ 0 and τu ¼ 0 the set of determining equations for
the nonclassical symmetry group of Equation (19) are
incompatible.

In the case ξ ¼ 0 and τ ≠ 0, we have

ut ¼
φ

τ
; uxt ¼

1
τ2

τφx − τxφð Þ þ τφu − τuφð Þux½ �; ð51Þ

and nonclassical determining equations unfortunately is
impossible.

Example 3. According to Equation (50), let θ xð Þ¼ 1
xþρ4

.
Assume that Ξ x;ð tÞ¼ 0 and f x;ð tÞ¼ xþð ρ4Þh tð Þ. Then by
considering invariat surface condition Equation (20), we have

ux ¼
u

x þ ρ4
; ð52Þ

whose general solution is given by

u x; tð Þ ¼ x þ ρ4ð Þg tð Þ: ð53Þ

Substituting of this solution into Equation (19) reduces it
to following fractional ODE

Dα
t g tð Þ þ γ1D

β
t g tð Þ þ γ2g tð Þ ¼ h tð Þ: ð54Þ

After solving this fractional ODE, taking into account
Equation (53) we find the exact solutions of the Equation
(19). For example, whenever α ¼ 2β and let r1; r2 denote the
roots of the equation x2 þ γ1xþ γ2 ¼ 0, assuming r1 ≠ r2 we
have

g tð Þ ¼ 1
r1 − r2

c1tβ−1 Eβ;β r1tβð Þ − Eβ;β r2tβð ÞÂ ÃÈ
þ c2tβ−2 Eβ;β−1 r1tβð Þ − Eβ;β−1 r2tβð ÞÂ Ã
þ
Z

t

0
t − τð Þβ−1 Eβ;β r1 t − τð Þβ½ �È

− Eβ;β r2 t − τð Þβ½ �Éh τð ÞdτÉ;
ð55Þ

so

u x; tð Þ ¼ x þ ρ4
r1 − r2

c1t
β−1 Eβ;β r1t

βð Þ − Eβ;β r2t
βð ÞÂ ÃÈ

þ c2tβ−2 Eβ;β−1 r1tβð Þ − Eβ;β−1 r2tβð ÞÂ Ã
þ
Z

t

0
t − τð Þβ−1 Eβ;β r1 t − τð Þβ½ �È

− Eβ;β r2 t − τð Þβ½ �Éh τð ÞdτÉ:
ð56Þ

If r1 ¼ r2, then

g tð Þ ¼ c1t2β−1
d
dt

Eβ;β r1tβð Þ þ c2t2β−2
d
dt

Eβ;β−1 r1tβð Þ −
Z

t

0
t − τð Þ2β−1 d

dτ
Eβ;β r1 t − τð Þβ½ �h τð Þdτ;

u x; tð Þ ¼ x þ ρ4ð Þ c1t2β−1
d
dt

Eβ;β r1tβð Þ þ c2t2β−2
d
dt

Eβ;β−1 r1tβð Þ −
Z

t

0
t − τð Þ2β−1 d

dτ
Eβ;β r1 t − τð Þβ½ �h τð Þdτ

� �
;

ð57Þ
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where c1; c2 are arbitrary constants.

Example 4. Suppose that θ xð Þ¼ ρ5
e2ρ5xþρ6
e2ρ5x−ρ6

, Ξ x;ð tÞ¼ 0 and

f x; tð Þ ¼ exp
Z

θ xð Þdx
� �

h tð Þ ¼ eρ5x − ρ6e−ρ5xð Þh tð Þ:

ð58Þ

Then in view of the invariant surface condition, we have
ux ¼ θ xð Þu. Differentiating this equation with respect to x
leads to

uxx ¼ θ0 xð Þ þ θ2 xð Þð Þu ¼ ρ25u: ð59Þ

Thus, the general solution of the equation is

u x; tð Þ ¼ e−ρ5xF tð Þ þ eρ5xG tð Þ; ð60Þ

where F and G are arbitrary functions. Substituting into
Equation (19), after some simplifications, we find the
reduced fractional ODEs

Dα
t F tð Þ þ γ1D

β
t F tð Þ þ γ2 − γ3ρ

2
5ð ÞF tð Þ ¼ −ρ6h tð Þ; ð61Þ

Dα
t G tð Þ þ γ1D

β
tG tð Þ þ γ2 − γ3ρ

2
5ð ÞG tð Þ ¼ h tð Þ: ð62Þ

We can solve these equations similar to previous exam-
ples and obtain the exact solutions to Equation (19).

4. Conservation Laws

In the current section, we will focus on the conservation
laws of Equation (19). A vector C ¼ Cx;ð CtÞ is called a
conserved vector for Equation (19), if it fulfills the conser-
vation equation

Dx Cxð Þ þDt Ctð Þ 3:1ð Þ ¼ 0;
�� ð63Þ

where the conserved density Ct and the spatial flux Cx are
functions of x; t; u, integer-order derivatives, fractional inte-
grals and fractional derivatives of u. Equation (63) is called a
conservation law for Equation (19). The new conservation
theorem proposed by Ibragimov [42] provides a method to
construct conservation laws for differential equations. Based
on this theorem, the Lagrangian formal for Equation (19) can
be introduced as follows:

L ¼ v x; tð Þ Dα
t uþ γ1D

β
t uþ γ2u − γ3uxx − f x; tð Þ

h i
;

ð64Þ

where v x;ð tÞ is a new dependent variable. Thus the func-
tional of Equation (19) through the formal Lagrangian Equa-
tion (64) is presented as follows:

L u½ � ¼
Z

R

Z
T

0
v x; tð Þ Dα

t uþ γ1D
β
t uþ γ2u − γ3uxx

h
− f x; tð Þ

i
dtdx:

ð65Þ

A necessary condition for functional L u½ � to have an
extremum is

δL
δu

¼ 0: ð66Þ

Here the Euler–Lagrange operator can be represented in
the form

δ

δu
¼ ∂

∂u
þ C

t
Dα
T

∂
∂Dα

t u
þ C

t
Dβ
T

∂
∂Dβ

t u
−Dx

∂
∂ux

þ ∑
1

k¼2
−1ð ÞkDi1Di2…Dik

∂
∂ui1;i2;…;ik

;

ð67Þ

where
C

t
Dα
T and

C

t
Dβ
T are the adjoint operators of Dα

t u;D
β
t u

and are defined by

C

t
Dγ
Tf tð Þ ¼ −1ð Þm

Γ m − γð Þ
Z

T

t
s − tð Þm−γ−1Dm

s f sð Þds;

m − 1<γ<m:

ð68Þ

Thus according to Equation (66), the adjoint equation to
Equation (19) is given by

C

t
Dα
Tv þ γ1

C

t
Dβ
Tv þ γ2v − γ3vxx ¼ 0: ð69Þ

We also use fundamental identity [42–44]

Pr α;tð ÞV þDt τð ÞI þDx ξð ÞI ¼ W
δ

δu
þDt N

tð Þ þDx Nxð Þ;
ð70Þ

where Nt and Nx represent the Noether’s operators, I is the
identity operator, Pr α; tð ÞV is given by Equation (20) and we
can rewrite in the following form

Pr α;tð ÞV ¼ τDt þ ξDx þW
∂
∂u

þD2
x Wð Þ ∂

∂uxx

þDα
t Wð Þ ∂

∂ Dα
t uð Þ þDβ

t Wð Þ ∂

∂ Dβ
t u

� � ; ð71Þ

whereW ¼φ− τut − ξux and the same as Equation (16),Dt ;
Dx are defined by

Advances in Mathematical Physics 7



Dt ¼
∂
∂t

þ ut
∂
∂u

þ uxxt
∂

∂uxx
þ Dαþ1

t u
∂

∂ Dα
t uð Þ þ Dβþ1

t u
∂

∂ Dβ
t u

� � ;
ð72Þ

Dx ¼
∂
∂x

þ ux
∂
∂u

þ uxxx
∂

∂uxx
þ Dα

t ux
∂

∂ Dα
t uð Þ þ Dβ

t ux
∂

∂ Dβ
t u

� � :
ð73Þ

Therefore according to Equation (70), we have

Pr α;tð ÞV þDt τð ÞI þDx ξð ÞI −W
δ

δu

¼ Dt τI þDα−1
t Wð Þ ∂

∂ Dα
t uð Þ −Dα−2

t Wð ÞDt
∂

∂ Dα
t uð Þ þDβ−1

t Wð Þ ∂

∂ Dβ
t u

� � − J W;D2
t

∂
∂ Dα

t uð Þ
� �

þ J W;Dt
∂

∂ Dβ
t u

� �
0
@

1
A

2
4

3
5

þDx ξI −WDx
∂

∂uxx
þDx Wð Þ ∂

∂uxx

� �
;

ð74Þ

where

Dt τð ÞI þ τDt ¼ Dt τIð Þ ð75Þ

Dα
t Wð Þ ∂

∂ Dα
t uð Þ −W

C

t
Dα
T

∂
∂ Dα

t uð Þ

¼ Dt Dα−1
t Wð Þ ∂

∂ Dα
t uð Þ −Dα−2

t Wð ÞDt
∂

∂ Dα
t uð Þ

�

− J W;D2
t

∂
∂ Dα

t uð Þ
� ��

ð76Þ

Dβ
t Wð Þ ∂

∂ Dβ
t u

� � −W
C

t Dβ
T

∂

∂ Dβ
t u

� �

¼ Dt Dβ−1
t Wð Þ ∂

∂ Dβ
t u

� �þ J W;Dt
∂

∂ Dβ
t u

� �
0
@

1
A

2
4

3
5

ð77Þ

D2
x Wð Þ ∂

∂uxx
−WD2

x
∂

∂uxx
¼ Dx −WDx

∂
∂uxx

þDx Wð Þ ∂
∂uxx

� �
;

ð78Þ

and the integral operator J is defined by

J f tð Þ; g tð Þð Þ ¼ 1
Γ m − αð Þ

Z
t

0

Z
T

t
s − νð Þm−α−1f νð Þg sð Þdsdν:

ð79Þ

This integral satisfies the property

J f tð Þ;g tð Þð Þ ¼ f tð Þ tð ÞI
m−γ
T − g tð Þ0Im−γ

t ;m − 1<γ<m:

ð80Þ

So for Equation (19), the operator Nt and Nx can be
written by the following formula

Nt ¼ τI þDα−1
t Wð Þ ∂

∂ Dα
t uð Þ −Dα−2

t Wð ÞDt
∂

∂ Dα
t uð Þ

þDβ−1
t Wð Þ ∂

∂ Dβ
t u

� � − J W;D2
t

∂
∂ Dα

t uð Þ
� �

þ J W;Dt
∂

∂ Dβ
t u

� �
0
@

1
A;

ð81Þ

Nx ¼ ξI −WDx
∂

∂uxx
þDx Wð Þ ∂

∂uxx
: ð82Þ

Since for all infinitesimal generator V admitted by Equa-
tion (19) and its any solution

Pr α;tð ÞV Lð Þ þDt τð ÞLþDx ξð ÞL −W
δL
δu 3:1ð Þ ¼ 0;
��

ð83Þ

therefore, in view of Equation (70), the conservation law of
Equation (19) can be written as follows:

Dt NtLð Þ þDx NxLð Þ 3:1ð Þ ¼ 0:
�� ð84Þ

Now, we present the components of conserved vectors
for Equation (19). Using Equations (81) and (82), we have
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Ct ¼ NtL ¼ τLþDα−1
t Wð Þv

−Dα−2
t Wð Þvt þ γ1D

β−1
t Wð Þv − J W; vttð Þ þ γ1J W; vtð Þ;

Cx ¼ NxL ¼ ξLþ γ3Wvx − γ3Dx Wð Þv;
ð85Þ

where v x;ð tÞ is an arbitrary nontrivial solution of Equation
(69) and for different infinitesimal generator Vi; i ¼ 1;…; 3,
of Equation (19), Wi are defined as follows:

W1 ¼ −ux;W2 ¼ u;W3 ¼ k x; tð Þ: ð86Þ

5. Conclusion

In this paper, the methods of classical and nonclassical Lie
symmetry analysis are applied to the time-fractional tele-
graph equation. The Lie symmetry method has had an enor-
mous success when applied to a diverse range of differential
equations. The idea of looking for the exact solutions and
conservation law for the more derivatives of fractional and
integer-order will motivate the nonclassical Lie symmetry
method to study such types of fractional partial differential
equations (PDEs). The results shown in this work demon-
strate how the nonclassical approaches grab the new exact
solutions to differential equations with fractional order.
Moreover, we constructed conservation laws for the time-
fractional telegraph equation by Ibragimovâ€s conservation
theorem adapted to the time-fractional PDEs.
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